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Matematica. -— The structure o f the solution set o f some nonlinear 
problems. Nota di P. J. M cK enna  e H oward S haw , presen ta ta^  
dal Socio D. G r a f f i.

R ia ssu n to . — Per equazioni operazionali Lu Nu — h, L ed N operatori in uno 
spazio di Hilbert reale X , L lineare, N non lineare, e sotto moderate ipotesi su L ed N, l’in­
sieme delle soluzioni è, generalmente, una varietà di dimensione uguale all’indice di Fredholm 
di L. Precisamente, questo accade effettivamente se la proiezione di h su un opportuno sot­
tospazio E di dimensione finita in X non cade su un certo insieme Z di E, di misura zero 
oppure di prima categoria.

i . Introduction

In recent years m any papers have studied the range set of non-linear 
operators of the type L  +  N, where usually  L is a linear differential operator 
and N is a nonlinear operator which in some sense is small or bounded com­
pared with L. For example, in [12], [18], [20] the operator L  was uniform ly 
elliptic with kernel and N was a bounded N iem ytsky operator on L 2.

In these papers, various necessary and sufficient conditions were given 
for a function to be in the range of L  +  N. In  [1], [2], [7], [15], the m ulti­
plicity of solutions of the equation

(1) ~Lu -f- ^  h

was studied. In all these papers, a key requirem ent for the existence of solutions 
was some condition involving the projection of h  onto a finite dim ensional 
subspace.

We sum m arize here results on the structure of the set of elements u  which 
are solutions of (1). T he m ain result (section 2) shows the existence of a finite 
dim ensional subspace depending on L  and N such th a t if the orthogonal projec­
tion of h does not belong to a sm all subset of this space (either of m easure 
zero, or of first category), then the solution set is actually a manifold of the 
same dimension as the Fredholm  index of the operator L.

T he hypotheses of this theorem  are sufficiently general to cover a wide 
variety  of situations including elliptic, parabolic and hyperbolic operators 
L, and the theorem  itself gives new inform ation even on the widely studied 
self-adjoint case.

In section 3, we give examples of m any different situations in which our 
general theorem  extends the results of recent papers. Proofs and details 
will appear in [14]. (*)

(*) Nella seduta del 16 dicembre 1978.
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2. A ssumptions and Statement of Results.

L et Q be a connected open set in Kn w ith sm ooth boundary  3 0 ; in fact 
m ost of the following generalizes to smooth R iem annian m anifolds with or 
w ithout boundary. W e seek inform ation about the set of solutions u  =  u  (x) 
to the nonlinear equation (1) where h is a given function in L 2 (O) and L  and 
N are respectively linear and nonlinear operators in L 2, possibly only densely 
defined.

T he operator L  (which is usually a differential operator w ith or w ithout 
boundary  conditions) is assum ed to be closed and to have finite dim ensional 
kernel and a closed range of finite codimension, w ith index i  — dim  (ker L) —• 
codim (range L). N is a N iem ytsky operator of the form  N u =  f ( u ) ,  where 
for r  =  I +  m ax (o , i), f  is a C r real valued function on R  and sup | / '  | — 
=  M <  00 .

W e m ake an additional hypothesis on the spectrum  of LL*, where L* is 
the ad joint of L. In  the next section, we give several examples in which 
this hypothesis is satisfied. L L  is a positive self adjoint operator by a 
theorem  of Von N eum ann [21], and so the spectrum  <7 (LL*) is real and 
non-negative. W e assume th a t for some M ' >  M 2, a (LL*) O [o , M '] con­
sists of isolated points, each of finite multiplicity.

One m ight hope th a t for any  h g L 2 (Q), the set of solutions m ight be a 
differentiable m anifold of dimension z; in fact this statem ent is generically 
true in the following sense:

Theorem. Given the above hypotheses on L  and  N, there exists a certain 
fin ite  dimensional subs pace Sx of L 2 and its orthogonal complement S2 w ith the 
fo llow ing  property: fo r  any h% G S2 there exists a set A Ç S1 o f measure zero so 
that i f  hx G Sx , hx $ A, then

L u  T  Nzz — hj -j~ h2

has an i-dimensional m anifo ld  as its solution set.

T he space Sx can be realized as the linear span of the first few eigenvectors 
of LL* (ordered by  size of eigenvalue). As a finite dim ensional linear space, 
Si inherits a notion of m easure zero from Lebesgue m easure on Rw, and it is 
in this sense th a t it has m easure zero. A lternatively, the bad set A  m ay be 
taken to be small in the sense of being first Baire category.

In the im portan t case in which i =  o, the theorem  states that, generi­
cally, the solution set is discrete. Since the solution set is closed, it m ust consist 
of isolated points. This z'-manifold turns out to be a subm anifold of a finite 
dim ensional subspace of L 2, although it m ay also be viewed as a subm anifold 
of L 2. If  from other considerations, we know tha t the solutions obey an L 2 a 
priori bound, this will im ply th a t the solution set is actually finite, generically.

If  i <  o, the conclusion is th a t solutions do not exist, in general, since 
the em pty set is the only z-manifold for i <  o. A nalogously, if i >  o, the
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solution set generically is either an /-d im ensional m anifold, or the em pty 
set, and in order to ensure th a t this trivial case does not arise, one m ust 
add to the very general hypotheses listed here, some additional hypotheses, 
which are widespread in the literature.

The m ethods of proof will appear in [14] together w ith generalizations 
to N of the form — f  (x , u  , Du), where Du  represents derivatives of order
generally (though not necessarily) less than  the order of L.

Use is m ade of the alternative m ethod of Cesari [4], [5], [6], and H ale 
[8] in which the concepts of functional analysis are injected into the classical 
scheme of Lyapunov-Schm idt. T he equation is split into two coupled parts, 
a contraction m apping equation on the infinite-dim ensional part, and a finite 
dim ensional part which can then be analyzed by differential topology.

These m ethods apply  in sim ilar problem s of structure, as in the following. 
Consider the 1 -param eter fam ily of N eum ann problems

Au - f \ u - f- arctan  u =  h in O ,

du
----  — o
3 n

on 3£i ,

with I f  h I <  (n12) meas (Q). For each fixed real X, the L andesm an-Lazer 
theorem  [12] guarantees the existence of solutions u \ (x). We prove th a t for 
generic h , the solution set {(X , u \ (.x)} will be a smooth 1 -manifold in R © L 2.

3. Examples and A pplications.

First we consider the case studied in [12]. Let L be a strongly elliptic 
self-adjoint differential operator on a region £i with smooth (C°°) boundary 
3Q and coercive boundary  conditions. Assume in addition th a t f i  s a  bounded 
function w ith limits at ©  00 satisfying /  (— 00) <  f  (s) <  /  ( +  00) for all i*, 
— 00 < < -j- 00. T hen a necessary and sufficient condition th a t the equation

(2) . L u - f  f  (u) = . h  (x) in L 2 (fi) 

have solutions is th a t

(3) / (+ « .)  ) e+ / ( -o o )  I e> f * e > / ( —00) [e+ / (+ o o )  f e ,
0>o e<o 0>o 0<o

where 0 spans the kernel of L.
T he proof implies in addition th a t any solution u (x) adm its of an a priori 

bound. Since the index of the self-adjoint operator L  is zero, our theorem  
shows th a t there exists a finite dim ensional subspace Sr  of L2 such th a t for 
any given h2 J_ the equation

Lu + = hx 4 - h2

adm its of only a finite num ber of solutions for almost all h1e S 1.
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W e now tu m  our attention to a genuinely non self-adjoint problem. 
L et Q ç R  be any bounded connected region w ith sm ooth boundary  dû, 
let L  be the biharm onic operator A2 with boundary conditions

du 3 .
----  = ---- txu — o on 312 ,
dx dn

and let us consider the problem  A2 u  +  / ( ^ )  =  h (x  , y). The operator L  has 
as kernel the space spanned by  {1 , y  , y 2} and as cokernel the space spanned 
by {1}. A n analysis sim ilar to th a t of [12] shows th a t if the function /  is as 
in the first example, then a necessary and sufficient condition for the  existence 
of solutions is (3). O ur theorem  shows th a t in fact generically the solution 
set is a two-m anifold in L 2 (Q).

If  we consider the equation L* u  +  f  (u) =  k  {pc , y)  w ith L  defined above, 
then the Fredholm  index is negative and our theorem  shows th a t generically, 
no solution exists.

The theorem  applies equally  well to some hyperbolic problems. Consider 
the equation

u tt — uxx ■ eu T  g  0 )  =  h (x , t) , c >  o ,

U  (o , t) — U  (7T , t) =  O ,

U (x  , t) =  U  (x  , t -f- 2 7U) .

T hen as in [16], [17], solutions exist if g  <  c and if k  satisfies a set of ine­
qualities resem bling (3). O ur theorem  again shows th a t generically there 
are only a finite num ber of solutions.

In these, it is easy to construct a righ t hand side where the solution 
set is actually  a continuum  bu t our theorem  shows th a t this is generically 
not trpe. F inally, we consider an example where the nonlinear operator 
is not of “ slow (m eaning sublinear) growth

It is known (see [11 ]) th a t if \  <  X2 <  • • • <  \ n <  • • • are the eigenvalues 
of a linear self-adjoint operator L with | \ n | —>■ co as n —> +  00, then the 
equation

(4) L u + f ( u ) = h ( x )

has solutions for all Ä-eL2(Q) if Xn <  / ' ( — 00) < / '  (T 00) <  Xn+1. Since for 
a self-adjoint linear operator the Fredholm  index is zero, and since a priori 
estim ates exist for any  solution, we m ay conclude tha t the equation adm its of 
only a finite num ber of solutions except for a m easure zero set of projections 
of h onto a finite dim ensional subspace.
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