ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Marcello Bruni

Forme di Hilbert e proprietà estremali in una varietà a struttura quaternionale generalizzata

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **65** (1978), n.1-2, p. 63–68. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1978_8_65_1-2_63_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Forme di Hilbert e proprietà estremali in una varietà a struttura quaternionale generalizzata. Nota (*) di MARCELLO BRUNI (**), presentata dal Socio E. MARTINELLI.

SUMMARY. — Let \mathscr{V}_n be an *n*-dimensional quaternion vector space and V_{4n} the underlying 4 *n*-dimensional real vector space. In $\wedge^p V_{4n}(p < n)$ we define some "Hilbert forms" and investigate its extremal properties. Consequently we establish Wirtinger's minimal theorem for a quaternionic manifold.

I. Sia **H** l'**R**-algebra dei quaternioni, provvista della consueta base $\{1, i, j, k\}$. Per ogni quaternione $q = q^0 + q^1 i + q^2 j + q^3 k$ la parte reale, la parte immaginaria, il quaternione coniugato e la norma sono dati, risp., da $\operatorname{Re}(q) = q^0$, $\operatorname{Im}(q) = q - \operatorname{Re}(q)$, $\bar{q} = \operatorname{Re}(q) - \operatorname{Im}(q)$, $\mathcal{N}(q) = q\bar{q}$. Porremo $\mathbf{H}^0 = \{q \mid \operatorname{Re}(q) = 0, \mathcal{N}(q) = 1\}$; è immediato che

$$(I.I) q \in \mathbf{H}^0 \Longleftrightarrow q^2 = -I.$$

2. Spazi vettoriali **H** e su **C**

La consueta biiezione tra gli spazi vettoriali \mathscr{V}_n (destro, su \mathbf{H}) e V_{4n} , su \mathbf{R} , soggiacente a \mathscr{V}_n , individua i sottospazi *caratteristici* V_{4p} ($p=1,\cdots,n$) di V_{4n} , soggiacenti ai \mathscr{V}_p di \mathscr{V}_n (1). Uno stesso simbolo (per esempio \mathbf{x}) indicherà elementi corrispondenti in \mathscr{V}_n e in V_{4n} .

Se $q \in \mathbf{H}^0$, la biiezione in V_{4n} definita da $\mathbf{x} \to \mathbf{x}q$ attribuisce a V_{4n} una struttura – che indicheremo con S_q – di spazio vettoriale su \mathbf{C} . Si ottengono così sottospazi V_{2s} ($s=1,\cdots,2$ n) che diremo \mathbf{C} -caratteristici. È ovvio che

- (2.1) un V_{4p} caratteristico è **C**-caratteristico in qualsiasi S_q . Viceversa:
- (2.2) se q_1 , q_2 , $q_3 \in \mathbf{H}^0$ e sono indipendenti su \mathbf{R} , un V_{4q} C-caratteristico in S_{q_1} , S_{q_2} , S_{q_3} è caratteristico.

Infatti $\forall q' \in \mathbf{H}^0$ si ha $q' = r_0 + r_1 q_1 + r_2 q_2 + r_3 q_3$ (r_s reali); ma $\forall x \in V_{4p}$ è per ipotesi $xq_s \in V_{4p}$ onde $xq' \in V_{4p}$.

^(*) Pervenuta all'Accademia il 22 luglio 1978.

^(**) L'Autore fa parte del Gruppo Nazionale Strutture Algebriche, Geometriche e Applicazioni del C.N.R.

⁽¹⁾ Per le nozioni generali vedi per esempio [3], [7], [10].

3. FORME DI KÄHLER

Una metrica euclidea in V_{4n} (prodotto scalare " \times ") dà luogo alla metrica hermitiana quaternionale (prodotto hermitiano " \cdot "):

(3.1)
$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \times \mathbf{y} + (\mathbf{x} \times \mathbf{y}i) i + (\mathbf{x} \times \mathbf{y}j) i + (\mathbf{x} \times \mathbf{y} k) k^{(2)}.$$

Per $q = q^1 i + q^2 j + q^3 k \in \mathbf{H}^0$ si ha inoltre la metrica hermitiana complessa relativa ad S_q (prodotto hermitiano " S_q " o anche, brevemente " S_q "):

(3.2)
$$\mathbf{x} \cdot_{(q)} \mathbf{y} = \mathbf{x} \times \mathbf{y} + (\mathbf{x} \times \mathbf{y}q) q.$$

La 2-forma esterna di Kähler ω_q associata ad S_q assume sul bivettore $x \wedge y$ il valore

(3.3)
$$\langle \mathbf{x} \wedge \mathbf{y}, \omega_q \rangle = 2 \operatorname{Im} (\mathbf{x} \cdot (\mathbf{q}) \mathbf{y}) = 2 (\mathbf{x} \times \mathbf{y}q) q^{(3)}$$

Introdotte le forme *reali* $\omega_q' = \omega_q q$ (di particolare interesse ω_i' , ω_j' , ω_k'), dalla 3.3 con elementare calcolo discende

(3.4)
$$\omega_q' = q^1 \, \omega_i' + q^2 \, \omega_j' + q^3 \, \omega_k'.$$

Nel caso quaternionale, alla 2-forma di Kähler si sostituisce la 4-forma reale:

(3.5)
$$\Omega = \omega_i' \wedge \omega_i' + \omega_i' \wedge \omega_i' + \omega_k' \wedge \omega_k'$$
(4).

Si noti che $\omega_i' \wedge \omega_j' = \omega_j' \wedge \omega_i'$ ecc.; segue da 3.5 la

(3.6) PROPOSIZIONE. Le potenze esterne di Ω e le potenze ordinarie del polinomio $x^2 + y^2 + z^2$ hanno la stessa espressione formale.

4. TEOREMA DI HILBERT

È essenziale per il seguito un classico teorema di Hilbert ⁽⁵⁾ secondo il quale per ogni $m \in \mathcal{N}$, la potenza m-ma di $x^2 + y^2 + z^2$ è altresì combinazione lineare, a coefficienti in \mathbb{Q}^+ , di potenze 2 m — me di polinomi di 1° grado;

(4.1)
$$(x^2 + y^2 + z^2)^m = \sum_{t=1}^{8} p_t (a_t x + b_t y + c_t z)^{2m \ (6)}.$$

- (2) Viceversa, vedi [10], una metrica hermitiana quaternionale (o complessa) subordina una metrica euclidea in base alla $\mathbf{x} \times \mathbf{y} = \text{Re}(\mathbf{x} \cdot \mathbf{y})$. Da ciò e da 3.2 segue che alle metriche hermitiana e complessa corrisponde un'unica metrica euclidea.
 - (3) M. Bruni [3], n. 16.3. Talora per esempio in [10] non si considera il fattore 2.
- (4) La forma Ω è stata indrodotta da E. MARTINELLI in [7]. La 3.5 si trova, per esempio, in [6].
- (5) Il teorema di Hilbert mi è stato indicato dal prof. E. BOMBIERI che ringrazio vivamente.
- (6) I coefficienti a_t , b_t , c_t sono interi. In [5] è considerato il caso più generale della potenza $(x_1^2 + \cdots + x_5^2)^m$; si ha, in tale caso, $s = \binom{2m+4}{4}$.

In particolare, per m = 2, m = 3 si ha:

$$(4.1') (x^{2}+y^{2}+z^{2})^{2} = \frac{1}{12} [(x+y+z)^{4}+(++-)^{4}-(+-+)^{4}+(-++)^{4}] + \frac{2}{3} (x^{4}+y^{4}+z^{4})$$

$$(4.1'') (x^{2}+y^{2}+z^{2})^{3} = \frac{1}{60} [(x+y+z)^{6}+(++-)^{6}+(+-+)^{6}+(-++)^{6}] + \frac{1}{15} [(x+y)^{6}+(+-)^{6}+(x+z)^{6}+(+-)^{6}+(+-)^{6}+(y+z)^{6}+(+-)^{6}]$$

$$+ (y+z)^{6}+(+-)^{6}] + \frac{2}{3} (x^{6}+y^{6}+z^{6}).$$

5. FORME DI HILBERT

Introduciamo una famiglia di forme esterne la cui espressione è sostanzialmente suggerita dal secondo membro della 4.1; esse godono di interessanti proprietà estremali che ci consentiranno di estendere il teorema di minimo volume di Wirtinger al caso dei quaternioni.

Siano $r_1, r_2, \dots, r_s \in \mathbb{R}^+$ e $q_1, q_2, \dots, q_s \in \mathbb{H}^0$ con $q_t = q_t^1 i + q_t^2 j + q_t^3 k$ $(t = 1, \dots, s)$. Considerate le ω'_{q_t} (vedi n. 3) chiameremo forme di Hilbert le $4 \not$ -forme (p < n)

(5.1)
$$\Phi = \sum_{t=1}^{s} r_t \left(\wedge^{2p} \omega'_{q_t} \right);$$

diremo altezza (8) di Φ il reale $h_{\Phi} = \left(\sum_{t=1}^{s} r_{t}\right) (4p)!!$.

È importante osservare che, come segue da 3.6 e 4.1:

(5.2) le potenze esterne di Ω sono forme di Hilbert (9).

6. Proprietà estremali delle forme di Hilbert

Sia M_{4n} una varietà differenziabile a struttura quaternionale generalizzata. Supporremo M provvista di una metrica hermitiana quaternionale e di una 4-forma kähleriana Ω .

Considereremo gli spazi vettoriali tangenti ad M, le loro potenze esterne ed i multivettori semplici ossia del tipo $\xi = \mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_{4p}$ con $\mathbf{x}_1, \cdots, \mathbf{x}_{4p}$

- (7) Il significato di "++-" è x+y-z; ecc.
- (8) Si ricordi che $(2 m) ! ! = 2 \cdot 4 \cdot \cdot \cdot (2 m)$.
- (9) Con semplici calcoli si trova che le altezze di Ω , Ω^2 , Ω^3 sono, risp., 3.4 ! ! , 5.8 ! !, 7.12 ! !

vettori tangenti ad M in un punto. Indicheremo con mis ξ la misura euclidea assoluta di $\xi^{(10)}$ e diremo ξ caratteristico se è tale il sottospazio V_{4p} generato da x_1, \ldots, x_{4p} .

Ebbene, a parità di mis ξ , ogni forma di Hilbert valutata su ξ assume valore assoluto massimo quando ξ è caratteristico. Cioè sussiste il

(6.1) TEOREMA. Considerati un 4 p-vettore semplice ξ ed una forma di Hilbert Φ risulta

(6.2)
$$|\langle \xi, \Phi \rangle| \le h_{\Phi} \text{ (mis } \xi)$$

e si ha l'uguaglianza se & è caratteristico.

Dimostrazione. Da 5.1, poiché $r_t \in \mathbb{R}^+$, discende:

(6.3)
$$|\langle \xi, \Phi \rangle| \leq \sum_{t=1}^{s} r_t |\langle \xi, \wedge^{2p} \omega'_{q_t} \rangle|.$$

È, d'altra parte, $\wedge^{2p} \omega_{q_t} = \wedge^{2p} (\omega_{q_t}' q_t) = \pm \wedge^{2p} \omega_{q_t}$; ricordando che ω_{q_t} è la 2-forma di Kähler della struttura complessa S_{q_t} si ha (11):

$$|\langle \xi, \wedge^{2p} \omega_{q_{\ell}} \rangle| \leq (\min \xi) (4p)!!$$

con l'uguaglianza nel solo caso che ξ sia C-caratteristico in S_{q_t} .

Da 6.3, 6.4, in base alla definizione di h_{Φ} si conclude.

Se ξ è caratteristico, per 2.1 la 6.4 diviene un'uguaglianza e perciò $\langle \xi, \wedge^{2p} \omega \rangle = \pm \text{ (mis } \xi \text{) (4 p) !!};$ il segno è il medesimo per tutti i valori di $t = 1, \dots, s$ (12) onde si ha l'uguaglianza anche in 6.3 ed in 6.2.

- (6.5) OSSERVAZIONE. Dalla 6.2 appare che l'altezza h_{Φ} esprime il valore di Φ preso in modulo su qualsiasi ξ caratteristico e di misura 1; dunque h_{Φ} dipende solo da Φ e non da r_1, \ldots, r_t .
- (6.6) OSSERVAZIONE. Se la 6.2 è un'uguaglianza, ξ è caratteristico: a condizione, però, che tre dei quaternioni q_t associati alla forma Φ (vedi n. 5) siano indipendenti su **R**. Infatti, se è un'uguaglianza la 6.2 sono tali anche 6.3, 6.4 onde ξ è **C**-caratteristico in tre differenti strutture e, per 2.2, si conclude.

7. IL TEOREMA DI MINIMO VOLUME

Sia M_{4p} una sottovarietà quasi-kähleriana di M_{4n} . Si «deformi di poco», entro M_{4n} , una porzione di M_{4p} in modo che la M_{4p}' ottenuta abbia *lo stesso bordo* di M_{4p} ⁽¹³⁾. Ci proponiamo di mostrare che (disuguaglianza di *Wirtinger*):

(7.1) volume
$$M_{4p} \leq \text{volume } M'_{4p}$$
.

(10) Vedi per esempio [10], n. 5.2.

(12) Ciò è ovvio per ragioni di continuità su H⁰ (sfera unitaria di E³).

(13) Indichiamo con lo stesso simbolo la varietà \mathbf{M}_{4p} sia la porzione di essa.

⁽¹¹⁾ E. MARTINELLI, [9], n. 8.7; si ha ivi (2 p)! anziché (4 p)! $!=2^{2p}(2 p)!$ per quanto detto nella nota n. 3.

Si ha cioè il

(7.2) TEOREMA. Ogni M_{4p} quasi-kähleriana subordinata ad M_{4n} è una sottovarietà di volume minimo (14).

Dimostrazione. Si osservi anzitutto che dalla 6.2 discende che per ogni sottovarietà N_{4p} di M_{4n} è:

(7.3)
$$[dV]_{N_{4p}} \ge \frac{1}{h_{\Phi}} | [\Phi]_{N_{4p}} |$$

in cui $[\Phi]_{N_{4p}}$ è il valore che la forma di Hilbert Φ assume su un multivettore « infinitesimo » associato all'elemento di volume $[dV]_{N_{4p}}$ della varietà N_{4p} . Se, in particolare, N_{4p} è quasi-kähleriana – e perciò i suoi spazi tangenti sono caratteristici – le 6.2, 7.3 diventano uguaglianze.

Ciò premesso, integriamo successivamente la 7.3 sulla M'_{4p} e sulla M_{4p} , che supponiamo contenute in un intorno U di M_{4n} rappresentabile con una sola carta di \mathbf{R}^{4p} .

Integrando su M'_{4p} si ottiene:

(7.4) volume
$$M'_{4p} \ge \frac{1}{h_{\Phi}} \int_{M'_{4p}} |\Phi| = \frac{1}{h_{\Phi}} \left| \int_{M'_{4p}} \Phi \right|$$

in cui l'ultima uguaglianza si realizza restringendo U, se necessario, in modo che Φ abbia sempre lo stesso segno su M'_{4p} .

Integrando, invece, sulla M_{4p} che è quasi-kähleriana si ha:

(7.5) volume
$$M_{4p} = \frac{I}{h_{\Phi}} \int_{M_{4p}} |\Phi| = \frac{I}{h_{\Phi}} \left| \int_{M_{4p}} \Phi \right|.$$

Si considerino ora le 7.4, 7.5 in relazione ad una forma di Hilbert *chiusa*; per esempio si assuma $\Phi = \bigwedge^p \Omega$ che è di Hilbert per 5.2 ed è chiusa perchè è tale Ω . Per il lemma di Poincaré la Φ può supporsi localmente esatta: agli integrali nei terzi membri di 7.4, 7.5 è perciò applicabile la formula di Stokes. Ricordando che M_{4p} ed M_{4p}' hanno lo stesso bordo si ha:

$$\int_{\mathbf{M}_{4p}'} \Phi = \int_{\mathbf{M}_{4p}} \Phi.$$

Da 7.4, 7.5, per la 7.6, discende il teorema.

(14) La proprietà è stata dimostrata da Wirtinger in [11] per le immagini reali delle varietà analitiche di $E^n(\mathbf{C})$ e di $P^n(\mathbf{C})$; Martinelli in [9] ha dato una generalizzazione per tutte le varietà kähleriane e quasi-kähleriane. Nel caso dei quaternioni il teorema è stato stabilito (da Berger, in [1]) per varietà di $P^n(\mathbf{H})$. A lavoro ultimato mi giunge notizia anche di una nota di A. Gray (vedi [4]) nella quale si ottiene il risultato generale per altra via, utilizzando la teoria delle varietà totalmente geodetiche.

BIBLIOGRAFIA

- [1] M. BERGER (1972) Du coté de chez Pu, « Ann. scient. Éc. Norm. Sup. », 4, 5.
- [2] M. Bruni (1971) Misure euclidee, hermitiane, simplettiche e potenze esterne di uno spazio vettoriale quaternionale, «Ann. di Mat. », 4, 88.
- [3] M. Bruni (1974) Aspetti geometrici delle forme esterne in uno spazio vettoriale quaternionale, «Ann. di Mat. », 4, 98.
- [4] A. GRAY (1965) Minimal varieties and almost hermitian submanifolds, «Mich. Math. J.», 12.
- [5] D. Hilbert (1909) Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen, «Math. Ann.», 67.
- [6] V. Y. Kraines (1966) Topology of quaternionic manifolds, «Trans. Amer. Math. Soc. »,
- [7] E. MARTINELLI (1959) Varietà a struttura quaternionale generalizzata, « Rend. Lincei », 8, 26.
- [8] E. MARTINELLI (1960) Modello metrico reale dello spazio proiettivo quaternionale, « Ann. di Mat. », 4, 49.
- [9] E. MARTINELLI (1960) Generalizzazione dei teoremi di minimo volume di Wirtinger a tutte le varietà hähleriane o quasi-kähleriane, «Ann. di Mat.», 4, 50.
- [10] E. MARTINELLI (1969) Metrica hermitiana e metriche euclidea e simplettica associate, « Rend. di Mat. », 2, 6.
- [11] W. WIRTINGER (1936) Eine Determinantenidentität und ihre Anwendung auf analytische Gebilde in Euklidischer und Hermitescher Massbestimmung, «Monats. f. Math. u. Phys. », 44.