ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Takashi Noiri

On δ -perfect functions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.6, p. 488–492.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_6_488_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi matematica. — On δ -perfect functions. Nota di Takashi Noiri, presentata ^(*) dal Socio E. Martinelli a nome del compianto Socio B. Segre.

RIASSUNTO. — Una funzione $f: X \to Y$ viene detta *perfetta* se f è chiusa ed $f^{-1}(y)$ è compatto per ogni $y \in Y$. In [2] sono inoltre state definite e studiate le funzioni θ -*perfette*. Qui si introducono le funzioni δ -*perfette* e si mostra che, se gli spazi X ed Y sono regolari ed f è continua, le tre suddette nozioni risultano *equivalenti*.

1. INTRODUCTION

A function $f: X \to Y$ is said to be *perfect* if f is closed and $f^{-1}(y)$ is compact for each $y \in Y$. G. T. Whyburn [9] proved that a function $f: X \to Y$ is perfect if and only if for every filter base \mathscr{F} on f(X) converging to $y \in Y$, $f^{-1}(\mathscr{F})$ is directed toward $f^{-1}(y)$. In [4], the Author has defined δ -*perfect* functions in a way analogous to the above characterization of perfect functions. The purpose of this Note is to investigate some relations between perfect functions and δ -perfect functions, and also those between δ -perfect functions and θ -*perfect* functions introduced by R. F. Dickman, Jr. and J. R. Porter [2].

2. PRELIMINARIES

Let S be a subset of a space X. A point $x \in X$ is called a δ -cluster (resp. θ -cluster) point of S in X [8] if S \cap Int (Cl (U)) $\neq \emptyset$ (resp. S \cap Cl (U) $\neq \emptyset$) for every open set U containing x. The set of all δ -cluster (resp. θ -cluster) points of S is called the δ -closure (resp. θ -closure) of S and is denoted by [S] $_{\delta}$ (resp. [S] $_{\theta}$). If [S] $_{\delta} = S$, then S is said to be δ -closed in X.

DEFINITION 2.1. A function $f: X \to Y$ is said to be δ -closed if $[f(A)]_{\delta} \subset f([A]_{\delta})$ for every subset A of X.

A point $x \in X$ is called a δ -cluster point of a filter base \mathscr{F} in X if $x \in \cap \{[F]_{\delta} \mid F \in \mathscr{F}\} = [ad]_{\delta} \mathscr{F}$. A filter base \mathscr{F} is said to be δ -convergent to a point $x \in X$ if for any open set U of X containing x, there exists an $F \in \mathscr{F}$ such that $F \subset Int (Cl(U))$. A filter base \mathscr{G} is said to be subordinate to a filter base \mathscr{F} if for each $F \in \mathscr{F}$ there exists a $G \in \mathscr{G}$ such that $G \subset F$. A filter base \mathscr{F} is said to be δ -directed toward $S \subset X$ if every filter base subordinate to \mathscr{F} has a δ -cluster point in S.

(*) Nella seduta del 10 dicembre 1977.

DEFINITION 2.2. A function $f: X \to Y$ is said to be δ -perfect if for every filter base \mathscr{F} in f(X) δ -converging to $y \in Y$, $f^{-1}(\mathscr{F})$ is δ -directed toward $f^{-1}(y)$.

Remark 2.3. The continuity is not assumed on δ -perfect functions.

DEFINITION 2.4. A subset S of a space X is said to be N-closed relative to X [1] if for every cover $\{U_{\alpha} \mid \alpha \in \nabla\}$ of S by open sets of X, there exists a finite subset ∇_0 of ∇ such that $S \subset \cup \{Int (Cl(U_{\alpha})) \mid \alpha \in \nabla_0\}$.

In [4], we have obtained the following results which are used in the sequel.

THEOREM 2.5. A function $f: X \to Y$ is δ -closed if and only if the image f(A) of each δ -closed set A in X is δ -closed in Y.

THEOREM 2.6. A function $f: X \to Y$ is δ -perfect if and only if

(a) f is δ -closed, and

(b) $f^{-1}(y)$ is N-closed relative to X for each $y \in Y$.

3. δ -PERFECT FUNCTIONS

A subset S of a space X is said to be *regularly open* (resp. *regularly closed*) if Int (Cl(S)) = S (resp. Cl(Int(S)) = S). The family of regularly open sets of X forms a basis for a topology on the underlying set of X. This new space is called the *semi-regularization* of X and is denoted by X^{*}. If X^{*} = X, then X is said to be *semi-regular*.

DEFINITION 3.1. A space X is said to be *almost-regular* [7] if for any point $x \in X$ and any regularly closed set A not containing x, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$.

Remark 3.2. In [7], it is shown that almost-regularity and semi-regularity are independent of each other, and also almost-regularity is strictly weaker than regularity, but they are equivalent on semi-regular spaces.

LEMMA 3.3. If a space X is semi-regular (resp. almost-regular), then $[S]_{\delta} = Cl(S)$ (resp. $[S]_{\theta} = [S]_{\delta}$) for every subset S of X.

Proof. It is known that $[S]_{\theta} \supset [S]_{\delta} \supset Cl(S)$ for any subset S of X [8, Lemma 1]. First, suppose that X is semi-regular and let $x \in [S]_{\delta}$. For any open set V containing x, there exists a regularly open set U such that $x \in U \subset V$. Since $x \in [S]_{\delta}$, we have $\emptyset \neq U \cap S \subset V \cap S$ and hence $x \in Cl(S)$. Therefore, we obtain $[S]_{\delta} = Cl(S)$. Next, suppose that X is almost-regular and let $x \in [S]_{\theta}$. For any open set V containing x, there exists a regularly open set U such that $x \in U \subset Cl(U) \subset Int(Cl(V))$ [7, Theorem 2.2]. Since $x \in [S]_{\theta}$, we have $\emptyset \neq S \cap Cl(U) \subset S \cap Int(Cl(V))$ and hence $x \in [S]_{\delta}$. Therefore, we obtain $[S]_{\theta} = [S]_{\delta}$. THEOREM 3.4. Let X be a space, then the identity functions of X onto X* and of X* onto X are δ -perfect.

Proof. Since X* is semi-regular, by Lemma 3.3, a subset S of X is δ -closed in X if and only if it is δ -closed in X*. Therefore, these identity functions are δ -closed and hence, by Theorem 2.6, they are δ -perfect because a singleton is compact and hence N-closed relative to the space.

THEOREM 3.5. Let X be a semi-regular space. If $f: X \rightarrow Y$ is a δ -perfect function, then f is perfect.

Proof. Suppose that X is semi-regular and $f: X \to Y$ is δ -perfect. Then by Theorem 2.6, f is δ -closed and $f^{-1}(y)$ is N-closed relative to X for each $y \in Y$. Since X is semi-regular, $f^{-1}(y)$ is compact [5, Theorem 3.1]. Let F be a closed set of X. Then, by Lemma 3.3, F is δ -closed in X. Therefore, by Theorem 2.5, f(F) is δ -closed and hence closed in Y. Consequently, f is closed and has compact point inverses. This shows that f is perfect.

Remark 3.6. In Theorem 3.5, the assumption "semi-regular" on X can not be replaced by "almost-regular", as the following example shows.

Example 3.7. Let $X = \{a, b, c\}$ and $\Gamma = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then (X, Γ) is an almost-regular space which is not semi-regular. The identity function $i_X(X, \Gamma) \rightarrow (X, \Gamma^*)$ is δ -perfect by Theorem 3.4. But it is not perfect because i_X is not closed.

THEOREM 3.8. Let Y be a semi-regular space. If $f: X \to Y$ is a perfect function, then f is δ -perfect.

Proof. Suppose that Y is semi-regular and $f: X \to Y$ is perfect. Then f has compact point inverses and hence $f^{-1}(y)$ is N-closed relative to X for each $y \in Y$. Let F be a δ -closed set of X. Then F is closed in X and f(F) is closed in Y. Since Y is semi-regular, by Lemma 3.3, f(F) is δ -closed. Therefore, by Theorem 2.6, f is δ -perfect.

COROLLARY 3.9. Let X and Y be semi-regular spaces. A function $f: X \rightarrow Y$ is δ -perfect if and only if f is perfect.

Proof. This is an immediate consequence of Theorem 3.5 and Theorem 3.8.

Remark 3.10. In Theorem 3.8, the assumption "semi-regular" on Y can not be replaced by "almost-regular", as the following example shows. Moreover, the example shows that the converse to Theorem 3.5 is not always true even if X is semi-regular. Similarly, Example 3.7 shows that the converse to Theorem 3.8 is not always true even if Y is semi-regular.

Example 3.11. Let $X = \{a, b, c\}$ and Γ be the topology for X defined in Example 3.7. Let $\Gamma_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$. Then (X, Γ_1) is a semiregular space. The identity function $i_X : (X, \Gamma_1) \to (X, \Gamma)$ is perfect, but not δ -perfect.

490

4. θ -perfect functions

DEFINITION 4.1. A subset S of a space X is said to be *rigid* (resp. *quasi* H-closed relative to X) [2] if for each cover $\{U_{\alpha} \mid \alpha \in \nabla\}$ of S by open sets of X, there exists a finite subfamily ∇_0 of ∇ such that

 $S \subset Int (Cl (\cup \{U_{\alpha} \mid \alpha \in \nabla_0\})) (resp. S \subset \cup \{Cl (U_{\alpha}) \mid \alpha \in \nabla_0\}).$

For a subset of space X, the following implications are known [2]: compact \Rightarrow N-closed relative to X \Rightarrow rigid \Rightarrow quasi H-closed relative to X.

DEFINITION 4.2. A function $f: X \to Y$ is said to be θ -continuous [3] if for each $x \in X$ and each neighborhood V of f(x), there exists a neighborhood U of x such that $f(Cl(U)) \subset Cl(V)$.

DEFINITION 4.3. A function $f: X \to Y$ is said to be θ -perfect [2] if for every filter base \mathscr{F} on f(X), $\mathscr{F} \longrightarrow y$ implies $f^{-1}(\mathscr{F}) \longrightarrow f^{-1}(y)$.

LEMMA 4.4. (Dickman and Porter [2]). If a function $f: X \to Y$ satisfies

(a) $[f(A)]_{\theta} \subset f([A]_{\theta})$ for each subset A of X, and

(b) $f^{-1}(y)$ is rigid in X for each $y \in Y$,

then f is θ -perfect. Moreover, if f is θ -continuous, then the converse holds.

THEOREM 4.5. If X is an almost-regular space and $f: X \rightarrow Y$ is a θ -continuous θ -perfect function, then f is δ -perfect.

Proof. Suppose that X is almost-regular and $f: X \to Y$ is θ -continuous θ -perfect. Then, by Lemma 4.4, $f^{-1}(y)$ is rigid and hence N-closed relative to X [6, Lemma 4]. By Lemma 3.3 and Lemma 4.4, we have

$$[f(\mathbf{A})]_{\boldsymbol{\delta}} \subset [f(\mathbf{A})]_{\boldsymbol{\theta}} \subset f([\mathbf{A}]_{\boldsymbol{\theta}}) = f([\mathbf{A}]_{\boldsymbol{\delta}}) \quad \text{for every subset A of X.}$$

This shows that f is δ -closed. Therefore, by Theorem 2.6, f is δ -perfect.

COROLLARY 4.6. If X is a regular space, then for a θ -continuous function $f: X \to Y$ we have the following implications:

f is θ -perfect \Rightarrow f is δ -perfect \Rightarrow f is perfect.

Proof. This is an immediate consequence of Theorem 3.5 and Theorem 4.5.

THEOREM 4.7. If Y is an almost-regular space and $f: X \rightarrow Y$ is a δ -perfect function, then f is θ -perfect.

Proof. Suppose that Y is almost-regular and $f: X \to Y$ is δ -perfect. Then, by Theorem 2.6, f is δ -closed and $f^{-1}(y)$ is N-closed relative to X for each $y \in Y$. Therefore, $f^{-1}(y)$ is rigid. Moreover, by Lemma 3.3, we have

 $[f(\overline{A})]_{\theta} = [f(A)]_{\delta} \subset f([A]_{\delta}) \subset f([A]_{\theta})$ for every subset A of X.

Therefore, by Lemma 4.4, it follows that f is θ -perfect.

COROLLARY 4.8. If Y is a regular space, then for any function $f : X \rightarrow Y$ we have the following implications:

f is perfect $\Rightarrow f$ is δ -perfect $\Rightarrow f$ is θ -perfect.

Proof. This is an immediate consequence of Theorem 3.8 and Theorem 4.7.

COROLLARY 4.9. A θ -continuous function of an almost-regular space into an almost-regular space is δ -perfect if and only if it is θ -perfect.

Proof. This is an immediate consequence of Theorem 4.5 and Theorem 4.7.

COROLLARY 4.10. Let X and Y be regular spaces. Then, for a continuous function $f: X \rightarrow Y$, the following are equivalent:

- (a) f is perfect.
- (b) f is δ -perfect.
- (c) f is θ -perfect.

Proof. This follows from Corollary 3.9 and Corollary 4.9.

References

- [1] D. A. CARNAHAN (1972) Locally nearly-compact spaces, "Boll. Un. Mat. Ital.", (4), 6, 146-153.
- [2] R. F. DICKMAN, JR. and J. R. PORTER (1977) θ-perfect and θ-absolutely closed functions, « Illinois J. Math. », 21, 42-60.
- [3] S. FOMIN (1943) Extensions of topological spaces, «Ann. Math.», 44, 471-480.
- [4] T. NOIRI A generalization of perfect functions, « J. London Math. Soc. » (to appear).
- [5] T. NOIRI (1974) Remarks on locally nearly-compact spaces, "Boll. Un. Mat. Ital.", (4), 10, 36-43.
- [6] T. NOIRI (1975) A note on locally nearly-compact spaces, "Boll. Un. Mat. Ital.", (4), 12, 374-380.
- [7] M. K. SINGAL and S. P. ARVA (1969) On almost-regular spaces, «Glasnik Mat. », 4 (24), 89-99.
- [8] N. V. VELITKO (1968) H-closed topological spaces, «Amer. Math. Soc. Transl.», (2), 78, 103-118.
- [9] G. T. WHYBURN (1965) Directed families of sets and closedness of functions, « Proc. Nat. Acad. Sci. U.S.A. », 54, 688–692.

492