Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Esayas George Kundert

Basis in a certain Completion of the s-d-ring over the rational Numbers

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 64 (1978), n.5, p. 423-428.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_64_5_423_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI
 Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 maggio 1978
Presiede il Presidente della Classe Antonio Carrelli

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Abstract

Algebra. - Basis in a certain Completion of the s-d-ring over the rational Numbers. Nota I di Esayas George Kundert, presentata $\left.{ }^{(}\right)$ dal Socio G. Zappa.

RIASSUNTo. - Si determinano diverse basi per un completamento di un s-d-anello sopra il campo razionale.

Introduction

In [5] we promised to develop an "analysis" in the completion $\hat{\mathscr{A}}$ of the s - d-ring \mathscr{A} over the integers. It turns out to be expedient, to first replace the integers by the field \mathbf{Q} of rational numbers.

In the following article we make an attempt to introduce certain basis in $\hat{\mathscr{A}}$. Each element can then be represented by a series with respect to such a basis. Each basis is defined with help of an operator in $\hat{\mathscr{A}}$ and the coefficients in the series may be expressed in terms of the operator. If an operator A defines an A-basis, then we show that the dual operator $A^{\prime}=E-A$ defines always an A^{\prime}-basis.

We illustrate the concept with three typical examples and their duals. With help of these examples we can, at the same time, show:
(i) The classical difference calculus is in a certain sense subordinated to our analysis.
(*) Nella seduta del 13 maggio 1978 .
29. - RENDICONTI 1978, vol. LXIV, fasc. 5.
(2) The classical Stirling numbers appear as coefficients for certain basis transformations and we have therefore a natural and new interpretation of those numbers.
(3) The classical Bernoulli numbers appear in three new interpretations.

Let \mathscr{A} be the completion of the s - d-ring \mathscr{A} with respect to the inteal $m=\left(x_{1}\right)^{*}$ over the field of rational number \mathbf{Q}. (See [4-6, 2] for notations and definitions used in this paper). Let A be a linear mapping from $\hat{\mathscr{A}} \rightarrow \hat{\mathscr{A}}$.

Definition. An A-basis of $\hat{\mathscr{A}}$ is a sequence $\left\{z_{n}\right\}$ with $z_{n} \in \hat{\mathscr{A}}$ such that there exists a subalgebra N_{A} of $\hat{\mathscr{A}}$ and a N_{A}-algebra homomorphism σ_{A} from $\hat{\mathscr{A}}$ onto N_{A} and such that for each element $a \in \hat{\mathscr{A}}$ we have $a=\sum_{n=0}^{\infty}\left(\sigma_{\mathrm{A}} \mathrm{A}^{n} a\right) z_{n}$ uniquely.

Note that $\mathrm{I} \in \mathrm{N}_{\mathrm{A}}$ and that $\sigma_{\mathrm{A}}(\alpha)=\alpha$ for $\alpha \in \mathrm{N}_{\mathrm{A}}$. Since $z_{n}=\mathrm{I} \cdot z_{n}$ it follows that $\sigma_{\mathrm{A}} \mathrm{A}^{m} z_{n}=0$ if $m \neq n$ and $\sigma_{\mathrm{A}} \mathrm{A}^{n} z_{n}=\mathrm{I}$, especially $\sigma_{\mathrm{A}}\left(z_{n}\right)=0$ for $n>0$.

Let $\mathrm{A} z_{0}=\sum_{n=0}^{\infty} \alpha_{n} z_{n}$ then $\sigma_{\mathrm{A}} \mathrm{A}^{m} z_{0}=\mathrm{o}=\alpha_{m-1}$ for $m \geq \mathrm{I}$. Therefore $\mathrm{A} z_{0}=0$.

Let $\mathrm{A} z_{1}=\sum_{n=0}^{\infty} \beta_{n} z_{n}$ then $\sigma_{\mathrm{A}} \mathrm{A} z_{1}=\beta_{0}=\mathrm{I}$ and $\sigma_{\mathrm{A}} \mathrm{A}^{m} z_{1}=\beta_{m-1}=\mathrm{o}$ for $m \geq 2$.

It follows that $\mathrm{A} z_{1}=z_{v}$. Similarly one gets $\mathrm{A} z_{n}=z_{n-1}$ for $n>\mathbf{1}$.
Next, if $a=\sum_{n=0}^{\infty} \alpha_{n} z_{n}$ then $\alpha_{n}=\sigma_{\mathrm{A}} \mathrm{A}^{n} a$ and

$$
\mathrm{A} a=\sum_{n=0}^{\infty}\left(\sigma_{\mathrm{A}} \mathrm{~A}^{n+1} a\right) z_{n}=\sum_{n=0}^{\infty}\left(\sigma_{\mathrm{A}} \mathrm{~A}^{n+1} a\right) \mathrm{A} z_{n+1}
$$

or

$$
\mathrm{A} a=\sum_{n=0}^{\infty} \alpha_{n} \mathrm{~A} z_{n} .
$$

Especially also $\mathrm{A}(\alpha \cdot a)=\alpha \cdot \mathrm{A}(a)$ for $\alpha \in \mathrm{N}_{\mathrm{A}}$ and $a \in \hat{\mathscr{A}}$, so that A is automatically N_{A}-linear. Since

$$
\mathrm{A}\left(\sum_{n=0}^{\infty} \alpha_{n} z_{n+1}\right)=\sum_{n=0}^{\infty} \alpha_{n} \mathrm{~A} z_{n+1}=\sum_{n=0}^{\infty} \alpha_{n} z_{n}=a,
$$

it follows furthermore that A must be surjective.
Examples of linear mappings with an A-basis:
Example (1). Let $\mathrm{A}=\mathrm{D}, \mathrm{N}_{\mathrm{D}}=\operatorname{Ker} \mathrm{D}=\mathbf{Q}, \sigma_{\mathrm{D}}=\sigma$ then $\left\{x_{n}\right\}$ (see [4] for definition of σ and x_{n}) is a D-basis. In this example we could also take \mathbf{Z} as ground ring in place of \mathbf{Q}.

Example (2). Let $\mathrm{A}=\mathrm{D}_{2}=\left(\mathrm{K}^{-2}\right)^{\prime}=\mathrm{E}-\mathrm{K}^{-2}=(2-\mathrm{D}) \mathrm{D}$. (See [5] for definition of K) and take $\mathrm{N}_{\mathrm{D}_{2}}=\operatorname{Ker} \mathrm{D}_{2}=\{\alpha+\beta e\}$ where $e=\sum_{n=1}^{\infty} 2^{n-1} x_{n}$, $\alpha, \beta \in \mathbf{Q}$.

Note that $e^{2}=-e$. Let $c \in \mathrm{~N}_{\mathrm{D}_{2}}$ and $a \in \hat{\mathscr{A}}$, then recalling that D_{2} is a semi-derivation, we have $\mathrm{D}_{2}(c \cdot a)=c \cdot \mathrm{D}_{2} a+0 \cdot a-0 \cdot \mathrm{D}_{2} a$. It follows that D_{2} is $\mathrm{N}_{\mathrm{D}_{2}}$-linear. One checks easily that D_{2} is surjective, for this it is important that the ground ring is \mathbf{Q} and not \mathbf{Z}. Now let $\sigma_{D_{2}}\left(x_{1}\right)=e$ which defines $\sigma_{D_{2}}$ uniquely (see Formula (I), [5]), as a matter of fact, it follows that $\sigma_{\mathrm{D}_{2}}\left(x_{n}\right)=0$ for $n \geq 2$ and therefore if $a=\sum_{n=0}^{\infty} \alpha_{n} x_{n}$, then $\sigma_{D_{2}}(a)=\alpha_{0}+\alpha_{1} e \in \mathrm{~N}_{\mathrm{D}_{2}}$. Especially $\sigma_{\mathrm{D}_{2}}(c)=c$ if $c \in \mathrm{~N}_{\mathrm{D}_{2}}$.

Let $\mathrm{S}_{\mathrm{D}_{2}}(a)=a^{\prime}-\sigma_{\mathrm{D}_{2}}\left(a^{\prime}\right)$, where $a^{\prime} \in \hat{\mathscr{A}}$ such that $\mathrm{D}_{\mathbf{2}}\left(a^{\prime}\right)=a$, then $\mathrm{S}_{\mathrm{D}_{2}}$ has the following properties:
(a) $\mathrm{S}_{\mathrm{D}_{2}}$ is well-defined [since if $a^{\prime \prime}$ is another element such that $\mathrm{D}_{2}\left(a^{\prime \prime}\right)=a$ then $\mathrm{D}_{2}\left(a^{\prime}-a^{\prime \prime}\right)=a-a=0 \Rightarrow a^{\prime}-a^{\prime \prime} \in \mathrm{N}_{\mathrm{D}_{2}} \Rightarrow \sigma_{\mathrm{D}_{2}}\left(a^{\prime}-a^{\prime \prime}\right)=$ $=a^{\prime}-a^{\prime \prime}$ or $\left.a^{\prime}-\sigma_{\mathrm{D}_{2}}\left(a^{\prime}\right)=a^{\prime \prime}-\sigma_{\mathrm{D}_{2}}\left(a^{\prime \prime}\right)\right]$.
(b) $\mathrm{S}_{\mathrm{D}_{2}}$ is $\mathrm{N}_{\mathrm{D}_{2}}$-linear [since $\mathrm{S}_{\mathrm{D}_{2}}(\alpha \cdot a)=(\alpha \cdot a)^{\prime}-\sigma_{\mathrm{D}_{2}}(\alpha \cdot a)^{\prime}=\alpha \cdot a^{\prime}$ -$\left.-\alpha \cdot \sigma_{D_{2}}\left(a^{\prime}\right)=\alpha \cdot \mathrm{S}_{\mathrm{D}_{2}}(a)\right]$.
(c) $\mathrm{D}_{2} \mathrm{~S}_{\mathrm{D}_{2}}=\mathrm{E}$
(d) $\mathrm{S}_{\mathrm{D}_{2}} \mathrm{D}_{2}=\mathrm{E}-\sigma_{\mathrm{D}_{2}}=\sigma_{\mathrm{D}_{2}}^{\prime}$
(e) $\sigma_{\mathrm{D}_{2}} \mathrm{~S}_{\mathrm{D}_{2}}=0$.

Let now $y_{n}=\mathrm{S}_{\mathrm{D}_{2}}^{n}(\mathrm{I})=(-\mathrm{I})^{n} \sum_{k=2 n}^{\infty}\binom{k-n-\mathrm{I}}{n-\mathrm{I}} 2^{k-2 n} x_{k}$. It is clear from the above properties that $\mathrm{D}_{2} y_{n}=y_{n-1}$ and $\sigma_{\mathrm{D}_{2}}\left(y_{n}\right)=0$ for $n \geq \mathrm{I}$.

We assert that $\left\{y_{n}\right\}$ is a D_{2}-basis. To prove this, let $a=\sum_{m=0}^{\infty} \alpha_{n i} x_{\boldsymbol{m}}$ be an arbitrary element of $\hat{\mathscr{A}}$. Now if $\left\{y_{n}\right\}$ is a D_{2}-basis, we should have

$$
\begin{aligned}
a= & \sum_{n=0}^{\infty}\left(\sigma_{\mathrm{D}_{2}} \mathrm{D}_{2}^{n} a\right) y_{n}, \quad \text { but } \sigma_{\mathrm{D}_{2}} \mathrm{D}_{2}^{n} a=\sum_{m=0}^{\infty} \alpha_{m} \sigma_{\mathrm{D}_{2}} \mathrm{D}_{2}^{n} x_{m} \\
\text { so } \quad a & =\sum_{n=0}^{\infty}\left[\left(\sum_{k=n+1}^{2 n+1}(-\mathrm{I})^{n+1+k}\binom{n}{k-n-\mathrm{I}} 2^{2 n-k+1} \alpha_{k}\right) e+\right. \\
& \left.+\left(\sum_{k=n}^{2 n}(-\mathrm{I})^{n+k}\binom{n}{k-n} 2^{2 n-k} \alpha_{k}\right)\right] y_{n}
\end{aligned}
$$

It is sufficient to check this for $a=x_{m}$ by substituting the series expression given above for y_{n}. Note that we could have taken $\mathrm{A}=\mathrm{D}_{n}$ (See [6]) to obtain infinitely many examples all similar to example (I) and (2). Next we will give an example where the operator A is not a semi-derivation.

Example (3). Let $\mathrm{A}=\mathrm{H}=\mathrm{E}-\mathrm{DQ}_{1}$ where Q_{1} is the operator defined by $\mathrm{Q}_{1}(a)=x_{1} \cdot a$. Let $\mathrm{N}_{\mathrm{H}}=\operatorname{Ker} \mathrm{H}=\mathbf{Q}$ and $\sigma_{\mathrm{H}}=\sigma$ as in example (I). One checks easily that H is onto, but for this it is again important that the ground ring is \mathbf{Q} and not \mathbf{Z}. Let $u_{n}=S_{\mathrm{H}}^{n}$ (1), where S_{H} is defined as in example (2) replacing D_{2} by H . Computing this it turns out that $u_{n}=\sum_{k=n}^{\infty}(-\mathrm{I})^{k} \mathrm{C}_{n}^{k} x_{k}$,
where the C_{n}^{k} are the Stirling numbers of the I . kind. (See [3] for the definition used here). Computing $\sigma \mathrm{H}^{n} x_{k}$ one gets for the H -series of x_{k} the series $(-\mathrm{I})^{k} \sum_{n=0}^{\infty} \mathrm{B}_{n}^{k} u_{n}$, where the B_{n}^{k} are the Stirling numbers of the 2. kind. Substituting the above series for u_{n} and using simple properties of Stirling numbers, one sees that this series is indeed $=x_{k}$.

This in terms guarantees that $\left\{u_{n}\right\}$ is a H-basis.
Let A be any operator with an A -basis $\left\{z_{n}\right\}$ and let $\mathrm{A}^{\prime}=\mathrm{E}-\mathrm{A}$, then we can always construct an A^{\prime}-basis $\left\{z_{n}^{\prime}\right\}$ as follows: Put $\mathrm{N}_{\mathrm{A}^{\prime}}=\mathrm{N}_{\mathrm{A}}, \sigma_{\mathrm{A}^{\prime}}=\sigma_{\mathrm{A}}$ and $z_{n}^{\prime}=(-\mathrm{I})^{n} \sum_{k=n}^{\infty}\binom{k}{n} z_{k}$. Note that in this case z_{0}^{\prime} is not equal to one. We have at once $\sigma_{\mathrm{A}^{\prime}}\left(z_{0}^{\prime}\right)=\mathrm{I}$ and $\sigma_{\mathrm{A}}\left(z_{n}^{\prime}\right)=0$ for $n \geq \mathrm{I}$.

Also:

$$
\mathrm{A}^{\prime} z_{n}^{\prime}=(-\mathrm{I})^{n} \sum_{k=n}^{\infty}\binom{k}{n}\left(z_{k}-z_{k-1}\right)=(-\mathrm{I})^{n-1} \sum_{k=n-1}^{\infty}\binom{k}{n-\mathrm{I}} z_{k}=z_{n-1}^{\prime}
$$

Furthermore

$$
z_{n}=(-\mathrm{I})^{n} \sum_{k=n}^{\infty}\binom{k}{n} z_{k}^{\prime}
$$

and since

$$
\begin{gathered}
x_{m}=\sum_{n=0}^{\infty} \beta_{m n} z_{n} \quad \text { with } \quad \beta_{m n} \in \mathrm{~N}_{\mathrm{A}^{\prime}} \Rightarrow \\
x_{m}^{\prime}=\sum_{n=0}^{\infty} \beta_{m n}(-\mathrm{I})^{n} \sum_{k=n}^{\infty}\binom{k}{n} z_{k}^{\prime}=\sum_{k=0}^{\infty}\left(\sum_{n=0}^{k}(-\mathrm{I})^{n}\binom{k}{n} \beta_{m n}\right) z_{k}^{\prime}=\sum_{k=0}^{\infty} \gamma_{m k} z_{k}^{\prime}
\end{gathered}
$$

with $\gamma_{m k} \in \mathrm{~N}_{\mathrm{A}^{\prime}}$ which shows that $\left\{z_{n}^{\prime}\right\}$ is an A^{\prime}-basis.
Example (I^{\prime}). Let $\mathrm{A}=\mathrm{D}$ and therefore $\mathrm{A}^{\prime}=\mathrm{E}-\mathrm{D}=\mathrm{K}^{-1}$ (See [5]). Since K^{-1} is a \mathbf{Q}-homomorphism from $\hat{\mathscr{A}}$ onto $\hat{\mathscr{A}}$ with

$$
\begin{aligned}
\text { kernel } & =\left\{\alpha \cdot x_{0}^{\prime}\right\}, \quad \text { so } \quad a=\sum_{m=0}^{\infty} \alpha_{m} x_{m}=\sum_{m=0}^{\infty} \alpha_{m} \sum_{k=0}^{\infty} \gamma_{m k} x_{k}^{\prime}= \\
& =\sum_{k=0}^{\infty}\left(\sum_{k=0}^{\infty} \alpha_{m} \gamma_{m k}\right) x_{k}^{\prime}=\sum_{k=0}^{\infty} \alpha_{k}^{\prime} x_{k}^{\prime} \Rightarrow \alpha_{k}^{\prime}=\sigma \mathrm{K}^{-k} a .
\end{aligned}
$$

Now if $\quad b=\sum_{k=0}^{\infty} \beta_{k}^{\prime} x_{k}^{\prime} \quad$ with $\quad \beta_{k}^{\prime}=\sigma \mathrm{K}^{-k} b$, we have

$$
a \cdot b=\sum_{k=0}^{\infty} \sigma \mathrm{K}^{-k}(a b) x_{k}^{\prime}=\sum_{k=0}^{\infty}\left(\sigma \mathrm{K}^{-k} a\right)\left(\sigma \mathrm{K}^{-k} b\right) x_{k}^{\prime}=\sum_{k=0}^{\infty} \alpha_{k}^{\prime} \beta_{k}^{\prime} x_{k}^{\prime}
$$

because $\sigma \mathrm{K}^{-k}$ is a homomorphism.
Let $\hat{\mathrm{A}}_{1}$ be the \mathbf{Q}-algebra of sequences $\left(\alpha_{k}\right)$ where $\alpha_{k} \in \mathbf{Q}$ and define $d_{1}\left(\alpha_{k}\right)=\left(\alpha_{k}-\alpha_{k+1}\right)$. The mapping d_{1} is a semi-derivation in $\hat{\mathrm{A}}_{1}$. We may
then turn $\hat{\mathrm{A}}_{1}$ into a s-d-ring. (See $[2,4]$). Let Δ_{1} be the mapping $\hat{\mathscr{A}} \rightarrow \hat{\mathrm{A}}_{1}$ which associates to $a=\sum_{k=0}^{\infty} \alpha_{k} x_{k}^{\prime}$ the sequence $\left(\alpha_{k}\right)$. It is clear that Δ_{1} is surjective and injective. From the above it follows that Δ_{1} is an algebra-isomorphism.

Since

$$
x_{n}=(-\mathrm{I})^{n} \sum_{k=0}^{\infty}\binom{k}{n} x_{k}^{\prime}
$$

and

$$
\mathrm{D} x_{n}=x_{n-1}=(-\mathrm{I})^{n-1} \sum_{k=0}^{\infty}\binom{k}{n-\mathrm{I}} x_{k}^{\prime}=(-\mathrm{I})^{n-1} \sum_{k=0}^{\infty}\left[\binom{k+\mathrm{I}}{n}-\binom{k}{n}\right] x_{k}^{\prime}
$$

so that $\Delta_{1} \mathrm{D} x_{n}=d_{1} \Delta_{1} x_{n}$ and from this follows that Δ_{1} preserves also semiderivations. Part of the structure of $\hat{\mathscr{A}}$ is therefore (algebraically) isomorphic to $\hat{\mathrm{A}}_{1}$ and we have a new way to investigate the classical difference calculus. By using the topology on $\hat{\mathscr{A}}$, we can now use-formally-the methods of modern analysis. Furthermore difference calculus appears now in an axiomatic setting.

Vice versa we can get results for $\hat{\mathscr{A}}$ from known facts in difference calculus.

For example, if we would like to know what the series expansion of x_{n}^{m} with respect to the basis $\left\{x_{j}\right\}$ is, we can argue as follows:

Since $\Delta_{1}\left(x_{n}\right)=\left[(-\mathrm{I})^{n}\binom{k}{n}\right]$ it follows that

$$
\Delta_{1}\left(x_{n}^{m}\right)=\left[(-1)^{n m}\binom{k}{n}^{m}\right]
$$

$$
\text { so } \quad \begin{aligned}
x_{n}^{m} & =(-\mathrm{I})^{n m} \sum_{k=0}^{\infty}\binom{k}{n}^{m} x_{k}^{\prime}=(-\mathrm{I})^{n m} \sum_{k=0}^{\infty}\binom{k}{n}^{m}(-\mathrm{I})^{k} \sum_{j=0}^{\infty}\binom{j}{k} x_{j}= \\
& =(-\mathrm{I})^{n m} \sum_{j=n}^{\infty}\left[\sum_{k=n}^{\infty}(-\mathrm{I})^{k}\binom{j}{k}\binom{k}{n}^{m}\right] x_{j} .
\end{aligned}
$$

For $n=1$ we get:

$$
x_{1}^{m}=\sum_{j=1}^{\infty}\left[(-\mathrm{I})^{m} \sum_{k=1}^{j}(-\mathrm{I})^{k}\binom{j}{k} k^{m}\right] x_{j} \Rightarrow x_{1}^{m}=\sum_{j=1}^{\infty}(-\mathrm{I})^{m+j} \mathrm{~B}_{j}^{m} x_{j}
$$

where the B_{j}^{m} are the Stirling numbers of the second kind.
One might ask whether $\left\{x_{1}^{m}\right\}$ is a A -basis for some operator A in $\hat{\mathscr{A}}$? It is clear that this would imply that $\lim _{m \rightarrow \infty} x_{1}^{m}=0$, which is, however, not the case. For the subalgebra \mathscr{A}, however, $\left\{x_{1}^{m}\right\}$ is a A-basis, namely for the operator A defined by $\mathrm{A} x_{n}=\frac{\mathrm{I}}{n} \sum_{k=0}^{n} x_{k}$. For this basis we have $x_{j}=\sum_{m=0}^{j}(-\mathrm{I})^{j+m} \mathrm{C}_{m}^{j} x_{1}^{m}$ where C_{m}^{j} are the Stirling numbers of the first kind.

Taking $\left\{x_{n}^{m}\right\}$ as a basis of \mathscr{A} then the numbers

$$
{ }_{n} \mathrm{~B}_{j}^{m}=(-\mathrm{I})^{j} \sum_{k=n}^{j}(-\mathrm{I})^{k}\binom{j}{k}\binom{k}{n}^{m}
$$

with fixed n would appear to be a natural generalization of the Stirling numbers of the second kind and the elements of the inverse matrix ${ }_{n} \mathrm{C}_{m}^{j}$ a generalization of the Stirling numbers of the first kind.

Literature

[1] P. Bachmann (1968) - Niedere Zahlentheorie, 2-ter Teil, Chelsea Publishing Co.
[2] Th. A. Giebutowski (1976) - Deteal-adic Completions of s - d-Rings and their s - d-Structure, "Journal of Algebra», 42, 142-1 59.
[3] H. W. Gould (1972) - Combinatorial Identities, Morgantown Priting and Binding Col.
[4] E. G. Kundert - Structure Theory in s-d-Rings, Nota I, «Acc. Naz. Lincei», ser. VIII, 41.
[5] E. G. Kundert - Linear operators on certain completions of the s-d-Ring over the integers, Nota I, «Acc. Naz. Lincei», ser. VIII, 3.
[6] E. G. Kundert - Linear operators on certain completions of the s-d-Ring over the integers, Nota II, «Acc. Naz. Lincei», ser. VIII, 4.

