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Topologìa. — Topological dimension as a firs t order property. 
Nota di L u d v i k  J a n o s ,  presentata dal Socio G. S a n s o n e .

R iassunto. — Si studiano alcune proprietà degli spazi separabili di Hilbert.

i . Introduction

It has been shown recently by C. W. Henson, C. G. Jockusch, L. A. R u
bel and G. Takeuti in their paper “ First order topology ” [i] that topological 
dimension along with m any other important topological properties can be 
presented as a first order property via the language L s corresponding to a 
suitable structure S (X) (as, e.g. the lattice (X) of all closed subsets of 
a space X or the ring C (X) of all bounded continuous functions on X etc.) 
associated with a topological space X. The purpose of this note is to show 
that the separable Hilbert space 4  with its rich linear structure provides 
another means for expressing dimension, if we restrict our attention to the 
class C of separable metric spaces. Using the powerful geometrical results 
of J. H. Roberts [6] we shall show that the interaction between subsets U 
of 4  which are homeomorphic to a given space X e C  and the affine sub
spaces of 4  determines the dimension of X in terms of sentences of an 
appropriate first order language L.

For the comfort of the reader we list here all the pertaining facts and 
concepts which we shall use in the sequel (see [2], [3] or [4]).

DEFINITION i . 1. Let (X 9d) be a metric space. A subset Y  of X is called
a bisector set in X iff there are distinct points x1 , x2€ X  such that
Y =  (y  : d  (y  , Xj) =  d  (y  , xfi}.

DEFINITION 1.2. Let ( X , d )  be a metric space. We write Y > Z  iff 
Z c  Y c  X and Z is a bisector in Y  relative to the metric induced on Y  by d.

This gives rise to the concept of a chain Y >  Yx I> Y2 • • • D> Y n in a 
metric space (X , d). We say that a chain X == X 01> X D> • • • >  Xw_j > X n 
in (X , d) is a reduced chain of length n if dim (Xw) <  o and dim (Xn_j) >  o. 
Here and in the sequel by dim (X) we denote the covering dimension of a 
space X (see [5]). Thus, the condition dim (X%) <  o means that the last 
member X n in the chain is either empty or zero-dimensional.

By r ( X y d) is denoted the maximum length n of reduced chains in
(X , d ), and for a metrizable space X we define r  (X) as the minimum
of r  (X , di) where the minimum is taken over the set of all metrizations (*)

(*) Nella seduta del 15 giugno 1978.
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of X. In case that X is separable, i.e., X 6 C there are totally bounded 
metrics on X and we define t  (X) as the minimum of r  (X , d) taken over 
the set of all totally bounded metrizations of X.

THEOREM i.A  (H. Martin). On the class C the function t (X) coincides 
with dim (X).

For the proof see [4].

LEMMA i . i .  Assume Y  D> Y 1 > • • • > Y n is a chain in a metric space 
(X , d). Then there is a chain X \> X-l t> • • • > X w in (X , d) such that 
Y* =  X,-n Y fo r  i =  I ,• • -, n.

For the proof, which is easy, see [3] Lemma 2.1.

DEFINITION 1.3. For n =  1 , 2 , • • • we denote by sdn the set of all 
n-dimensional affine subspaces of l2) where by an affine subspace we mean a

00

translate of a linear subs pace of l2. By sd we denote the unti on U  *<•
n—1

D efinition 1.4. For a space X e C  we denote by °U (X) the set of all 
bounded subsets of l2 which are h omeom or phi c to X.

Theorem i.B  (J. H. Roberts). Assume that dim (X) — n where X e C  
and n >  o. Then there is U e f  (X) and A e sd2n+1 such that

(1) U c  A and
(2) for every B e sdn+1 the intersection U f i B  has dimension <  o.

Proof. Theorem i.B is precisely Theorem 1.2 of [6] formulated in 
terms introduced above. The fact that U can be chosen bounded is apparent 
from its original proof.

We use the standard terminology of logic, as in [1]. In particular a 
first order language L is determined by specifying its non-logical symbols, 
which in our case are unary or binary predicate symbols. The formulas 
of the language L are built up in the standard way from the predicate 
symbols, variables, parentheses, propositional connectives ~~|, A , V > and 
the quantifiers (V#) , (3x). A sentence is a formula without free variables.

2. In tera ctio n s betw een  subsets U o f 4  and a f f in e  subspaces o f 4

W ith a space X e C  we associate the relational structure 

S (X) =  (X) ; R 0 , Rx , • • • ; I 0 , Ij , • • • ]

having the set ^  (X) as its universe on which the unary relations [R0 , Rx , • • • 
and I0 , Ii ,• •-•] are defined as follows:

For n >  o and U e f  (X) R n (U) is true iff there is A g sd2n+1 such 
that U c A ;  and IÄ(U) is true iff for every B e jdn+1 the intersection U f i B  
has dimension < 0 .
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We denote by L s the corresponding first order language built on the 
unary predicate letters and l£ (« =  o , i , • • •) which will always be 
interpreted as the relations K n and l n in S (X) respectively. If cj) is a 
sentence of the language L s and X e C is a space, we say that “ 9 is true 
in X ” iff S (X) t=<j>, i.e., iff the structure S (X) is a model for <|>.

For n >  o we define the sentence <[>n of Ls as the sentence

Using §n we define also sentences (n — o , 1 , • • •) as follows:

'J'o =  <!>o , =  «Ih A "1 <i>0 , • • •

A ~1 <j>n- i  A • • •~I 4>o •

Using these definitions we are now in position to formulate our main 
result.

T heorem  2.1. For n > o  and X e C  the statement dim (X) =  n is true 
if  and only i f  the sentence is satisfied by X, i.e., iff

S ( X ) ^ » -

We give also another alternative of expressing these ideas by letting 
this time the set cd play the rôle of the universe. For X e C we introduce 
the structure S1 (X) =  (cd ; R 1, t>) where R 1 is the binary relation on cd 
defined by: For A , B e cd R 1 (A , B) is true iff there is U e °ll (X) such
that:

(a) U g  A and

(b) for every B1 of the same dimension as B the intersection U D B 1 
has dimension < 0 .

The symbol > is already known; A >  B says that B is a bisector in A rela
tive to the norm-metric in /2. It is also obvious that for A , B e  cd the state
ment A!> B is equivalent to the statement B e  A and dim (A) — dim (B) =  1.

The language for the structure S1 (X) will be denoted by L si. Thus Lsi 
is based on the two binary predicate symbols R 1* and >* which will always 
be interpreted by R 1 and E> respectively. If we introduce formulas oq (x), 

and ßj (x) , ß2 (fi) » * * * of one free variable x  by

*1 (*) =  ~l (3y) y ] ,
02 0 )  =  (3y) [x\>*y]  , •••

«»(x) = 3yx 3y2 • • • 3\yn-i [xt>*yxt> •••[>*y n_J

for n >  2, and ßn (x) =  an (x) A —1 ore+1 (x) for n =  i , 2 , • • •, we see easily 
that the phrase “ A has dimension n ” can be expressed in L,i as follows:



Ludvik Janos, Topological dimension as a first order property 575

A e sé n iff the formula (x) is true in the structure {sé  ; t>) assuming 
that x is interpreted by A (the relation R 1 is irrelevant in this case since 
it is not contained in $n (x)).

Denoting by <j>̂ and ^  the sentences defined by

<i>i =  3* 3\y [R1* (x , y)  a  ß2re+1 (x) A ßK+1 O )]

44 =  4 4 .

44 =  44 A l t i , - - -
44 =  44 A n  44-i A - ■ - A I 4>0 for n =  o , i , • • -,

we can state our second result, expressing the dimension of a space X in 
the language L si.

Theorem 2.2. For n > o  and X e C  the statement dim (X) =  n is true 
if  and only i f  the sentence ^  is satisfied by X, i.e., iff

s* (X)

3. Proof of the theorems

Proof of Theorem 2.1. For X e C  and n >  o assume first that
dim (X) =  n. Theorem i.B implies that there is U e f  (X) and A e  séZn+1 
such that for every B e <sén+1 the set U D B has dimension <  o. This means 
that the sentence <j>̂ is satisfied by X. We have to show that if n >  o 
then is not satisfied for k <  o. Assume the contrary. Then there exists 
U e f  (X) such that R& (U) and I*. (U) which means that there exists 
A G efì/2&+1 such that U c  A and U f l B  has dimension <  o for every B e séh+x. 
Denoting by d  the metric on U induced on U by the norm-metric of /2 we 
observe that d  is a totally bounded metric since U is a bounded subset of 
a finite-dimepsional affine space A. This fact and Theorem i.A  implies 
that r (U , d ) > t  (X) — n . Now consider a reduced bisector chain in (U , d) 
of length r  =  r  (U , d) : U  > U x > • • • D> O U r . Lemma 1.1 implies 
that there is a chain in A : A > A x D> • • • l> A r for which U ^ U O  A { for 
i =  I , 2 ,* • - , r .  In particular we have '=  U O Ar_x. From the defi
nition of the reduced bisector chain we know that has a positive
dimension which implies that AH  must have dimension greater than k +  1 
since we assume that dim ( U D B ) < o  for every B e sék+1. The dimension 
of A r_x is precisely 2  k +  1 — (r — 1) — 2 k +  2 — r. Thus we obtain the 
inequality 2  k +  2 — r > k ~ \ -  1 or k >  r> which yields the desired contra
diction since r > n .

Thus, so far we proved that dim (X) =  n implies that

(*) S (X) 1= §n and not S (X) §k for k <  n

in case that n >  o. This means precisely that S ( X ) i = 4'»*

39. — RENDICONTI 1978, voi. LXIV, fase. 6.
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Now assume conversely that is true in X and set dim (X) =  m, 
where the possibility that m m ay be infinite is not excluded. Thus, we 
assume that is true but ^  is not true for k <  n in case that n >  o. 
From the fact that is true follows that there exist U  e °U (X) and A e 
such that U c  A which implies that m =  dim (X) =  dim (U) <  2 n +  1, 
thus, m is finite. The first relation in (*) applied to this situation yields 
that <j>m is true and the second implies that is not true for any k <  m. 
Since is true this implies that m < n  and since we assume that §k is
false for any k < n  we conclude that m — n which completes our proof.

In order to prove easily Theorem 2.2 we observe that the sentence cj>w 
has precisely the same meaning in the structure S (X) as the sentence §n 
in the structure S1 (X).

Lemma 3.1. For n >  o and X e C we have S (X) c|>Ä iff S1 (X) =  (j>*.
Proof. Assume that §n is true in X. Thus, there is U e f  (X) such

that K n (U) and l n (U) implying that there exist A e  <sd2n+i such that U c  A 
and dim (U fl B) <  o for every B e £ /n+1 . Consulting the definition of Rj 
in the structure S1 (X) we see that the pair A , B satisfies R 1 and since A
and B have the dimensions 2 n +  1 and n +  1 respectively we see that the
sentence (j)̂  =  3x  3y  (R1* (x , y)  A ß2n+1 (x) A ßw+i (x)) is satisfied in S1 (X). 
Observing that this argument is reversible we conclude the proof of our 
assertion.

The proof of Theorem 2.2 now follows from Theorem 2.1 and Lemma 3.1 
since the sentence ^  is built up from the sentences <]>o , , * * *, <j>% in exactly
the same way as the sentence from the sentences <j>0 , <j>j , * • *, §fl.

Concluding remark

With each space X e C we have associated the set % (X) and observed 
how the elements of °U (X) interact with the elements of the fixed set s/ .  
As a result of this observation we have obtained the desired information 
about the property concerned, i.e., about the dimension of X.

A natural question arises whether this procedure can be suitably gener
alized as to characterize this way other topological properties as well. 
Assume that P is a property under consideration and suppose that a set 
has been chosen chose elements act as “ test spaces ” for the property P. 
Assume further that with each space X of some class C1 we associate a 
well defined set °UV (X) whose elements represent the space X in an appropri
ate way and whose interaction with the test spaces will be considered. 
The desideratum is to determine whether or not the space X has the 
property P in terms of sentences describing this interaction.

Example. Let C1 =  C and P be compactness. Choosing =  {H} 
where H is the Hilbert cube we assign to each X e C the set (X) defined 
as {U : U c  H and U is homeomorphic to X}. The sentence “ there is 
U 6 v (X) which is closed in H ” expresses compactness of X.
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