ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

BRIAN FISHER

Common fixed points on complete metric spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.5, p. 310–313.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_5_310_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi matematica. — Common fixed points on complete metric spaces. Nota di BRIAN FISHER, presentata (*) dal Socio E. MARTI-NELLI a nome del compianto Socio B. SEGRE.

RIASSUNTO. — Si dimostra che, se S e T sono applicazioni di uno spazio metrico completo X in sè, con T continua, tale che

$$\rho(\mathrm{ST}x,\mathrm{TS}y) \leq c \max\{\rho(\mathrm{T}x,\mathrm{S}y),\rho(x,y)\}$$

per tutti gli x, y di X, dove $0 \le c < 1$, allora S ed T hanno un unico punto fisso comune.

The following theorem was proved in a paper by Ray, see [2]:

THEOREM I. If S and T are two mappings of the metric space X into itself such that

$$p(Sx, Ty) \leq cp(x, y)$$

for all x, y in X, where $0 \le c < 1$ and if for some x_0 in X the sequence $\{x_n\}$ consisting of the points

 $x_{2n+1} = Sx_{2n}$, $x_{2(n+1)} = Tx_{2n+1}$, $n = 0, 1, 2, \cdots$

has a subsequence $\{x_{n_k}\}$ convergent to a point z in X, then S and T have the unique common fixed point z.

It was shown in [1] that this theorem is an immediate consequence of the following theorem:

THEOREM 2. If S and T are two mappings of the metric space X into itself such that

$$\rho(Sx, Ty) \leq c\rho(x, y)$$

for all x, y in X, where $0 \le c < 1$, then S and T are identical contraction mappings.

We now prove a theorem for two mappings S and T which are not necessarily identical.

THEOREM 3. If S is a mapping and T is a continuous mapping of the complete metric space X into itself such that

$$\rho(\mathrm{ST}x,\mathrm{TS}y) \leq c \max \{\rho(\mathrm{T}x,\mathrm{S}y),\rho(x,y)\}$$

for all x, y in X, where $0 \le c < 1$, then S and T have a unique common fixed point z.

(*) Nella seduta del 18 novembre 1977.

$$\begin{array}{l} Proof. \ \ \text{Let } x \ \ \text{be an arbitrary point in } X. \ \ \text{Then} \\ \rho\left((\text{ST})^{n} x \ , \text{T} \ (\text{ST})^{n} x\right) \leq c \ \max\left\{\rho\left(\text{T} \ (\text{ST})^{n-1} x \ , \ (\text{ST})^{n} x\right) \ , \ \rho\left((\text{ST})^{n-1} x \ , \ \text{T} \ (\text{ST})^{n-1} x\right)\right\} \\ \leq c \ \max\left\{c\rho\left((\text{ST})^{n-1} x \ , \ \text{T} \ (\text{ST})^{n-1} x\right) \ , \ c\rho\left(\text{T} \ (\text{ST})^{n-2} x \ , \ (\text{ST})^{n-1} x\right) \ , \ \rho\left((\text{ST})^{n-1} x \ , \ \text{T} \ (\text{ST})^{n-1} x\right)\right\} \\ = c \ \max\left\{\rho\left((\text{ST})^{n-1} x \ , \ \text{T} \ (\text{ST})^{n-1} x\right) \ , \ c\rho\left(\text{T} \ (\text{ST})^{n-2} x \ , \ (\text{ST})^{n-1} x\right) \right\} \\ \leq c^{2} \ \max\left\{\rho\left((\text{ST})^{n-1} x \ , \ \text{T} \ (\text{ST})^{n-1} x\right) \ , \ \rho\left((\text{ST})^{n-2} x \ , \ (\text{ST})^{n-2} x\right) \right\} \\ \leq c^{n} \ \max\left\{\rho\left(\text{T} \ (\text{ST})^{n-2} x \ , \ (\text{ST})^{n-1} x\right) \ , \ \rho\left(x \ , \ \text{T}x\right)\right\}. \end{array}$$

Similarly, we have

$$\rho(\mathrm{T}(\mathrm{ST})^n x, (\mathrm{ST})^{n+1} x) \leq c^n \max \{\rho(\mathrm{ST}x, \mathrm{TST}x), \rho(\mathrm{T}x, \mathrm{ST}x)\}.$$

Since c < I, it follows that the sequence

$$\{x, Tx, STx, \cdots, (ST)^n x, T (ST)^n x, \cdots\}$$

is a Cauchy sequence in the complete metric space X and so has a limit z in X. Thus

$$\lim_{n \to \infty} (\mathrm{ST})^n x = \lim_{n \to \infty} \mathrm{T} \, (\mathrm{ST})^n x = z$$

and since T is continuous it follows that Tz = z so that z is a fixed point of T.

We now have

$$\begin{split} \rho\left(\mathrm{T}\;(\mathrm{ST})^n\,x\,,\,\mathrm{Sz}\right) &= \rho\left(\mathrm{T}\;(\mathrm{ST})^n\,x\,,\,\mathrm{STz}\right) \\ &\leq c\,\max\left\{\rho\left((\mathrm{ST})^n\,x\,,\,\mathrm{Tz}\right),\,\rho\left(\mathrm{T}\;(\mathrm{ST})^{n-1}\,x\,,\,z\right)\right\} \end{split}$$

and on letting n tend to infinity it follows that

$$\rho(z, Sz) \leq c \max \{ \rho(z, Tz), \rho(z, z) \} = 0.$$

Thus Sz = z and so z is a common fixed point of S and T.

Now suppose that there exists a second common fixed point z'. Then

$$\rho(z, z') = \rho(STz, TSz')$$

$$\leq c \max \{ \rho(Tz, Sz'), \rho(z, z') \}$$

$$= c\rho(z, z')$$

and, since c < 1, it follows that z = z' and so the common fixed point of S and T is unique. This completes the proof of the theorem.

We now note that the mappings S and T in Theorem 1 are not necessarily equal. This is easily seen by considering a complete metric space X containing at least two points. Define a continuous mapping T on X by

 $\mathbf{T}x = x$

for all x in X and define a mapping S on X by

Sx = z

for all x in X, where z is a fixed point in X. Then

STx = TSx = z

for all x in X and so the conditions of the theorem are satisfied with
$$c = \frac{1}{2}$$
, but S is not equal to T.

This example also shows that the mappings S and T can possibly have other fixed points although a common fixed point has to be unique.

The condition that T has to be continuous is also necessary. This can be seen by letting X be the set of real numbers x with $0 \le x \le 1$. Define a metric by

$$\rho(x, y) = |x - y|$$

for all x, y in X and define discontinuous mappings S = T on X by

T (o) = 1 , Tx =
$$\frac{1}{2}x$$
, for $x \neq o$.

X is complete and

 $\rho(\mathrm{ST}x,\mathrm{TS}y) \leq \frac{1}{2}\max\left\{\rho(\mathrm{T}x,\mathrm{S}y),\rho(x,y)\right\}$

for all x, y in X but S and T have no fixed point.

By noting that

$$b\rho(\mathrm{T}x,\mathrm{S}y) + c\rho(x,y) \leq \max\{\rho(\mathrm{T}x,\mathrm{S}y),\rho(x,y)\}$$

where $0 \le b$, c, $b + c \le 1$, we have the following theorem:

THEOREM 4. If S is a mapping and T is a continuous mapping of the complete metric space X into itself such that

$$\rho$$
 (STx, TSy) $\leq b\rho$ (Tx, Sy) + $c\rho$ (x, y)

for all x, y in X, where $0 \le b$, c, b + c < 1, then S and T have a unique common fixed point z.

On putting S = T in Theorem 3 and Theorem 4 we have the following two theorems:

THEOREM 5. If T is a continuous mapping of the complete metric space X into itself such that

$$\rho(\mathrm{T}^{2} x, \mathrm{T}^{2} y) \leq c \max \{\rho(\mathrm{T} x, \mathrm{T} y), \rho(x, y)\}$$

for all x, y in X, where $0 \le c < 1$, then T has a unique fixed point z.

THEOREM 6. If T is a continuous mapping of the complete metric space X into itself such that

$$\rho(\mathrm{T}^{2} x, \mathrm{T}^{2} y) \leq b\rho(\mathrm{T} x, \mathrm{T} y) + c\rho(x, y)$$

for all x, y in X, where $0 \le b$, c, b + c < I, then T has a unique fixed point z.

The last example shows that the condition that T be continuous in these two theorems is still necessary.

In the final two theorems the two mappings S and T can both be discontinuous. First of all we have

THEOREM 7. If S and T are mappings of the metric space X into itself such that

$$\rho\left(\mathrm{ST}x\,,\,\mathrm{TS}y\right)\leq c\max\left\{\rho\left(\mathrm{T}x\,,\,\mathrm{S}y\right)\,,\,\rho\left(x\,,\,y\right)\right\}$$

for all x, y in X, where $0 \le c < 1$ and if Sx = Tx for some x in X, then $S^n x = T^n x$ for $n = 1, 2, \cdots$

Proof. Suppose that Sx = Tx for some x in X. Assuming that $S^r x = T^r x$ for $r = 1, 2, \dots, n$ and some n, we have

$$\rho\left(\mathrm{ST}^{n}x\,,\,\mathrm{TS}^{n}x
ight)\leq c\max\left\{
ho\left(\mathrm{T}^{n}x\,,\,\mathrm{S}^{n}x
ight),\,
ho\left(\mathrm{T}^{n-1}x\,,\,\mathrm{S}^{n-1}x
ight)
ight\}=0$$

by our assumption. It follows that

$$ST^n x = TS^n x$$

or

$$S^{n+1}x = T^{n+1}x$$

since $S^n x = T^n x$ by our assumption. The result now follows by induction. Finally we have

THEOREM 8. If S and T are mappings of the metric space X into itself such that

$$\rho(\mathrm{ST}x,\mathrm{TS}y) \leq b\rho(\mathrm{T}x,\mathrm{S}y) + c\rho(x,y)$$

for all x, y in X, where $0 \le b$, c, b + c < 1 and if Sx = Tx for some x in X, then $S^n x = T^n x$ for $n = 1, 2, \cdots$

References

[1] B. FISHER - On contraction mappings, «Colloq. Math.», to appear.
[2] B. K. RAY (1976) - Contraction mappings and fixed points, «Colloq. Math.», 35, 223-234.

21. - RENDICONTI 1977, vol. LXIII, fasc. 5.