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Fisica matematica. — On the ordinal and absolute stability 
properties<*>. Nota di F r a n c e sc a  V i s e n t i n  <** (***)>, p resen ta ta^  dal 
Socio C . C a t t a n e o .

R iassunto. — Si discutono e si ampliano alcuni concetti, introdotti daT. Ura, concer­
nenti la stabilità di un insieme compatto rispetto ad un sistema dinamico ordinario. In parti­
colare la nozione di stabilità assoluta viene estesa a proprietà che, come ad esempio la stabilità 
asintotica, non sono definibili mediante i « prolungamenti » di Ura.

1. Let E be a locally compact metric space and n a dynamical system 
defined on E. It is well-known that T. U ra [5] has given some concepts con­
cerning the " degree ” of a certain stability property up to a compact set 
M c E .  In the work of T. U ra these properties are defined by means of 
so called prolongations which are suitable compositions of maps from E on 
2e. T. Ura, and successively J. Ausländer and P. Seibert [1], individuate 
some properties of a compact set M with respect to a dynamical system, 
which can occur to several degrees. If M possesses one of these properties 
at any degree, then M is said to have such property absolutely. Characteri­
zations of these behaviors are given by T. U ra [6] and J. Ausländer and 
P. Seibert fi], always by means of prolongations.

In this paper we give a generalization of the concept of a property 
possessed absolutely by a compact set M in such a way to include properties 
which are not necessarily defined by prolongations. One of these properties 
is the asymptotic stability. Properties possessed at a given order can be 
analogously defined; but they cannot be in general reduced to the well-known 
ones defined by prolongations. A t last we individuate some properties which 
have intrinsic absolute character, in the sense that if any compact set has 
such a property, then it has the same property for each degree. For 
example total stability, as defined in [1], and again asymptotic stability 
are intrinsic absolute properties.

2. Let E be a locally compact metric space and p the distance in E.
Let R be the set off real numbers, and ( R , E  , 7t) a dynamical system from
R X E on E (see [2]), which we denote by tt. For each a; e E  let y+ (x) be
the positive 7r-semitrajectory through x. We consider the set s /  (E) of all 
mappings from E on 2E; for a map F e £0 (E) and for a non-empty subset
U of E, we set F (U) =  U { r  (x) : x  eU}. Further, for s >  o we put
S ( U , s )  =  { ^ e E :  P (x > U) <  e }. We shall denote by 2 the set of all
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dynamical systems defined in R x E ,  and if E =  Rn, we denote by *3 the set 
of the functions from R)<Rn on Rn satisfying Caratheodory conditions. Let 
also the set consisting of all the continuous functions from Rn on R n

such that for every /  e uniqueness and global existence in Rn of solutions 
of equation

(2.1) * = / ( * )

hold. For x e Rn we denote by 7 t he solution of (2.1) such that 
7i f ( o y x ) = x .  Then the triplet {R , Rw, TCf} defines a dynamical system 
and we obtain a subset 2* of 2 . We need the following definition.

D e f i n i t i o n  2 .1 . Let M c E  be a compact set and tu a dynamical 
system defined in R x E .  M is said to be

2 .1.1. 7u-stable if for any s >  o there exists 8 >  o such that x e  S (M , 8) 
implies tu (/ , x) e S (M , s) for any t e R+.

2.1.2. 7i-asymptotically stable if M is Tu-stable and there exists a >  o 
such that, for x e S (M , a) , p (tu ( t , x) , M) —> o as t +  00.

2.1.3. (2 , 7u)-totally stable if for any s , I >  o, there exists two numbers
81 , S2 >  o such that if x e S (M , Sx) and p e 2 , with p (tu ( t , z) , p ( t , zj) <  82 
in [o , l\ x  E, then p  ( t , x) e S (M , s) for any t e R+.

2.1.4. For / e  ^*, (3 ,/)- to ta lly  stable when for every e >  o there exist
two numbers 8X , S2 >  o such that for any t0 >  o , x0 g S (M , 8t) , g  with 
P ( /  (#) > g (t » '#)) <  <*2 in R+ X S (M , s) then (/ , t0 , ^ 0) e S ( M ,  s) V t > t 0, 
where xg ( t , » #0) *s any solution of x =  g  ( t , x) through (t0 , #0).

It is possible to prove that Definition 2.1.4. is equivalent to that used 
by J. Ausländer and P. Seibert in [1]. Further, when / e ^ *  is locally 
Lipschitzian in x, one proves that if M is (2*, 7u^)-totally stable then M 
is (&*, i/)-totally stable (see [3]).

D e f i n i t i o n  2.2. Let Q e  V  (E) be a prolongation and, for any ordinal 
number a, let Qa be the prolongation of order a constructed by means of Q
(see [1]). Let M c E  be a compact set. M is said to be

2.2.1. Q-invariant if Q (M) =  M.
2.2.2. Q-stable of order a, or Qa-stable, if Qa (M) =  M.
2.2.3. Q-absolutely stable if M is Qa-stable for any ordinal number a.

We notice that there exists a prolongation D such that Liapunov stabi­
lity coincides with D-stability of order 1 (see [1, 2, 5]). For Qa-stability and 
Q-absolute stability of a compact set M ç  E the following statements hold.

T h e o r e m  2.3 ([6 ]) . Let Q e  sd (E) be a prolongation and let M be a
compact subset of E. M is Q^-stable i f  and only if  there exists a fundamental 
system of neighborhoods {U^}weN of M such that Qß (Uw) =  U n fo r  any ß <  a.
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Theorem 2.4 ([1], Theorem 6). Let Q e j / ( E )  he a prolongation and 
let M be a compact (^-invariant subset of E. Then the following conditions are 
equivalent'.

2.4.1. There exist a ^-invariant neighborhood W of M and'a continuotos 
function V : W -> R+ satisfying

(i) V (x) =  o fo r  any x e M , V (x) >  o fo r  any x e W \M ;
(ii) V (y) <  V (x) fo r  any x e W and y e  Q (x).

2.4.2. M is Q-absolutely stable.
2.4.3. M possesses a fundamental system of Q-absolutely compact 

neighborhoods.

3. Some Authors [1, 5, 6] have put the problem of establish the condi­
tions under which a compact set possesses absolutely a property. This has 
been done by the use of ordinal prolongations. We rem ark that this 
approach to the question concernes necessarily properties relative to dyna­
mical systems, because the existence of trajectories is necessary to construct 
a prolongation. In this setup J. Ausländer and P. Seibert [1] prove that 
every compact set (fß , /)-to ta lly  stable possesses this property absolutely. 
On the other hand this statement seems not true for the ( 2 , 7i)-total stability; 
however sufficient conditions in order this result are in [4].

Here we shall give a generalization of this concept so that one can 
include also properties which cannot be defined by means of prolongations 
(for instance asymptotic stability, see [1 ]).

Let E be a locally compact metric space and fé7 the class of all compact 
subsets of E, and let & be a property defined in fé7. If M e fé7 has the 
p roperty^3 we write M A ^3. Let 3T =  (M) be the class of subsets of 2E
defined in the following way. SR is an element of if is a system of 
sets e fé7 consisting of: the set M; a fundamental system of compact neigh­
borhoods {UfJ^eN of M; a fundamental system of compact neighborhoods 
{Uwm}meN of every set U n; a fundamental system of compact neighborhoods 
{Uwww}*eN °f every set U wm; and so on (inductively).

Definition 3.1. lW  ^  be a property defined in fé7. We say that 
M e fé7 has absolutely the property or M is absolutely if there exists 

6 such that & holds for any U e  J .

Remark 3.2. If a set M is absolutely then the same happens for every 
set U e f .

Definition 3.3. A property^9 defined in fé7 derives from a prolongation 
Q if for M e fé7

M A ^ ^ Q ( M )  =  M .

For example stability, (^  ,/)- to ta l stability, (2 , 7i)-total stability derive from 
a prolongation, but there exists no prolongation defining the asymptotic
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stability as it is proved in [1], and a similar proof shows that there exists 
no prolongation for instability. When a property 0 derives from a prolon­
gation Q, we can establish the relation between Q-absolute stability of a com­
pact set M and the condition that M is absolutely 0. Precisely the following 
theorem holds.

THEOREM 3.4. Let 0* be a property deriving from a prolongation Q. 
A compact set M c E  is absolutely 0 if  and only if  M is Q-absolutely stable.

Proof, (a) Suppose that M is absolutely 0 \  it suffices to prove that there 
exists a function V satisfying the conditions of Theorem 3.4. We can obtain 
this result using Remark 3.2 and similar arguments as in Theorem 3.4 (see [1 ]).

(b) Conversely, if M is a compact Q-absolutely stable set, then Q(M) =  M; 
further M possesses a fundamental system of compact neighborhoods {U.,JneN 
such that Q (Uw) =  U n, and every set XJn possesses a fundamental system 
of compact neighborhoods {Unm}weN with Q (UWTO) =  U nm, and so on; there­
fore M is absolutely 0.

Remark 3.5. If a property 0 derives from two prolongations Q and 
Q', by Theorem 3.4 we have that M is Q-absolutely stable if and only if 
M is Q '-absolutely stable.

4. Relative to the question of the order of a property 0 for a compact 
set M c E ,  we give the following definition.

P e f i n i t i o n  4.1. Let 0 be a property defined in #  and M g ^ . M f\0 
at order 2 (M i s ^  at order 2), if M satisfies the property 0 and there exists 
a fundamental system of compact neighborhoods with U w A & ,
n é  N.

By using transfinite induction, it is possible to define the order a >  2 
(a ordinal number) of the property 0  for the set M.

DjEFlNITlON 4.2. ÌA !\0 at order a (a >  2) ìi M. !\0 and there exists 
a fundamental system of compact neighborhoods of M satisfying the property 
0  at order ß, for each ordinal number ß <  a.

We observe that if M is absolutely 0 y then M A at order a, for any 
ordinal number a. If the p ro p e r ty ^  derives from a prolongation Q, we will 
establish the relation between Qa-stability of a compact set M and the condi­
tion that M f\0 at order a. The following result holds.

THEOREM 4.3. Let 0 be a property deriving from a prolongation Q and 
M e f .  I f  M A 0 at order a, then M is Q-stable at the same order.

Proof. We prove the theorem for a =  2. I f M A - ^ a t  order 2, there 
exists a fundamental system of compact neighborhoods {Uw}^gn of M with 
the same property 0 .  On the other hand there exists a prolongation Q defining 
the property 0y then Q (M) =  M and Q (Un) =  U n , n e N; but in such a 
case Q2 (M) =  M (see Theorem 2.4), i.e. M is Q-stable at order 2. For a >  2 
the statement can be proved by transfinite induction.
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Generally the converse statement is not true, because if M is Q-stable 
at order a, then for every ß <  a there exists a fundamental system of neigh­
borhoods {Uw}wgn of M with Qß (Un) =  U n, but these neighborhoods are not 
necessarily compact. The equivalence between the two conditions occurs 
under further requirements. An example is given below by a slight modi­
fication of a dynamical system already considered in [2], p. 125.

Example 4.4 ([2]). We consider a sequence of points of the real line 
Pn o, where Pj >  P2 >  • • • > P 7< >  • • • >  o. For all points P& of the sequence 
we introduce a sequence P& -> P&, where P | >  P* >  • • • >  P* >  • • • >  P&. 
We consider a dynamical system on the real line such that o , Yn , 
P& (n , k — I , 2 , • • •) are equilibrium points, and the motions between any 
two successive equilibrium points and those on R ~ \{o}  evolve from left to 
right. The set {0} is stable. We prove that {0} possesses a fundamental 
system of stable compact neighborhoods. Let us consider the neighborhoods 
{Un}neN, where U w =  [— Pn , Pn]. These are compact sets and constitue 
a fundamental system of neighborhoods of {o}. We prove that they are 
stable. Let U be a neighborhood of U^, also U is a neighborhood of the 
points — Pw and Pn, then there exists m e  N such that — P™, P ^ e U  and 
therefore U nc: ]— P™, P™[c [— P^1, P™] cz U. On the other hand the motions 
are from left to right and P™ is an equilibrium point, then y+ ([— P™, P™]) =  
=  [— P™, P n] Œ U. This proves that every set XJn is stable. Then the set {0} 
is Liapunov stable at order 2.

By introducing other sequences of equilibrium points, it is possible to 
consider a dynamical system such that the set {0} is stable at order n, for 
any n e  N.

5. Among all the properties included in Definition 3.1. we individuate 
some properties 0* satisfying the following stronger condition: M A 0 implies 
M is absolutely 0. These properties are said to be intrinsic absolute properties. 
That is we gi^e the following definition.

D e f i n i t i o n  5.1. 0 is said to be an intrinsic absolute property when 
for every compact set M such that M A there exists a fundamental system 
of compact neighborhoods {Uw}wgn of M for which U w A & , n e  N.

Examples of in trinsic absolute properties are asymptotic stability, insta­
bility, (^  , /)-to ta l stability. Other examples are the compactedness and, 
if E is a locally connected metric space, the connectedness. On the contrary 
Liapunov stability is not an instrinsic absolute property (see [1]) and it seems 
that also (2 , jc)-total stability is not an intrinsic absolute one (see [4]); but 
these properties can be possessed absolutely by a compact set M. In order 
to ( 2 , 7r)-total stability we recall that the following statement holds.

T h e o r e m  5.1. ([4]). Let M be a compact set. I f  M possesses a funda­
mental system of asymptotically stable compact neighborhoods {Uw}wgn, then 
M is (2 , iz)-absolutely totally stable,
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By virtue of Definition 3.1, Theorem 5.1 can be proved more easy than 
in [4]. In fact, since asymptotic stability is an absolute property, every 
set U n possesses a fundamental system of asymptotically stable compact 
neighborhoods {U;m}weN, and so on. On the other hand, asymptotic stabi­
lity implies (2 , 7t)-total stability (see [3]), thus M is (S , 7u)-absolutely totally 
stable.
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