Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Ludvik Janos

Topological dimension as a first order property

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 64 (1978), n.6, p. 572-577.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_64_6_572_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Topologia. - Topological dimension as a first order property. Nota di Ludvik Janos, presentata (*) dal Socio G. Sansone.

RIASSunto. - Si studiano alcune proprietà degli spazi separabili di Hilbert.

i. Introduction

It has been shown recently by C. W. Henson, C. G. Jockusch, L. A. Rubel and G. Takeuti in their paper "First order topology " [i] that topological dimension along with many other important topological properties can be presented as a first order property via the language L_{s} corresponding to a suitable structure $\mathrm{S}(\mathrm{X})$ (as, e.g. the lattice $\mathscr{L}(\mathrm{X})$ of all closed subsets of a space X or the ring $\mathrm{C}(\mathrm{X})$ of all bounded continuous functions on X etc.) associated with a topological space X . The purpose of this note is to show that the separable Hilbert space l_{2} with its rich linear structure provides another means for expressing dimension, if we restrict our attention to the class C of separable metric spaces. Using the powerful geometrical results of J. H. Roberts [6] we shall show that the interaction between subsets U of l_{2} which are homeomorphic to a given space $\mathrm{X} \in \mathrm{C}$ and the affine subspaces of l_{2} determines the dimension of X in terms of sentences of an appropriate first order language L .

For the comfort of the reader we list here all the pertaining facts and concepts which we shall use in the sequel (see [2], [3] or [4]).

Definition i.i. Let (X, d) be a metric space. A subset Y of X is called a bisector set in X iff there are distinct points $x_{1}, x_{2} \in \mathrm{X}$ such that $\mathrm{Y}=\left\{y: d\left(y, x_{1}\right)=d\left(y, x_{2}\right)\right\}$.

DEFINITION I.2. Let (X, d) be a metric space. We werite $\mathrm{Y} \triangleright \mathrm{Z}$ iff $\mathrm{Z} \subset \mathrm{Y} \subset \mathrm{X}$ and Z is a bisector in Y relative to the metric induced on Y by d.

This gives rise to the concept of a chain $\mathrm{Y} \triangleright \mathrm{Y}_{1} \triangleright \mathrm{Y}_{2} \cdots \triangleright \mathrm{Y}_{n}$ in a metric space (X, d). We say that a chain $\mathrm{X}=\mathrm{X}_{0} \triangleright \mathrm{X} \triangleright \cdots \triangleright \mathrm{X}_{n-1} \triangleright \mathrm{X}_{n}$ in (X, d) is a reduced chain of length n if $\operatorname{dim}\left(\mathrm{X}_{n}\right) \leq 0$ and $\operatorname{dim}\left(\mathrm{X}_{n-1}\right)>0$. Here and in the sequel by $\operatorname{dim}(\mathrm{X})$ we denote the covering dimension of a space X (see [5]). Thus, the condition $\operatorname{dim}\left(\mathrm{X}_{n}\right) \leq 0$ means that the last member X_{n} in the chain is either empty or zero-dimensional.

By $r(\mathrm{X}, d)$ is denoted the maximum length n of reduced chains in (X, \dot{d}), and for a metrizable space X we define $r(\mathrm{X})$ as the minimum of $r(\mathrm{X}, d)$ where the minimum is taken over the set of all metrizations
(*) Nella seduta del I5 giugno 1978.
of X . In case that X is separable, i.e., $\mathrm{X} \in \mathrm{C}$ there are totally bounded metrics on X and we define $t(\mathrm{X})$ as the minimum of $r(\mathrm{X}, d)$ taken over the set of all totally bounded metrizations of X .

Theorem I.A (H. Martin). On the class C the function $t(\mathrm{X})$ coincides with $\operatorname{dim}(\mathrm{X})$.

For the proof see [4].
Lemma i.i. Assume $\mathrm{Y} \triangleright \mathrm{Y}_{1} \triangleright \cdots \triangleright \mathrm{Y}_{n}$ is a chain in a metric space (X, d). Then there is a chain $\mathrm{X} \triangleright \mathrm{X}_{1} \triangleright \cdots \triangleright \mathrm{X}_{n}$ in (X, d) such that $\mathrm{Y}_{i}=\mathrm{X}_{i} \cap \mathrm{Y}$ for $i=\mathrm{I}, \cdots, n$.

For the proof, which is easy, see [3] Lemma 2.1.
Definition i.3. For $n=1,2, \cdots$ we denote by \mathscr{A}_{n} the set of all n-dimensional affine subspaces of l_{2}, where by an affine subspace we mean a translate of a linear subspace of l_{2}. By \mathscr{A} we denote the untion $\bigcup_{n=1}^{\infty} \mathscr{A}_{n}$.

Definition i.4. For a space $\mathrm{X} \in \mathrm{C}$ we denote by $\mathscr{U}(\mathrm{X})$ the set of all bounded subsets of l_{2} which are homeomorphic to X .

Theorem i.B (J. H. Roberts). Assume that $\operatorname{dim}(\mathrm{X})=n$ where $\mathrm{X} \in \mathrm{C}$ and $n \geq 0$. Then there is $\mathrm{U} \in \mathscr{U}(\mathrm{X})$ and $\mathrm{A} \in \mathscr{A}_{2 n+1}$ such that
(I) $\mathrm{U} \subset \mathrm{A}$ and
(2) for every $\mathrm{B} \in \mathscr{A}_{n+1}$ the intersection $\mathrm{U} \cap \mathrm{B}$ has dimension ≤ 0.

Proof. Theorem I.B is precisely Theorem I. 2 of [6] formulated in terms introduced above. The fact that U can be chosen bounded is apparent from its original proof.

We use the standard terminology of logic, as in [1]. In particular a first order language L is determined by specifying its non-logical symbols, which in our case are unary or binary predicate symbols. The formulas of the language L are built up in the standard way from the predicate symbols, variables, parentheses, propositional connectives $\neg, \wedge, \vee, \rightarrow$, and the quantifiers $(\forall x),(\exists x)$. A sentence is a formula without free variables.
2. Interactions between subsets U of l_{2} and affine subspaces of l_{2}

With a space $\mathrm{X} \in \mathrm{C}$ we associate the relational structure

$$
S(X)=\left[\mathscr{U}(X) ; R_{0}, R_{1}, \cdots ; I_{0}, I_{1}, \cdots\right]
$$

having the set $\mathscr{U}(\mathrm{X})$ as its universe on which the unary relations $\left[\mathrm{R}_{0}, \mathrm{R}_{1}, \cdots\right.$ and $\left.I_{0}, I_{1}, \cdots\right]$ are defined as follows:

For $n \geq 0$ and $\mathrm{U} \in \mathscr{U}(\mathrm{X}) \mathrm{R}_{n}(\mathrm{U})$ is true iff there is $\mathrm{A} \in \mathscr{A}_{2 n+1}$ such that $\mathrm{U} \subset \mathrm{A}$; and $\mathrm{I}_{n}(\mathrm{U})$ is true iff for every $\mathrm{B} \in \mathscr{A}_{n+1}$ the intersection $\mathrm{U} \cap \mathrm{B}$ has dimension $\leq o$.

We denote by L_{s} the corresponding first order language built on the unary predicate letters R_{n}^{*} and $\mathrm{I}_{n}^{*}(n=0, \mathrm{I}, \cdots)$ which will always be interpreted as the relations R_{n} and I_{n} in $\mathrm{S}(\mathrm{X})$ respectively. If ϕ is a sentence of the language L_{s} and $X \in C$ is a space, we say that " ϕ is true in X " iff $S(X)=\phi$, i.e., iff the structure $S(X)$ is a model for ϕ.

For $n \geq 0$ we define the sentence ϕ_{n} of $\mathrm{L}_{\boldsymbol{s}}$ as the sentence

$$
(\exists x)\left[\mathrm{R}_{n}^{*}(x) \wedge \mathrm{I}_{n}^{*}(x)\right]
$$

Using ϕ_{n} we define also sentences $\psi_{n}(n=0, \mathrm{I}, \cdots)$ as follows:

$$
\begin{aligned}
& \psi_{0}=\phi_{0}, \psi_{1}=\phi_{1} \wedge \neg \phi_{0}, \cdots \\
& \psi_{n}=\phi_{n} \wedge \neg \phi_{n-1} \wedge \cdots \neg \phi_{0}
\end{aligned}
$$

Using these definitions we are now in position to formulate our main result.

Theorem 2.1. For $n \geq 0$ and $\mathrm{X} \in \mathrm{C}$ the statement $\operatorname{dim}(\mathrm{X})=n$ is true if and only if the sentence ψ_{n} is satisfied by X , i.e., iff

$$
S(X)=\psi_{n}
$$

We give also another alternative of expressing these ideas by letting this time the set \mathscr{A} play the rôle of the universe. For $\mathrm{X} \in \mathrm{C}$ we introduce the structure $S^{1}(\mathrm{X})=\left(\mathscr{A} ; \mathrm{R}^{1}, \triangleright\right)$ where R^{1} is the binary relation on \mathscr{A} defined by: For $A, B \in \mathscr{A} R^{1}(A, B)$ is true iff there is $U \in \mathscr{U}(X)$ such that:
(a) $\mathrm{U} \subset \mathrm{A}$ and
(b) for every B^{1} of the same dimension as B the intersection $\mathrm{U} \cap \mathrm{B}^{1}$ has dimension \leq o.

The symbol D is already known; $A \triangleright B$ says that B is a bisector in A relative to the norm-metric in l_{2}. It is also obvious that for $\mathrm{A}, \mathrm{B} \in \mathscr{A}$ the statement $A \triangleright B$ is equivalent to the statement $B \subset A$ and $\operatorname{dim}(A)-\operatorname{dim}(B)=I$.

The language for the structure $S^{1}(X)$ will be denoted by $\mathrm{L}_{s^{1}}$. Thus $\mathrm{L}_{\mathrm{s}^{1}}$ is based on the two binary predicate symbols $\mathrm{R}^{1 *}$ and \triangleright^{*} which will always be interpreted by R^{1} and \triangleright respectively. If we introduce formulas $\alpha_{1}(x)$, $\alpha_{2}(x), \cdots$ and $\beta_{1}(x), \beta_{2}(x), \cdots$ of one free variable x by

$$
\begin{aligned}
& \alpha_{1}(x)=7(\exists y)\left[x \triangleright^{*} y\right] \\
& \alpha_{2}(x)=(\exists y)\left[x \triangleright^{*} y\right], \cdots \\
& \alpha_{n}(x)=\exists y_{1} \exists y_{2} \cdots \exists y_{n-1}\left[x \triangleright^{*} y_{1} \triangleright \cdots \triangleright^{*} y_{n-1}\right]
\end{aligned}
$$

for $n \geq 2$, and $\beta_{n}(x)=\alpha_{n}(x) \wedge \neg \alpha_{n+1}(x)$ for $n=1,2, \cdots$, we see easily that the phrase "A has dimension n " can be expressed in $\mathrm{L}_{\mathbf{8}}$ as follows:

A $\in \mathscr{A}_{n}$ iff the formula $\beta_{n}(x)$ is true in the structure $(\mathscr{A} ; \triangleright)$ assuming that x is interpreted by A (the relation $\mathrm{R}^{\mathbf{1}}$ is irrelevant in this case since it is not contained in $\beta_{n}(x)$).

Denoting by ϕ_{n}^{1} and ψ_{n}^{1} the sentences defined by

$$
\begin{aligned}
& \phi_{n}^{1}=\exists x \exists y\left[\mathrm{R}^{1 *}(x, y) \wedge \beta_{2 n+1}(x) \wedge \beta_{n+1}(y)\right] \\
& \psi_{0}^{1}=\phi_{0}^{1} \\
& \psi_{1}^{1}=\phi_{1}^{1} \wedge 7 \phi_{0}^{1}, \cdots \\
& \left.\psi_{n}^{1}=\phi_{n}^{1} \wedge 7 \phi_{n-1}^{1} \wedge \cdots \wedge\right\urcorner \phi_{0}^{1} \quad \text { for } \quad n=0, \mathrm{r}, \cdots,
\end{aligned}
$$

we can state our second result, expressing the dimension of a space X in the language $\mathrm{L}_{s^{1}}$.

Theorem 2.2. For $n \geq 0$ and $\mathrm{X} \in \mathrm{C}$ the statement $\operatorname{dim}(\mathrm{X})=n$ is true if and only if the sentence ψ_{n}^{1} is satisfied by X , i.e., iff

$$
S^{1}(X)=\psi_{n}^{1}
$$

3. Proof of the theorems

Proof of Theorem 2.I. For $\mathrm{X} \in \mathrm{C}$ and $n \geq 0$ assume first that $\operatorname{dim}(\mathrm{X})=n$. Theorem i. B implies that there is $\mathrm{U} \in \mathscr{U}(\mathrm{X})$ and $\mathrm{A} \in \mathscr{A}_{2 n+1}$ such that for every $\mathrm{B} \in \mathscr{A}_{n+1}$ the set $\mathrm{U} \cap \mathrm{B}$ has dimension $\leq \mathrm{o}$. This means that the sentence ϕ_{n} is satisfied by X . We have to show that if $n>0$ then ϕ_{k} is not satisfied for $k<0$. Assume the contrary. Then there exists $\mathrm{U} \in \mathscr{U}(\mathrm{X})$ such that $\mathrm{R}_{k}(\mathrm{U})$ and $\mathrm{I}_{k}(\mathrm{U})$ which means that there exists $\mathrm{A} \in \mathscr{A}_{2 k+1}$ such that $\mathrm{U} \subset \mathrm{A}$ and $\mathrm{U} \cap \mathrm{B}$ has dimension $\leq o$ for every $\mathrm{B} \in \mathscr{A}_{k+1}$. Denoting by d the metric on U induced on U by the norm-metric of l_{2} we observe that d is a totally bounded metric since U is a bounded subset of a finite-dimensional affine space A. This fact and Theorem I.A implies that $r(\mathrm{U}, d) \geq t(\mathrm{X})=n$. Now consider a reduced bisector chain in ($\mathrm{U}, d)$ of length $r=r(\mathrm{U}, d): \mathrm{U} \triangleright \mathrm{U}_{1} \triangleright \cdots \triangleright \mathrm{U}_{r-1} \triangleright \mathrm{U}_{r}$. Lemma \quad.I implies that there is a chain in $A: A \triangleright A_{1} \triangleright \cdots \triangleright A_{r}$ for which $U_{i}=U \cap A_{i}$ for $i=\mathrm{I}, 2, \cdots, r$. In particular we have $\mathrm{U}_{r-1}=\mathrm{U} \cap \mathrm{A}_{r-1}$. From the definition of the reduced bisector chain we know that U_{r-1} has a positive dimension which implies that A_{r-1} must have dimension greater than $k+1$ since we assume that $\operatorname{dim}(U \cap B) \leq 0$ for every $B \in \mathscr{A}_{k+1}$. The dimension of A_{r-1} is precisely $2 k+1-(r-1)=2 k+2-r$. Thus we obtain the inequality $2 k+2-r>k+\mathrm{I}$ or $k>r$, which yields the desired contradiction since $r \geq n$.

Thus, so far we proved that $\operatorname{dim}(\mathrm{X})=n$ implies that

$$
\begin{equation*}
S(X)=\phi_{n} \quad \text { and } \operatorname{not} \quad S(X)=\phi_{k} \quad \text { for } \quad k<n \tag{*}
\end{equation*}
$$

in case that $n>0$. This means precisely that $\mathrm{S}(\mathrm{X}) \vDash \psi_{n}$.
39. - RENDICONTI 1978, vol. LXIV, fasc. 6.

Now assume conversely that ψ_{n} is true in X and set $\operatorname{dim}(\mathrm{X})=m$, where the possibility that m may be infinite is not excluded. Thus, we assume that ϕ_{n} is true but ϕ_{k} is not true for $k<n$ in case that $n>0$. From the fact that ϕ_{n} is true follows that there exist $\mathrm{U} \in \mathscr{U}(\mathrm{X})$ and $A \in \mathscr{A}_{2 n+1}$ such that $U \subset A$ which implies that $m=\operatorname{dim}(X)=\operatorname{dim}(U) \leq 2 n+1$, thus, m is finite. The first relation in (*) applied to this situation yields that ϕ_{m} is true and the second implies that ϕ_{k} is not true for any $k<m$. Since ϕ_{n} is true this implies that $m \leq n$ and since we assume that ϕ_{k} is false for any $k<n$ we conclude that $m=n$ which completes our proof.

In order to prove easily Theorem 2.2 we observe that the sentence ϕ_{n} has precisely the same meaning in the structure $\mathrm{S}(\mathrm{X})$ as the sentence ϕ_{n}^{1} in the structure $\mathrm{S}^{1}(\mathrm{X})$.

Lemma 3.1. For $n \geq 0$ and $\mathrm{X} \in \mathrm{C}$ we have $\mathrm{S}(\mathrm{X})=\phi_{n}$ iff $\mathrm{S}^{1}(\mathrm{X})=\phi_{n}^{1}$.
Proof. Assume that ϕ_{n} is true in X . Thus, there is $\mathrm{U} \in \mathscr{U}(\mathrm{X})$ such that $\mathrm{R}_{n}(\mathrm{U})$ and $\mathrm{I}_{n}(\mathrm{U})$ implying that there exist $\mathrm{A} \in \mathscr{A}_{2 n+1}$ such that $\mathrm{U} \subset \mathrm{A}$ and $\operatorname{dim}(U \cap B) \leq 0$ for every $B \in \mathscr{A}_{n+1}$. Consulting the definition of R_{1} in the structure $S^{1}(X)$ we see that the pair A, B satisfies R^{1} and since A and B have the dimensions $2 n+\mathrm{I}$ and $n+\mathrm{I}$ respectively we see that the sentence $\phi_{n}^{1}=\exists x \exists y\left(\mathrm{R}^{1 *}(x, y) \wedge \beta_{2 n+1}(x) \wedge \beta_{n+1}(x)\right)$ is satisfied in $\mathrm{S}^{\mathbf{1}}(\mathrm{X})$. Observing that this argument is reversible we conclude the proof of our assertion.

The proof of Theorem 2.2 now follows from Theorem 2.I and Lemma 3.I since the sentence ψ_{n}^{1} is built up from the sentences $\phi_{0}^{1}, \phi_{1}^{1}, \cdots, \phi_{n}^{1}$ in exactly the same way as the sentence ψ_{n} from the sentences $\phi_{0}, \phi_{1}, \cdots, \phi_{n}$.

Concluding remark

With each space $\mathrm{X} \in \mathrm{C}$ we have associated the set $\mathscr{U}(\mathrm{X})$ and observed how the elements of $\mathscr{U}(\mathrm{X})$ interact with the elements of the fixed set \mathscr{A}. As a result of this observation we have obtained the desired information about the property concerned, i.e., about the dimension of X .

A natural question arises whether this procedure can be suitably generalized as to characterize this way other topological properties as well. Assume that P is a property under consideration and suppose that a set \mathscr{A}_{p} has been chosen chose elements act as "test spaces" for the property P. Assume further that with each space X of some class C^{1} we associate a well defined set $\mathscr{U}_{p}(\mathrm{X})$ whose elements represent the space X in an appropriate way and whose interaction with the test spaces will be considered. The desideratum is to determine whether or not the space X has the property P in terms of sentences describing this interaction.

Example. Let $\mathrm{C}^{1}=\mathrm{C}$ and P be compactness. Choosing $\mathscr{Q}_{p}=\{\mathrm{H}\}$ where H is the Hilbert cube we assign to each $\mathrm{X} \in \mathrm{C}$ the set $\mathscr{U}_{p}(\mathrm{X})$ defined as $\{\mathrm{U}: \mathrm{U} \subset \mathrm{H}$ and U is homeomorphic to X$\}$. The sentence "there is $\mathrm{U} \in \mathscr{U}_{\mu}(\mathrm{X})$ which is closed in $\mathrm{H} "$ expresses compactness of X .

References

[1] C. W. Henson, C. G. Jockusch, L. A. Rubel and G. Takeuti (1977) - First order topology, "Dissertationes Mathematicae», 143.
[2] L. Janos (1977) - Dimmension theory via bisector chains, "Canad. Math. Bull. ", 20 (3), 313-317.
[3] L. Janos (1978) - Dimension theory via reduced bisector chains, "Canad. Math. Bull.», $2 I$ (3), 305-3II.
[4] L. Janos and H. Martin (1978) - Metric characterizations of dimension for separable metric spaces, "Proc. Amer. Math. Soc.》, 70 (2), 209-212.
[5] J. Nagata (1965) - Modern dimension theory, John Wiley and Sons, New York.
[6] J. H. Roberts (194I) - A theorem on dimension, "Duke Math. J.", 8, 565-574.

