Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Brian Fisher

Constant mappings and common fixed points

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 65 (1978), n.3-4, p. 104-106.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_65_3-4_104_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - Constant mappings and common fixed points. Nota di Brian Fisher, presentata (*) dal Socio B. Segre.

Riassunto. - Si dimostra che, se S e T sono applicazioni di uno spazio metrico X in sè tali che o

$$
d(\mathrm{~S} x, \mathrm{~T} y) \leq b d(y, \mathrm{~S} x)+c d(y, \mathrm{~T} y), \quad(0 \leq b, c<\mathrm{I})
$$

oppure

$$
\{d(\mathrm{~S} x, \mathrm{~T} y)\}^{2} \leq c d(y, \mathrm{~S} x) d(y, \mathrm{~T} y), \quad(0 \leq c)
$$

per tutti gli x, y di X , allora Se T hanno un unico punto fisso comune, z, ed inoltre $\mathrm{S} x=z$ per tutti gli x di X .

We first of all prove the following theorem:
Theorem I . If S and T are mappings of the metric space X into itself satisfying the inequality

$$
d(\mathrm{~S} x, \mathrm{~T} y) \leq b d(y, \mathrm{~S} x)+c d(y, \mathrm{~T} y)
$$

for all x, y in X , where $\mathrm{o} \leq b, c<\mathrm{I}$, then S and T have a unique common fixed point z. Further, S is a constant mapping with $\mathrm{S} x=z$ for all x in X .

Proof. If x is an arbitrary point in X, we have

$$
d(\mathrm{~S} x, \mathrm{TS} x) \leq b d(\mathrm{~S} x, \mathrm{~S} x)+c d(\mathrm{~S} x, \mathrm{TS} x)=c d(\mathrm{~S} x, \mathrm{TS} x)
$$

and, since $c<\mathrm{I}$, it follows that

$$
\mathrm{TS} x=\mathrm{S} x
$$

Thus the point $S x=z$ is a fixed point of T. Further

$$
d(\mathrm{~S} z, z)=d(\mathrm{~S} z, \mathrm{~T} z) \leq b d(z, \mathrm{~S} z)+c d(z, \mathrm{~T} z)=b d(\mathrm{~S} z, z)
$$

and, since $b<\mathrm{I}$, it follows that

$$
\mathrm{S} z=z
$$

Thus the point z is a common fixed point of S and T.
Now suppose that S and T have a second common fixed point w. Then

$$
d(z, w)=d(\mathrm{~S} z, \mathrm{~T} w) \leq b d(w, \mathrm{~S} z)+c d(w, \mathrm{~T} w)=b d(z, w)
$$

and, since $b<\mathrm{I}$, it follows that the common fixed point z must be unique.
(*) Nella seduta del 14 maggio 1977.

We now note that, since the point z is unique and since the arbitrary point x was mapped into $z, \mathrm{~S}$ must map every point x in X into z. This completes the proof of the theorem.

Although we have proved that S is a constant mapping, T is not necessarily a constant mapping. To see this, let X be the set $\{0, \mathrm{I}, 3\}$ with metric

$$
d(r, n)=|r-n|: \quad r, n=0, \mathbf{1}, 3 .
$$

Define mappings S and T on X by

$$
\mathrm{S}(\mathrm{o})=\mathrm{S}(\mathrm{I})=\mathrm{S}(3)=\mathrm{T}(\mathrm{o})=\mathrm{T}(\mathrm{I})=\mathrm{o}, \quad \mathrm{~T}(3)=\mathrm{I}
$$

It is easily seen that the inequality of the theorem is satisfied with $b=c=\frac{1}{2}$, but T is not a constant mapping.

The inequality is also satisfied when $b=0, c=\frac{1}{2}$ or when $b=\frac{1}{2}, c=0$ and so T is not necessarily a constant mapping even if either $b=0$ or $c=0$.

In the particular case $S=T$, we of course have the following corollary:
Corollary. If T is a mapping of the metric space X into itself satisfying the inequality

$$
d(\mathrm{~T} x, \mathrm{~T} y) \leq b d(y, \mathrm{~T} x)+c d(y, \mathrm{~T} y)
$$

for all x, y in X , where $0 \leq b, c<\mathrm{I}$, then T is a constant mapping.
We now prove the following
Theorem 2. If S and T are mappings of the metric space X into itself satisfying the inequality

$$
\{d(\mathrm{~S} x, \mathrm{~T} y)\}^{2} \leq c d(y, \mathrm{~S} x) d(y, \mathrm{~T} y)
$$

for all x, y in X , where $\mathrm{O} \leq c$, then S and T have a unique common fixed point z. Further, S is a constant mapping with $\mathrm{S} x=z$ for all x in X .

Proof. If x is an arbitrary point in X, we have

$$
\{d(\mathrm{~S} x, \mathrm{TS} x)\}^{2} \leq c d(\mathrm{~S} x, \mathrm{~S} x) d(\mathrm{~S} x, \mathrm{TS} x)=0
$$

and it follows that

$$
\mathrm{TS} x=\mathrm{S} x .
$$

Thus the point $\mathrm{S} x=z$ is a fixed point of T .
Further

$$
\{d(\mathrm{~S} z, z)\}^{2}=\{d(\mathrm{~S} z, \mathrm{~T} z)\}^{2} \leq c d(z, \mathrm{~S} z) d(z, \mathrm{~T} z)=0
$$

It follows that the point z is a common fixed point of S and T.
Now suppose that S and T have a second common fixed point w. Then

$$
\{d(z, w)\}^{2}=\{d(\mathrm{~S} z, \mathrm{~T} w)\}^{2} \leq c d(w, \mathrm{~S} z) d(w, \mathrm{~T} w)=0 .
$$

It follows that the common fixed point z is unique and then that S maps every point x in X into z. This completes the proof of the theorem.

The example given above, with $c=1$, again shows us that T is not necessarily a constant mapping.

In the particular case $\mathrm{S}=\mathrm{T}$, we have the following:
Corollary. If T is a mapping of the metric space X into itself satisfying the inequality

$$
\{d(\mathrm{~T} x, \mathrm{~T} y)\}^{2} \leq c d(y, \mathrm{~T} x) d(y, \mathrm{~T} y)
$$

for all x, y in X , where $\mathrm{o} \leq c$, then T is a constant mapping.
We finally prove the following
Theorem 3. If S and T are mappings of the metric space X into itself satisfying the inequality

$$
d(\mathrm{~S} x, \mathrm{~T} y)<d(y, \mathrm{~S} x)+d(y, \mathrm{~T} y)
$$

for all x, y in X , with $\mathrm{S} x \neq \mathrm{T} y$, then S and T have a unique common fixed point z. Further, S is a constant mapping with $\mathrm{S} x=z$ for all x in X .

Proof. Let x be an arbitrary point in X. Then if $\mathrm{S} x=\mathrm{TS} x$, we have

$$
d(\mathrm{~S} x, \mathrm{TS} x)<d(\mathrm{~S} x, \mathrm{~S} x)+d(\mathrm{~S} x, \mathrm{TS} x)=d(\mathrm{~S} x, \mathrm{TS} x),
$$

giving a contradiction. It follows that the point $\mathrm{S} x=z$ is a fixed point of T .
Now suppose that $\mathrm{S} z \neq z$. Then

$$
d(\mathrm{~S} z, z)=d(\mathrm{~S} z, \mathrm{~T} z)<d(z, \mathrm{~S} z)+d(z, \mathrm{~T} z)=d(\mathrm{~S} z, z),
$$

giving a contradiction. It follows that the point z is a common fixed point of S and T.

If we now suppose that w is a second distinct common fixed point of S and T, then

$$
d(z, w)=d(\mathrm{~S} z, \mathrm{~T} w)<d(w, \mathrm{~S} z)+d(w, \mathrm{~T} w)=d(z, w),
$$

giving a contradiction. It follows that the common fixed point z is unique and then that S maps every point x in X into z. This completes the proof of the theorem.

In the particular case $S=T$, we have the following
Corollary. If T is a mapping of the metric space X into itself satisfying the inequality

$$
d(\mathrm{~T} x, \mathrm{~T} y)<d(y, \mathrm{~T} x)+d(y, \mathrm{~T} y)
$$

for all x, y in X , with $\mathrm{T} x \neq \mathrm{T} y$, then T is a constant mapping.

