ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

T.O. ADEWOYE

An approximation theorem for semigroups of operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.5, p. 334–337. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_5_334_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi funzionale. — An approximation theorem for semigroups of operators. Nota di T.O. ADEWOYE^(*), presentata^(**) dal Socio G. SANSONE.

RIASSUNTO. — Se G è un gruppo abeliano compatto; se C (G) è lo spazio di Banach dalle funzioni continue e assolutamente integrabili; se (T $(\xi): \xi > 0$) un operatore limitato su C (G); allora per $\xi \to 0$ sussiste una limitazione per $||T(\xi)f - f||$.

I. INTRODUCTION

Let G be a compact abelian group with character group \hat{G} , C (G) and L_1 (G) respectively the usual Banach spaces of continuous and absolutely integrable complex-valued functions on G, and let X denote an arbitrary, but fixed, member of the set {C (G), L_1 (G)}. Let U and V be subsets of X. A complex-valued function Φ on \hat{G} is called a (U,V)-multiplier if given $f \in U$, there exists $g \in V$ such that $\hat{g}(\sigma) = \Phi(\sigma) \hat{f}(\sigma)$ for all $\alpha \in \hat{G}$. [Here \hat{f} denotes the Fourier transform of f, for each $f \in X$].

Now, let v be a complex-valued function on \hat{G} such that, for each $\xi > 0$, $e^{\xi v}$ is an (X, X)-multiplier. We associate with each $\xi > 0$ an operator T (ξ) on X, defined by

(I.I)
$$[T(\xi)f]^{\hat{}}(\sigma) = e^{\xi v(\sigma)} \hat{f}(\sigma)$$

for all $f \in X$ and $\sigma \in \hat{G}$. We investigate, in this paper, the degree of approximation of the identity operator T (*o*) by the operator T (ξ) for small values of the parameter ξ , i.e. the order of magnitude of $||T(\xi)f - f||$, as a function ξ . Our result generalises to compact abelian groups a portion of Hille and Phillips' result ([1], Theorem 20.6.1], proved for the circle group. Such results concerning approximation of the identity are of interest for applications to the theory of summability and singular integrals [(2], [3]).

2. PRELIMINARIES

We state a few definitions (explained in detail in [1]) concerning semigroup of operators on a Banach space.

2.1. DEFINITION. Let X be a complex Banach space and let B(X) be the complex Banach algebra of all continuous linear operator on X. For

(*) This paper contains a portion of the Author's Ph. D. thesis supervised by Professor Olubummo, to whom the author is deeply grateful.

(**) Nella seduta dell'8 maggio 1976.

 $\xi > 0$, let T(ξ) be an operator in B(X). The collection $\mathscr{I} = \{T(\xi) : \xi > 0\}$ is said to be a semigroup of operators on X if

(2.1)
$$T(\xi_1 + \xi_2) = T(\xi_1) T(\xi_2)$$

for all ξ_1 , $\xi_2 > 0$, i.e. T ($\xi_1 + \xi_2$) $x = T(\xi_1) [T(\xi_2) x]$ for all $x \in X$ and ξ_1 , $\xi_2 > 0$.

As X may carry the weak, strong or uniform operator topology the continuity or measurability of the operators T (ξ) is defined relative to the topology on X, for instance, \mathscr{I} is said to be strongly continuous if

(2.2)
$$\lim_{\xi \to \xi_0} \| T(\xi) x - T(\xi_0) x \| = 0$$

for all $x \in X$ and all $\xi_0 > 0$.

The infinitesimal operator A_0 of \mathscr{I} is defined by

(2.3)
$$A_0 x = \lim_{\xi \to 0^+} \frac{I}{\xi} [T(\xi) x - x]$$

for all $x \in X$ for which this limit exists. The operator A_0 is in general not bounded; however, $D(A_0)$, the domain of A_0 is dense in $X_0 = \{T(\xi) x : x \in X, \xi > 0\}$. Moreover, A_0 is in general not closed, its closure A, when it exists, is called the infinitesimal generator of \mathscr{I} .

2.2. DEFINITION. Let $\mathscr{I} = \{T \{\xi\} : \xi > 0\}$ be a strongly continuous semigroup of bounded linear operators on X. \mathscr{I} is said to be of class (I, C₁), ([I], p. 322), if

(i)
$$\int_{0}^{1} \|T(\xi)\| d\xi < \infty$$

and

(ii)
$$\lim_{\eta \to 0^+} \frac{1}{\eta} \int_0^{\eta} T(\xi) x \, d\xi = x$$

in norm, for each $x \in X$.

For the basic classes of semigroups of operators on a Banach space, see 10.6 of [1].

3. Now, let X be an arbitrary, but fixed, member of $\{C(G), L_1(G)\}$ as in the introduction.

3.1. DEFINITION. Let J be a subset of \hat{G} . The linear extension of J, denoted by \mathscr{L}_J , is the set of all finite linear combinations of elements of J. $\overline{\mathscr{L}}_J$, the closure of \mathscr{L}_J in the norm of X, is called the closed linear extension of J.

Since the linear extension of J is the smallest subspace of X containing all the characters $\chi_{\sigma}, \sigma \in J$, we see that $\overline{\mathscr{D}}_J$ is identifiable with the set of trigonometric polynomials on J ([4], (27, 8)). Moreover, if $f \in X$ is such that $\hat{f}(\sigma) = \sigma$ for all $\sigma \notin J$, then ([4], p. 98) there exists a sequence $\{t_n\}$ in $\overline{\mathscr{D}}_J$, such that $|| f - t_n || \to \sigma$. Since $\overline{\mathscr{D}}_J$ is closed this will mean that $f \in \overline{\mathscr{D}}_J$.

We are now in a position to state our approximation theorem which generalises to compact abelian groups a portion of the result by Hille and Phillips ([1], Theorem 20.6.1), proved for the circle group.

3.2. THEOREM. Let G be a compact abelian group and let X be an arbitrary, but fixed, member of the set $\{C(G), L_1(G)\}$. Suppose the operator $T(\xi), \xi > 0$, on X, defined by (1.1) satisfies

(i)
$$\int_{0}^{1} \| T(\xi) \| d\xi < \infty$$

and

(ii)
$$\lim_{\eta \to 0^+} \frac{1}{\eta} \int_0^{\eta} T(\xi) f d\xi = f, \quad for \ each \ f \in X.$$

Then, (a) Let $J = \{\sigma \in \hat{G} : v(\sigma) = 0\}$. We have

(3.1)
$$\lim_{\xi \to 0^+} \inf \frac{1}{\xi} \| \mathbf{T}(\xi) f - f \| = 0$$

iff f belongs to the closed linear extension of I,

(b) Let A be the infinitesimal generator of $\{T(\xi): \xi > 0\}$. For each $f \in D(A)$, the domain of A we have

(3.2)
$$T(\xi) f - f = \xi (Af + o(I))$$

for all $\xi > 0$;

(c) $D(A) = \{f \in X : v\hat{f} = \hat{g} \text{ for some } g \in X\}, \text{ i.e. } v \text{ is a } (D(A), X)-multiplier.}$

Proof (a). By Theorem 1.2 of [5], {T (ξ): $\xi > 0$ } is a strongly continuous semigroup of operators on X. The assumptions (i) and (ii) of the theorem imply that \mathscr{I} is of class (1, C₁). Suppose $f \in X$ satisfies (3.1), by Theorem 10.7.2 of [1], T (ξ) f = f for all $\xi > 0$. Conversely if $f \in X$ is such that T (ξ) f = f for all $\xi > 0$, then it is clear that f satisfies (3.1). Thus f satisfies $\lim_{\xi \to 0^+} \inf \frac{1}{\xi} ||T(\xi)f - f|| = 0$ iff T (ξ) f = f for all $\xi > 0$.

Next, we show that $T(\xi)f = f$ for all $\xi > 0$ iff for each $\sigma \in \hat{G}$, $e^{\xi_{\Psi}(\sigma)} \hat{f}(\sigma)$ is independent of ξ . Suppose $T(\xi)f = f$ for all $\xi > 0$. Then for each $\sigma \in \hat{G}$, we have $[T(\xi)f](\sigma) = \hat{f}(\sigma)$. Since $\hat{f}(\sigma)$ is independent of ξ , it follows that

 $e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$ is independent of ξ also. Conversely, suppose that for each $\sigma \in \hat{G}$, $e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$ is independent of ξ . Then $e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma) = e^{2\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$, implying that $\hat{f}(\sigma) = e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$ for each $\sigma \in G$. We then have $[\mathbf{T}(\xi)f](\sigma) = \hat{f}(\sigma)$ for each $\sigma \in \hat{G}$, which implies $\mathbf{T}(\xi) f = f$ for all $\xi > 0$. The proof of (a) of the theorem will be complete if we show that an $f \in \mathbf{X}$ belongs to the closed linear extension of J iff for each $\sigma \in \hat{G}, e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$ is independent of ξ . So, suppose that f is in the closed linear extension of J; then there is a sequence $\{f_n\}$ in \mathscr{L}_J such that $||f_n - f|| \to 0$. Let $\sigma \in \hat{G}$. If $\sigma \in J$, then $\mathbf{v}(\sigma) = 0$ and hence $e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma) = \hat{f}(\sigma) |\leq |\hat{f}(\sigma) - \hat{f}_n(\sigma)| + |\hat{f}_n(\sigma)| \leq |\|f - f_n\|$ implies that $||\hat{f}(\sigma)| = 0$. It follows that $\hat{f}(\sigma) = 0$ for each $\sigma \in \hat{G}$, $e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$ is independent of ξ . If $\sigma \notin J$, then $\phi \notin J$ and $e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma) = 0$ is again independ of ξ . Conversely suppose $f \in X$ is such that, for each $\sigma \in \hat{G}, e^{\xi_{\mathbf{v}(\sigma)}} \hat{f}(\sigma)$ is independent of ξ . If $\sigma \notin J$, then $\mathbf{v}(\sigma) \neq 0$, so we must have $\hat{f}(\sigma) = 0$. By the remarks following Definition 3.1, f must then belong to the closed linear extension of J.

(b) Let A_0 be the infinitesimal operator of $\mathscr{I} = \{T(\xi) : \xi > 0\}$. Since \mathscr{I} is of class (I, C_1), Theorem 10.7.2 of [I] implies that for each $f \in D(A_0)$, we have $T(\xi)f - f = \xi (A_0f + 0(I))$, for all $\xi > 0$. But since \mathscr{I} is of class (I, C_1), A_0 is closed ([I], Theorem 10.5.3), hence $A_0 = A$, the infinitesimal generator of \mathscr{I} . It follows that if $f \in D(A)$, then $T(\xi)f - f = \xi (Af + 0(I))$ for all $\xi > 0$.

(c) The fact that \mathscr{I} is of class (1, C₁) implies that \mathscr{I} is of class (A) ([1], Theorem 10.6.1). It now follows from Theorem 1.2 of [5] that $D(A) = \{f \in X : \nu \hat{f} = \hat{g} \text{ for some } g \in X\}$, i.e. ν is a (D(A), X)-multiplier.

References

- [1] E. HILLE and R. PHILLIPS (1957) Functional Analysis and Semigroups, «Am. Math. Soc. Colloq. Publications», 31.
- [2] P. BUTZER (1957) Über den Approximations grad des Identitatsoperators durch Halbgruppen von linearen Operatoren and Anwendungen auf die Theorie der singularen Integrate, «Math. Annalen», 133, 410–425.
- [3] E. HILLE (1936) Notes on linear transformations, I, «Trans. Am. Math. Soc.», 39, 131-153.
- [4] E. HEWITT and K. ROSS (1970) Abstract Harmonic Analysis I and II, Springer-Verlag, New York.
- [5] A. OLUBUMMO and V. A. BABALOIA (1974) Semigroups of operators commuting with translations, «Colloquium Mathematicum », 31, 253-258.