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Fisica m atem atica. —- Interaction of shock waves with acoustic 
waves <*>. N ota di A n g e lo  M orro, presentata <**> dal Socio C. C attan eo .

RIASSUNTO. — Si studia l’interazione tra onde d’urto e onde acustiche in accordo con 
la teoria generale sviluppata recentemente da Brun. Esaminata in dettaglio la condizione 
caratterizzante l’interazione, si considera la trasmissione e la riflessione nel caso di solidi ela
stici. Si mostra che, nell’approssimazione di onde d’urto deboli, sia l’onda riflessa che l’onda 
trasmessa hanno un’ampiezza minore di quella dell’onda incidente.

§ i. Introduction

The stability of a shock wave is usually considered through the interaction 
of acoustic waves with the shock wave itself. In this connection we recall 
the fundamental paper by D ’iakov [1]. Successively, several works on the 
subject were published; among others we mention the recent papers by Swan 
and Fowles [2] and Van Moorhem and George [3] concerning shock waves 
in fluids. The problem of the interaction was also extensively considered 
within the context of hyperbolic systems and waves as it appears in the exhau
stive book by Jeffrey [4].

A noteworthy contribution towards a general theory of the interaction 
has been given recently by Brun [5]. The main features of such a theory are 
the following ones. First, the condition for the stability of the shock, in the 
form of an evolutionary condition leads to the Lax inequalities [6]. Second, 
it is shown that, in general, the shock undergoes an acceleration as a conse
quence of the interaction. Finally, the theory provides a precise method for 
a quantitativë study of the interaction. Precisely, once the properties of the 
shock and of the incident perturbation are known, the acceleration under
gone by the shock and the amplitudes of the acoustic waves, are determined 
in a straightforward manner. In view of these promising results, it seems to 
us that the theory deserves further attention.

The primary purpose of this Note is to show how the amplitudes of the 
emergent modes (outgoing perturbations) may be obtained. To this end, sect. 2 
deals with a detailed re-examination of the procedure followed by Brun in 
order to obtain the relation characterizing the interaction. In sect. 3 we briefly 
recall the evolutionary condition introduced by Brun and finally, in sect. 4, 
we consider the particular case of interaction in elastic solids. In this connection,

(*) This work was supported by the «Gruppo Nazionale per la Fisica Matematica» 
of C.N.R.

(**) Nella seduta dell’ 11 febbraio 1978.
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within the approximation of weak shocks, we examine the transmission and 
the reflection of longitudinal acoustic waves. As a result, we obtain that the 
amplitude both of the transmitted and of the reflected wave is smaller than 
the amplitude of the incident wave.

§ 2. The relation characterizing the interaction

Throughout this note we consider plane waves (shock waves and acoustic 
waves) propagating into the continuum in hand in the direction of the X axis 
with respect to a suitable reference configuration. Given any quantity £, 
we denote by [£] =  the jump of the quantity \  and being the
limiting values of £, respectively behind and ahead of the wave front. Let

(2.1) du 9F (Ü)-----L ------ Ì—A — Q
dt ^  dX

be the system of n conservation equations for the n unknown functions u =  
— (ui , • • •> un) describing the evolution of the continuum. We assume that 
the quantity u suffers a jump discontinuity across the shock front. Concerning 
the system (2.1) we introduce the hypothesis that it is strictly hyperbolic; 
this means that there exist n linearly independent eigenvectors Dj , • • •, D„

defining the directions of the discontinuities which propagate

into the continuum with any of the wave speeds cx , • • •, cn (distinct or coin
cident).

Let us consider a shock wave with speed s >  o at a fixed time t . Without 
loss of generality, we say that s is greater (smaller) than M+ (M-) charac
teristic speeds ahead of (behind) the shock. On the whole, we have M =  M+ +  
+  M~ types of incident (acoustic) perturbations which may interact with the 
shock., To begin with, we first suppose that one of these incident perturbations 
is coming from the region ahead of the shock. The speed of the shock separates 
N+ speeds of emergent modes (ahead) from N~ speeds of emergent modes 
(behind), namely

(2.2) OfcN-  <  • • • <  <  Ckx < S < ctx <  ci% <  • • • <  •

The interaction of the incident perturbation with the shock at the time 
tr. (=  t;■— o) gives rise, besides a jump of the acceleration of the shock, to the 
emission of discontinuities behind and ahead of the shock. Of course, such 
discontinuities belong to the set of the N =  N+ +  N“ emergent modes sati
sfying the condition (2.2).

Let [G]ß denote the jump of the quantity G, across the wave front, due 
to the vèth discontinuity and let AG =  G (t+) — G (t~) be the whole jump of G 
between the times and t+. Thus we have

AG+ -  G+ (/+) — G+ ( f )  =■ [G+]e.m. +  [G+]inc
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where e.m. and ine are reminders for the contributions of the emergent modes 
and of the incident perturbation. More explicitly, we write this result in the 
form

n +

AG+ =  X  [G+]*, +  [G+]i„c.
3 = I

According to the hypothesis introduced above, behind thé shock we have 
only emergent modes but not incident perturbation, and then

AG- =  [ G - U  =  S  [G-]ty-
3 = 1

Thus, the quantity A [G] =  AG~ — AG+ can be given the expression

N“ N+

(2.3') A [G] =  £  [G~]kj— X  [G+]*. [G+]inc.
3 = 1 j=l

An analogous expression can be derived in the case when the incident per
turbation is coming from the region behind the shock. We have

AG+ =  [G+]e.m. .
while

AG“ =  [G-]e.m. +  [G-]inc .

A subtraction allows to write

N“ N+

(2.3") A [G] =  £  [G-]kj -  £  [G+]t . +  [G-]i„c.
3 = I 3 = I

The results; (2.3'), (2.3") are summarized by the relation

N" N+

(2.3) A [G] =  2  [G -]*,.- £  [G+]*,q= [G±]ine.
3 = 1 3=1

Concerning the system (2.1) we have the following jump relations for the 
shock

[ F ] - s [ u ]  =  o

whence

(2.4) F+ —■ su+ =  F~ — su~ .

The relatiori (2.4) holds identically in time and moreover the functions 
s are smooth functions with respect to time. From (2.4) we obtain

(2.5) F+ — sù+ -f- s [u] =  F~ —- s ir
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where a superimposed dot denotes time derivative with respect to the observer

which travels with the velocity of the shock In particular,

the relation (2.5) holds at the times t+, tr\ a subtraction of the corresponding 
expressions yields

AF+ — sAù+ As \u\ =  AF~ — sA ir

whence

(2.6) A [F — stt] =  As [u\ .

It is worth remarking that the condition (2.6) has been derived considering 
the shock only. However, it must be satisfied also by the acoustic waves at 
the time t since, at this time, the regions behind and ahead of the shock are 
the same as the regions behind and ahead of the incident perturbation and the 
emergent modes. With this in mind, we consider the obvious jump relations

H
si

(2.7)

(2.8)
w = s [5 -] +

for the incident perturbation and the emergent modes. The continuum in 
hand satisfies the system (2.1) and then the jump relations

[Kl+SH-
Substitution into (2.7) yields

(2-9) ^ + [ 4 ] -

Let c be the speed of an acoustic wave (e.g. the incident perturbation or 
the emergent modes). If cj> is any of the quantities F , m, we have the compa
tibility condition

Making use of (2.10), eq. (2.9) gives

[F] =  «
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Analogously, eq. (2.8) reads

[Ù ]  =  (s —  c)

Therefore, it follows at once

(2.11) [ F ] - s  [«] =  — ( j - 0 *  •

On the other hand, application of the equation (2.3) to (2.6) gives

N+ _ N -

2  [ F + —  sù+]kj —  £  [ F -  —  sü~]ky +  A i  [m ] =  T  [ F *  —  si* * ]m e
i=I i=I

whence, on account of (2.11),

( 2 .1 2 )
N+ I

^  db  (^inc ~-*[£L
Since the system (2.1) is hyperbolic, we may introduce the scalar quantities 
a%. defined by

( 2 ' 1 3 )  [ l k ]  ine =  ±  01nC D lnC  ’ [ l k ]  *, =  T  “I* •

Substitution of (2.13) into (2.12) produces the relation characterizing the 
interaction, namely

( 2 .1 4 )  2  ak (ck ----- s) 2 T>k +  As [u] =  ^ in c  (^inc —  s) 2 D in e
Jc,±

where 2  *s shorthand for the sum over the N =  N+ +  N“ emergent modes.

It is worth noticing that the relation (2.14) has been recently obtained 
also by Boillat and Ruggeri [7] by means of a somewhat different procedure.

§ 3. Evolutionary condition

The idea of stability of a shock is related to the behaviour in time of 
transmitted and reflected disturbances. Precisely, one says that a shock is 
stable to small disturbances if the transmitted and reflected disturbances and 
the perturbed shock speed remain bounded in time (see, e.g., [1, 8]). Often, 
however, the stability condition for a shock is assumed in the weaker form
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of an evolutionary condition [9, 10, 5, 4]. Here we introduce the evolutionary 
condition in the form proposed by Brun [5].

“ Condition d'évolution. Une discontinuité forte est nécessairement telle 
que le résultat de son interaction avec toute discontinuité ordinaire éventuelle 
existe et soit unique

Let see now how the evolutionary condition can be given an operational 
form. The properties of the shock—and then the vector [u]—are regarded 
as known for the problem in hand. Thus, the evolutionary condition is satisfied 
if and only if the amplitudes ah as well as the discontinuity As exist and are 
unique for each of the M possible choices for the incident perturbation. This 
is possible if and only if

i) the N eigenvectors D*. and the vector [u] are independent, 
ii) all the vectors Dine belong to the linear space spanned by the N 

eigenvectors D*. and the vector [u].

As a consequence of i) we have

(3.1) N — N+ +  N~ =  n — I .

The inequalities (2.2) together with the restriction (3.1) constitute the Lax 
inequalities.

Our concern in the next section will be an application of the statements 
i), ii) in the case of shocks in elastic solids.

§ 4. Interaction in elastic solids

Following B run’s notations [5], we say that, in the presence of plane 
waves, the balance equations of an elastic solid can be given the form (2.1) 
by setting

(4 4 ) m =  (y , « , U +  v 2/ 2)  , — F =  (v , b , v  b)

where y is the deformation vector, v the velocity with respect to a suitable 
frame of reference, U the specific internal energy and b the body force, 
b =  3U/3y. In view of the balance of linear momentum, an acoustic wave 
must satisfy the following jump conditions

(4-2)
4!] = q[!]+(v’6)[IH
‘ [ 5 - ] = °

where Q is the acoustic tensor, S is the specific entropy and 0 =  3U /3S is 
the temperature. Therefore the speeds of the acoustic waves are

(4-3) £0 =  o c-i =  — CiCi >  o
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where (i =  1 , 2 , 3 )  are the eigenvalues of the acoustic tensor, namely

(4.4) Qtfi =  Cidi , =  d_ ;.

On account of (4.2) we obtain

< « )  [ £ ]  =  ( [ £ ] ■ ■ - I I ]  ■ < * - - > • [ ! ] )

if cf^  o, and

[ ! ]  =  ( - ^ ^ 9> [ 1 ]  • 0 ■ 6 6 +  e> [5 - ] )

if c =  o. In view of (4.4), we are now able to write the characteristic vectors 
corresponding to (4.5) and (4.6) in terms of the acoustic directions namely

(4-7)
Di =  (d i, — O > (P — O ») ' <*i, i =  ±  i , ±  2 , ±  3 ,

Do =  (Q 1 VY 6 , O , — e +  b -Q-1 VY 6) .

For convenience we introduce a new frame of reference such that v —> v =
v~ +  v+ T 1 • t=  v -----------------. in this case we obtain2

(4.8) [w] =  (H , — s i , b-X)

( 4 - 9 )  D f  =  ( d f ,  —  c f  ó f ,  ^ 6 *  ct  [& ])

where 1  =  — MA? and b =  (6+ +  6~)/2. These results enable us to prove 
the following

PROPOSITION. In the case of weak shocks, the longitudinal shock travels 
with supersonic speed with respect to the medium ahead of the front and with 
subsonic speed with respect to the medium behind.

Proof. Let us consider a longitudinal shock whose normal n is parallel 
to the deformation vector y ahead of the front (and then also behind the front). 
Setting n =  (1 , 0 , 0 ) ,  the condition (4.8) simplifies to

(4.10) u — ( 1 , 0 , 0 ,  S , O , O , 5j) X .

Let us suppose that the incident perturbation is a longitudinal acoustic wave, 
parallel to the shock, and coming from the region ahead of the front, namely 
D in e  =  DÌi'. As a consequence, we have

13. — RENDICONTI 1978, voi. LXIV, fase. 2.
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(4.12) Do* 30 \ -k----  , O , O , O , O , O
3Yi/ (- 0  + i

2Cl
30
3yi

Certainly, D_i and D0 are emergent modes which actually occur. On the 
other hand the determinant (Dix , D^, [u]) is given by

(4 ,3 ) d : ,  , d „ [ .])  =  -  e (cr +  4 )x ( ,  -  feT- (|  +  t) ( — ) 'x )

where the jump relation [6] =  s2 1  has been taken into account(1). At least 
in the case of weak shocks (X small), according to (4.13) we have 
( D i i , D<r, [«]) 7̂  o. Therefore D_i , D0 , and [u] constitute a basis in 
terms of which D ii may be represented in a unique way. In view of i) and ii), 
the emergent modes D f and Di~ cannot occur and then.

(4.14) c t <  s <  CÏ .

We have thus obtained the well known result according to which if the incident 
(longitudinal) wave is coming from the region ahead we have transmission 
but not reflection whilst if the incident wave is coming from the region behind 
we have reflection but not transmission. □

Now we consider the amplitudes of the transmitted and reflected waves. 
First, let Dine =  Djh; then the relation (2.14) reads

aZi (cï +  s)2 D ii  +  aö s2 D<r +  As [u] =  a ti  (ct +  -s)2 D Î X.

Taking into account (2.13) and (4.5), a straightforward calculation yields

(4-15)

'3 y x ‘

3X  _-1  __ a - l  __ (^1~ +  s)

z r t  I a —i (ci T" s )

. 3X  _ine

■S3 ____  / 30 \ -
0 ( O 2 (ct +  s) \ 3yx / X

V x
0̂ i (ci -|- s) \ 3yx/

In the case of reflection, Dine =  Dx , the amplitudes must satisfy the condition 

a- \  (ci +  r)2 D_i -j~ a0 s2 D0 +  As [m] =  ay (c\ — s)2 Dx .

We obtain

3yx

3X -1
3 y r

_ 3X ine

<3-1 _  (c\ — s)2 
aï  (cï +  s)3

0rx (c I ~\- s)

30 y
W J
/ 30 
\W i

X

X

(1) It is worth noticing that the expression (4.13) is the correct form of the analo
gous relation ( 15-13). given in [5], which suffers from an error in sign concerning the exprès- 
sion for .
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First of all, the results (4.15) and (4.16) show that, for weak shocks, both 
the transmitted and the reflected wave have an amplitude smaller than that 
of the incident one. Moreover, it is immediately seen that, in the limiting 
case X —> o, we have a complete transmission (r =  1) without reflection (r =  o).
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