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Matematica. — 7/e structure of the solution set of some nonlinear

problems. Nota di P. J. McKexna e HowarD SHaw, presentata ©
dal Socio D. GRAFFI.

R1ASSUNTO. — Per equazioni operazionali Lz 4+ Nz = 4%, L ed N operatori in uno
spazio di Hilbert reale X , L lineare, N non lineare, e sotto moderate ipotesi su L ed N, I’in-
sieme delle soluzioni &, generalmente, una varietd di dimensione uguale all’indice di Fredholm
di L. Precisamente, questo accade effettivamente se la proiezione di £ su un opportuno sot-
tospazio E di dimensione finita in X non cade su un certo insieme Z di E, di misura zero
oppure di prima categoria.

1. INTRODUCTION

In recent years many papers have studied the range set of non-linear
operators of the type L + N, where usually L is a linear differential operator
~and N is a nonlinear operator which in some sense is small or bounded com-
pared with L. For example, in [12], [18], [20] the operator L. was uniformly
elliptic with kernel and N was a bounded Niemytsky operator on L%

In these papers, various necessary and sufficient conditions were given
for a function to be in the range of L + N. In [1], [2], [7], [15], the multi-
plicity of solutions of the equation

(1) ' Lo+ Nu = £

was studied. In all these papers, a key requirement for the existence of solutions
was some condition involving the projection of 4 onto a finite dimensional
subspace.

We summarize here results on the structure of the set of elements 2 which
are solutions of (1). The main result (section 2) shows the existence of a finite
dimensional subspace depending on L and N such that if the orthogonal projec-
tion of /4 does not belong to a small subset of this space (either of measure
zero, or of first category), then the solution set is actually a manifold of the
same dimension as the Fredholm index of the operator L.

The hypotheses of this theorem are sufficiently general to cover a wide
variety of situations including elliptic, parabolic and hyperbolic operators
L, and the theorem itself gives new information even on the widely studied
self-adjoint case.

In section 3, we give examples of many different situations in which our
general theorem extends the results of recent papers. Proofs and details
will appear in [14].

(*) Nella seduta del 16 dicembre 1978.
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2. ASSUMPTIONS AND STATEMENT OF RESULTS.

Let Q be a connected open set in R* with smooth boundary 9Q; in fact
most of the following generalizes to smooth Riemannian manifolds with or
without boundary. We seek information about the set of solutions % = # (x)
to the nonlinear equation (1) where /4 is a given function in L? (Q) and L and
N are respectively linear and nonlinear operators in L%, possibly only densely
defined.

The operator L (which is usually a differential operator with or without
boundary conditions) is assumed to be closed and to have finite dimensional
kernel and a closed range of finite codimension, with index ¢ = dim (ker L) —
codim (range L). N is a Niemytsky operator of the form N#u = f (s), where
for » =1 4+ max (0, 7), fis a C real valued function on R and sup | /' | =
=M < o0,

We make an additional hypothesis on the spectrum of LL*, where L is
the adjoint of L. In the next section, we give several examples in which
this hypothesis is satisfied. LL” is a positive self adjoint operator by a
theorem of Von Neumann [21], and so the spectrum o (LL*) is real and
non-negative. . We assume that for some M’ > M* ¢ (@LL"N [0, M'] con-
sists of isolated points, each of finite multiplicity.

One might hope that for any /% € L*(Q), the set of solutions might be a
differentiable manifold of dimension 7, in fact this statement is generically
true in the following sense:

THEOREM. Given the above hypotheses on L and N, there exists a certain
Sfinite dimensional subspace S, of LP and its orthogonal complement S, with the

Jollowing property: for any hy €S, there exists a set A S S, of measure zero so
that if 1, €S, 7 ¢ A, then

Lo + Now = by + /s

has an i-dimensional manifold as its solution set.

The space S, can be realized as the linear span of the first few eigenvectors
of LL” (ordered by size of eigenvalue). As a finite dimensional linear space,
S, inherits a notion of measure zero from Lebesgue measure on R" and it is
in this sense that it has measure zero. Alternatively, the bad set A may be
taken to be small in the sense of being first Baire category.

In the important case in which 7= o, the theorem states that, generi-
cally, the solution set is discrete. ‘Since the solution set is closed, it must consist
of isolated points. This 7~-manifold turns out to be a submanifold of a finite
dimensional subspace of L? although it may also be viewed as a submanifold
of L2 If from other considerations, we know that the solutions obey an L* a
priori bound, this will imply that the solution set is actually finite, generically.

If 7 < o, the conclusion is that solutions do not exist, in general, since
the empty set is the only z-manifold for 7 < o. Analogously, if i > o, the
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solution set generically is either an /—dimensional manifold, or the empty
set, and in order to ensure that this trivial case does not arise, one must
add to the very general hypotheses listed here, some additional hypotheses,
which are widespread in the literature.

The methods of proof will appear in [14] together with generalizations
to N of the form Nu = f (x, %, Du), where Du represents derivatives of order
generally (though not necessarily) less than the order of L.

Use is made of the alternative method of Cesari [4], [5], [6], and Hale
[8] in which the concepts of functional analysis are injected into the classical
scheme of Lyapunov-5chmidt. The equation is split into two coupled parts,
a contraction mapping equation on the infinite-dimensional part, and a finite
dimensional part which can then be analyzed by differential topology.

These methods apply in similar problems of structure, as in the following.
Consider the 1-parameter family of Neumann problems

Aw + At + arctan # = /4 in Q,
2
o p on 9Q,
on

with |//L | < (w/2) meas (Q). For each fixed real A, the Landesman-Lazer
theorem [12] guarantees the existence of solutions #; (x). We prove that for
generic /4, the solution set {(A , %, (¥)} will be a smooth 1-manifold in R ® L%

3. EXAMPLES AND APPLICATIONS.

First we consider the case studied in [12]. Let L be a strongly elliptic
self-adjoint differential operator on a region Q with smooth (C*) boundary
3Q and coercive boundary conditions. Assume in addition that £ is a bounded
function with limits at 4 oo satisfying f (— c0) < f (s) < f (-+ o0) for all s,
— 00 <C s << -} oo. Then a necessary and sufficient condition that the equation

(2). Lu+ f@)=~4(x) in L*(Q)
have solutions is that

@ St [0t s oo [0 [m=sce9 04700 [0,
6 [}

0>0 0<0 So

o

<0

where 0 spans the kernel of L.

The proof implies in addition that any solution # (x) admits of an a priori
bound. Since the index of the self-adjoint operator L is zero, our theorem
shows that there exists a finite dimensional subspace S; of 12 such that for
any given /%, | S, the equation

Lou + Now = A, + Ay

admits of only a finite number of solutions for almost all 4, € S,.
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We now turn our attention to a genuinely non self-adjoint problem.
Let Q < R® be any bounded connected region with smooth boundary 2Q,
let L be the biharmonic operator A* with boundary conditions

= — _Au=o0 on G).Q,

and let us consider the problem A?#% 4 f(x) = A (x, y). The operator L has
as kernel the space spanned by {1, », »*} and as cokernel the space spanned
by {1}. An analysis similar to that of [12] shows that if the function f is as
in the first example, then a necessary and sufficient condition for the existence
of solutions is (3). Our theorem shows that in fact generically the solution
set is a two-manifold in L% (Q).

If we consider the equation L* 2 + f (%) = % (x, ) with L defined above,
then the Fredholm index is negative and our theorem shows that generically,
no solution exists. '

The theorem applies equally well to some hyperbolic problems. Consider
the equation

gy — Upy—cth + g () =0{x,2), ¢>o0,
#w(©0,f) =u(r,t)=o0,

w(x,)=ux,t+2m.

Then as in [16], [17], solutions exist if ¢’ < ¢ and if /% satisfies a set of ine-
qualities resembling (3). Our theorem again shows that generically there
are only a finite number of solutions.

In these, it is easy to construct a right hand side where the solution
set is actually a continuum but our theorem shows that this is generically
not trpe. Finally, we consider an example where the nonlinear operator
is not of “ slow (meaning sublinear) growth .

It is known (see [11]) that if ,, <Kk, <<..-<<Th,<<-.- are the eigenvalues
of a linear self-adjoint operator L. with |A,| = oo as # — - oo, then the
equation

4 Lu+f (@) =4 (x)

has solutions for all e L*(Q) if &, < f'(— 00) < F'(+ ©0) < Aypy. Since for
a self-adjoint linear operator the Fredholm index is zero, and since a priori
estimates exist for any solution, we may conclude that the equation admits of
only a finite number of solutions except for a measure zero set of projections
of /2 onto a finite dimensional subspace.
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