Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Christos G. Philos

A n oscillatory and asymptotic classification of the solutions of differential equations with deviating arguments

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 63 (1977), n.3-4, p. 195-203.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_63_3-4_195_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Abstract

Equazioni differenziali ordinarie. - An oscillatory and asymptotic classification of the solutions of differential equations with deviating arguments (*). Nota di Christos G. Philos, presentata (**) dal Socio G. Sansone.

Abstract

Riassunto. - In questa Nota, estendendo alcuni risultati ottenuti recentemente da Staikos e da Sficas, si classificano le soluzioni di una classe di equazioni differenziali ordinarie con argomenti deviati, rispetto al loro carattere oscillatorio e al loro comportamento per $t \rightarrow \infty$.

Let $r_{i}(i=0,1, \cdots, n)$ be positive continuous functions on the interval $\left[t_{0}, \infty\right)$. For a real-valued function h on $[\mathrm{T}, \infty), \mathrm{T} \geqq t_{0}$, and any $\mu=0, \mathrm{I}, \cdots, n$ we define the μ-th r-derivative of h by the formula

$$
\mathrm{D}_{r}^{(\mu)} h=r_{\mu}\left(r_{\mu-1}\left(\cdots\left(r_{1}\left(r_{0} h\right)^{\prime}\right)^{\prime} \cdots\right)^{\prime}\right)^{\prime},
$$

when obviously we have

$$
\mathrm{D}_{r}^{(0)} h=r_{0} h \quad \text { and } \quad \mathrm{D}_{r}^{(i)} h=r_{i}\left(\mathrm{D}_{r}^{(i-1)} h\right)^{\prime} \quad(i=1,2, \cdots, n) .
$$

Moreover, if $\mathrm{D}_{r}^{(n)} h$ is defined on [T, ∞), then h is said to be n-times r-differentiable. We note that in the case where $r_{0}=r_{1}=\cdots=r_{n}=1$ the above notion of r-differentiability specializes to the usual one.

Now, we consider the n-th order ($n>1$) differential equation with deviating arguments of the form
(E, δ)

$$
\left(\mathrm{D}_{r}^{(n)} x\right)(t)+\delta \mathrm{F}\left(t ; x\left[g_{1}(t)\right], x\left[g_{2}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)=0,
$$

where $r_{n}=\mathrm{I}$ and $\delta= \pm \mathrm{I}$. The continuity of the real-valued functions F on $\left[t_{0}, \infty\right) \times \mathbf{R}^{m}$ and $g_{j}(j=\mathrm{I}, 2, \cdots, m)$ on $\left[t_{0}, \infty\right)$ as well as sufficient smoothness to guarantee the existence of solutions of (E, δ) on an infinite subinterval of $\left[t_{0}, \infty\right)$ will be assumed without mention. In what follows the term " solution" is always used only for such solutions $x(t)$ of (E, δ) which are defined for all large t. The oscillatory character is considered in the usual sense, i.e. a continuous real-valued function which is defined on an interval of the form [T, ∞) is called oscillatory if it has no last zero, and otherwise it is called nonoscillatory.
(*) This paper is a part of the Author's Doctoral Thesi; submitted to the School of Physics and Mathematics of the University of Ioannina.
(**) Nella seduta del 23 giugno 1977.

Furthermore, conditions (i) and (ii) below are assumed to hold throughout the paper:
(i) For every $j=\mathrm{I}, 2, \cdots, m$

$$
\lim _{t \rightarrow \infty} g_{j}(t)=\infty .
$$

(ii) For every $t \geqq t_{0}$,

$$
\mathrm{F}(t ; o, o, \cdots, o)=0
$$

and, moreover, $\mathrm{F}(t ; y)$ is nondecreasing with respect to y in \mathbf{R}^{m}.
Note. The order in \mathbf{R}^{m} is considered in the usual sense, i.e.

$$
y \leqq z \Longleftrightarrow(\forall j=1,2, \cdots, m) y_{j} \leqq z_{j} .
$$

In this paper we shall classify all solutions of the differential equation (E, δ) with respect to their oscillatory character and to their behaviour at ∞. For this purpose, $\mathrm{S}(\delta)$ will denote the set of all solutions of the equation (E, δ) and $\mathrm{S}^{\sim}(\delta), \mathrm{S}^{0}(\delta), \mathrm{S}_{1}^{+\infty}(\delta), \mathrm{S}_{2}^{+\infty}(\delta), \mathrm{S}_{1}^{-\infty}(\delta), \mathrm{S}_{2}^{-\infty}(\delta), \mathrm{S}^{+\infty}(\delta), \mathrm{S}^{-\infty}(\delta)$ subsets of $\mathrm{S}(\delta)$ defined as follows:
(a) $\mathrm{S}^{\sim}(\delta)$ is the set of all oscillatory $x \in \mathrm{~S}(\delta)$.
(b) $\mathrm{S}^{0}(\delta)$ is the set of all nonoscillatory $x \in \mathrm{~S}(\delta)$ with

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(i)} x\right)(t)=0 \quad \text { monotonically } \quad(i=\mathrm{o}, \mathrm{I}, \cdots, n-\mathrm{I}) .
$$

(c) $\mathrm{S}_{1}^{+\infty}(\delta)$ is the set of all $x \in \mathrm{~S}(\delta)$ for which there exists an integer $k, \circ \leqq k \leqq n-\mathrm{I}$, with $n+k$ odd and such that:
(P_{1}) $\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(i)} x\right)(t)=\infty \quad$ for every $\quad i=0,1, \cdots, k$.
$\left(\mathrm{P}_{2}\right) \quad$ If $k \leqq n-2$, then $\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(k+1)} x\right)(t) \quad$ exists in \mathbf{R}.
$\left(\mathrm{P}_{3}\right)$ If $k \leqq n-3$, then for every $i=k+2, \cdots, n-\mathrm{I}$

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(i)} x\right)(t)=0
$$

$\left(\mathrm{D}_{r}^{(i)} x\right)(t) \neq 0$
for all large t,
$\left(\mathrm{D}_{r}^{(i)} x\right)(t)\left(\mathrm{D}_{r}^{(i+1)} x\right)(t) \leqq 0 \quad$ for all large t.
(d) $\mathrm{S}_{2}^{+\infty}(\delta)$ is the set of all $x \in \mathrm{~S}(\delta)$ which possess properties $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$ for some integer $k, \circ \leqq k \leqq n-\mathrm{I}$, with $n+k$ even.
(e) $\mathrm{S}_{1}^{-\infty}(\delta)$ is the set of all $x \in \mathrm{~S}(\delta)$ for which the function $-x$ possesses properties $\left(\mathrm{P}_{\mathbf{1}}\right)-\left(\mathrm{P}_{\mathbf{3}}\right)$ for some integer $k, \mathrm{o} \leqq k \leqq n-\mathrm{I}$, with $n+k$ odd.
(f) $\mathrm{S}_{2}^{-\infty}(\delta)$ is the set of all $x \in \mathrm{~S}(\delta)$ for which the function $-x$ possesses properties $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$ for some integer $k, \mathrm{o} \leqq k \leqq n-\mathrm{I}$, with $n+k$ even.
(g) $\quad \mathrm{S}^{+\infty}(\delta)=\mathrm{S}_{1}^{+\infty}(\delta) \cup \mathrm{S}_{2}^{+\infty}(\delta)$.
(h) $\mathrm{S}^{-\infty}(\delta)=\mathrm{S}_{1}^{-\infty}(\delta) \cup \mathrm{S}_{2}^{-\infty}(\delta)$.

We introduce, now, the main conditions which will be used in the classification of the solutions of the equation (E, δ).
(C_{1}) For every $i=1,2, \cdots, n-1$

$$
\int^{\infty} \frac{\mathrm{d} t}{r_{i}(t)}=\infty
$$

$\left(\mathrm{C}_{2}\right)$ For every nonzero constant \subset there exists an integer $\lambda, 0 \leqq \lambda \leqq$ $\leqq n-\mathrm{I}$, such that
$\left\{\begin{array}{c}\int^{\infty}\left|\mathrm{F}\left(t ; \frac{c}{r_{0}\left[g_{1}(t)\right]}, \frac{c}{r_{0}\left[g_{2}(t)\right]}, \cdots, \frac{c}{r_{0}\left[g_{m}(t)\right]}\right)\right| \mathrm{d} t=\infty, \quad \text { if } \lambda=n-\mathrm{I} \\ \int_{r_{\lambda+1}\left(s_{\lambda+1}\right)}^{\infty} \frac{1}{\left.\cdots \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{\infty} \right\rvert\, \mathrm{F}\left(s ; \frac{c}{r_{0}\left[g_{1}(s)\right]}, \frac{c}{r_{0}\left[g_{2}(s)\right]}, \cdots\right.} \\ \left.\cdots, \frac{c}{r_{0}\left[g_{m}(s)\right]}\right) \mid \mathrm{d} s \mathrm{~d} s_{n-1} \cdots \mathrm{~d} s_{\lambda+1}=\infty, \quad \text { if } \lambda<n-\mathrm{I} .\end{array}\right.$
$\left(\mathrm{C}_{3}\right)$ For every nonzero constant c,

$$
\begin{aligned}
\int^{\infty} \left\lvert\, \mathrm{F}\left(t ; \frac{c}{r_{0}\left[g_{1}(t)\right]} \int_{i_{0}}^{g_{1}(t)} \frac{\mathrm{d} s}{r_{1}(s)}, \frac{c}{r_{0}\left[g_{2}(t)\right]} \int_{i_{0}(t)}^{g_{2}(t)} \frac{\mathrm{d} s}{r_{1}(s)}, \cdots\right.\right. \\
\left.\cdots, \frac{c}{r_{0}\left[g_{m}(t)\right]} \int_{i_{0}}^{g_{m}(t)} \frac{\mathrm{d} s}{r_{1}(s)}\right) \mid \mathrm{d} t=\infty .
\end{aligned}
$$

The oscillatory and asymptotic behavior of the solutions x of the differential equation (E, δ) with $x(t)=\mathrm{O}\left(\mathrm{I} / r_{0}(t)\right)$ as $t \rightarrow \infty$ is well described by the following theorem due to the Author [r].

Theorem o. Consider the differential equation (E, δ) subject to the conditions (i), (ii), (C_{1}) and $\left(\mathrm{C}_{2}\right)$. Then every solution x of the equation $(\mathrm{E},+\mathrm{I})$ [respectively, $(\mathrm{E},-\mathrm{I})$] with $x(t)=\mathrm{O}\left(\mathrm{I} / r_{0}(t)\right)$ as $t \rightarrow \infty$ for n even [resp. odd] is oscillatory, while for n odd [resp.even] is either oscillatory or such that

$$
\lim _{t \rightarrow \infty}\left(\mathcal{D}_{r}^{(i)} x\right)(t)=0 \quad \text { monotonically } \quad(i=0, \mathrm{I}, \cdots, n-\mathrm{I})
$$

In order to obtain our first result (Theorem i) we need the following elementary lemma which has been proved by the Author in [1].

LEmma. Let h be an n-times r-differentiable function on $[\mathrm{T}, \infty), \mathrm{T} \geqq t_{0}$, such that $\mathrm{D}_{r}^{(n)} h$ is of constant sign on $[\mathrm{T}, \infty)$. Moreover, let $\mu, \circ \leqq \mu \leqq n-2$, be an integer so that

$$
\int^{\infty} \frac{\mathrm{d} t}{r_{\mu+1}(t)}=\infty
$$

If $\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(\mu)} h\right)(t)$ is finite, then

$$
\lim _{t \rightarrow \infty}\left(D_{r}^{(\mu+1)} h\right)(t)=0 .
$$

Theorem 1 . Consider the differential equation (E, δ) subject to the conditions (i), (ii), $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$. Then for n even $[$ resp. odd $]$ the solutions of the equation $(\mathrm{E},+\mathrm{I})[r e s p$. $(\mathrm{E},-\mathrm{I})]$ admit the decomposition

$$
\begin{gathered}
\mathrm{S}(+\mathrm{I})=\mathrm{S}^{\sim}(+\mathrm{I}) \cup \mathrm{S}^{+\infty}(+\mathrm{I}) \cup \mathrm{S}^{-\infty}(+\mathrm{I}) \\
{\left[\operatorname{resp} . \mathrm{S}(-\mathrm{I})=\mathrm{S}^{\sim}(-\mathrm{I}) \cup \mathrm{S}^{0}(-\mathrm{I}) \cup \mathrm{S}^{+\infty}(-\mathrm{I}) \cup \mathrm{S}^{-\infty}(-\mathrm{I})\right]}
\end{gathered}
$$

while for n odd [resp. even], the decomposition

$$
\begin{aligned}
& S(+1)=S^{\sim}(+1) \cup S^{0}(+1) \cup S^{+\infty}(+1) \cup S^{-\infty}(+1) \\
& {\left[\text { resp. } S(-1)=S^{\sim}(-1) \cup S^{+\infty}(-1) \cup S^{-\infty}(-\mathrm{I})\right] .}
\end{aligned}
$$

Proof. Let x be a nonoscillatory solution on an interval $\left[\mathrm{T}_{0}, \infty\right), \mathrm{T}_{0} \geqq t_{0}$, of the equation (E, δ) with $\limsup _{t \rightarrow \infty}\left|\left(\mathrm{D}_{r}^{(0)} x\right)(t)\right|=\infty$. Without loss of generality, we suppose that $x(t) \neq 0$ for all $t \geqq \mathrm{~T}_{0}$. Next, by (i), we choose a $T \geqq T_{0}$ so that

$$
g_{j}(t) \geqq \mathrm{T}_{0} \quad \text { for every } \quad t \geqq \mathrm{~T} \quad(j=\mathrm{I}, 2, \cdots, m) .
$$

Then, in view of (ii), equation (E, δ) yields

$$
\begin{aligned}
-\delta x(t)\left(\mathrm{D}_{r}^{(n)} x\right)(t) & =x(t) \mathrm{F}\left(t ; x\left[g_{1}(t)\right], x\left[g_{2}(t)\right], \cdots, x\left[g_{m}(t)\right]\right) \geqq \\
& \geqq x(t) \mathrm{F}(t ; \mathrm{o}, \mathrm{o}, \cdots, \mathrm{o})=0
\end{aligned}
$$

for every $t \geqq \mathrm{~T}$. Thus $\mathrm{D}_{r}^{(n)} x$ is of constant sign on $[\mathrm{T}, \infty)$ and so the functions $\mathrm{D}_{r}^{(i)} x(i=1,2, \cdots, n-1)$ are also eventually of constant sign.

Now, we consider the following two possible cases:
Case I.

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(0)} x\right)(t)=\infty
$$

Let k be the greatest integer with $0 \leqq k \leqq n-\mathrm{I}$ and

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(i)} x\right)(t)=\infty \quad \text { for every } \quad i=0, \mathrm{I}, \cdots, k
$$

Obviously, if $k \leqq n-2$, then

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(k+1)} x\right)(t) \quad \text { exists } \quad \text { in } \mathbf{R}
$$

So, if $k \leqq n-3$, then, by Lemma, for every $i=k+2, \cdots, n-\mathrm{I}$

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(i)} x\right)(t)=0
$$

and consequently it is easy to see that

$$
\left(\mathrm{D}_{r}^{(i)} x\right)(t)\left(\mathrm{D}_{r}^{(i+1)} x\right)(t) \leqq 0 \quad \text { for all large } t .
$$

Finally, to derive that for $i=k+2, \cdots, n-1$.

$$
\left(\mathrm{D}_{r}^{(i)} x\right)(t) \neq 0 \quad \text { for all large } t
$$

it is enough to verify that $\left(\mathrm{D}_{r}^{(n)} x\right)(t)$ is not identically zero for all large t. To do this, we suppose that there exists a $\mathrm{T}_{1} \geqq \mathrm{~T}$ such that

$$
\left(\mathrm{D}_{r}^{(n)} x\right)(t)=0 \quad \text { for every } \quad t \geqq \mathrm{~T}_{\mathbf{1}}
$$

and we consider a positive constant c so that for every $t \geqq \mathrm{~T}_{\mathbf{0}}$

$$
\left(\mathrm{D}_{r}^{(0)} x\right)(t) \geqq c, \quad \text { i.e. } \quad x(t) \geqq \frac{c}{r_{0}(t)}
$$

Then, in view of (ii), from equation (E, δ) we obtain

$$
\begin{aligned}
\mathrm{o}=-\delta\left(\mathrm{D}_{r}^{(n)} x\right)(t) & =\mathrm{F}\left(t ; x\left[g_{1}(t)\right], x\left[g_{2}(t)\right], \cdots, x\left[g_{m}(t)\right]\right) \\
& \geqq \mathrm{F}\left(t ; \frac{c}{r_{0}\left[g_{1}(t)\right]}, \frac{c}{r_{0}\left[g_{2}(t)\right]}, \cdots, \frac{c}{r_{0}\left[g_{m}(t)\right]}\right) \\
& \geqq \mathrm{F}(t ; \mathrm{o}, \mathrm{o}, \cdots, o)=\mathrm{o}
\end{aligned}
$$

for all $t \geqq \mathrm{~T}_{\mathbf{1}}$. Therefore,

$$
\mathrm{F}\left(t ; \frac{c}{r_{0}\left[g_{1}(t)\right]}, \frac{c}{r_{0}\left[g_{2}(t)\right]}, \cdots, \frac{c}{r_{0}\left[g_{m}(t)\right]}\right)=0 \quad \text { for every } t \geqq \mathrm{~T}_{1}
$$

which contradicts $\left(\mathrm{C}_{2}\right)$.
Thus, x possesses properties $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$, i.e. $x \in \mathrm{~S}^{+\infty}(\delta)$.
Case 2.

$$
\lim _{t \rightarrow \infty}\left(D_{r}^{(0)} x\right)(t)=-\infty
$$

Let k be the greatest integer with $0 \leqq k \leqq n-\mathrm{I}$ and

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(i)} x\right)(t)=-\infty \quad \text { for every } \quad i=0,1, \cdots, k
$$

An argument similar to that used in Case I proves that the function $-x$ possesses properties $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$, which means that $x \in \mathrm{~S}^{-\infty}(\delta)$.

We have proved that, if $\hat{S}(\delta)$ is the set of all solutions x of the equation (E, δ) with $\quad \limsup _{t \rightarrow \infty}\left|\left(\mathrm{D}_{r}^{(0)} x\right)(t)\right|=\infty$,

$$
\hat{\mathrm{S}}(\delta)=\mathrm{S}^{\sim}(\delta) \cup \mathrm{S}^{+\infty}(\delta) \cup \mathrm{S}^{-\infty}(\delta)
$$

This proves the theorem, since, by Theorem o,

$$
\begin{array}{ll}
\bar{S}(+1)=S^{\sim}(+1) \quad \text { and } \bar{S}(-1)=S^{\sim}(-1) \cup S^{0}(-1), & \text { if } n \text { is even, } \\
\bar{S}(+1)=S^{\sim}(+1) \cup S^{0}(+1) \quad \text { and } \bar{S}(-1)=S^{\sim}(-1), & \text { if } n \text { is odd }
\end{array}
$$

where $\overline{\mathrm{S}}(\delta)$ is the set of all solutions x of the equation (E, δ) with $x(t)=\mathrm{O}\left(\mathrm{I} / r_{0}(t)\right)$ as $t \rightarrow \infty$.

Theorem 2. Consider the differential equation ($\mathrm{E},+\mathrm{I}$) subject to the conditions (i), (ii), ($\left.\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$. Then for n even the solutions of the equation ($\mathrm{E},+\mathrm{I}$) admit the decomposition

$$
S(+1)=S^{\sim}(+1) \cup S_{2}^{+\infty}(+1) \cup S_{2}^{-\infty}(+1)
$$

while for n odd, the decomposition

$$
S(+1)=S^{\sim}(+1) \cup S^{0}(+1)
$$

Proof. Let $x \in \mathrm{~S}^{+\infty}(+\mathrm{I})$ and k be the associated integer. The function x is a solution on an interval $\left[\mathrm{T}_{0}, \infty\right), \mathrm{T}_{0}>t_{0}$, of the equation ($\mathrm{E},+\mathrm{I}$). By property $\left(\mathrm{P}_{1}\right), x$ is eventually positive. Without loss of generality, we assume that $x(t)>0$ for every $t \geqq \mathrm{~T}_{0}$.

Now, we suppose that $k \geqq \mathrm{I}$. Then, by property (P_{1}), we have

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(0)} x\right)(t)=\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(1)} x\right)(t)=\infty
$$

and consequently, using the Hospital rule, we can derive that

$$
\lim _{t \rightarrow \infty} \frac{\left(\mathrm{D}_{r}^{(0)} x\right)(t)}{\int_{t_{0}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)}}=\infty
$$

So, there exists a positive constant c such that for every $t \geqq \mathrm{~T}_{0}$

$$
\left(\mathrm{D}_{r}^{(0)} x\right)(t) \geqq c \int_{i_{0}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)}, \text { i.e. } x(t) \geqq \frac{c}{r_{0}(t)} \int_{i_{0}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)}
$$

Thus, if, by (i), $T \geqq T_{0}$ is chosen so that

$$
g_{j}(t) \geqq \mathrm{T}_{0} \quad \text { for every } \quad t \geqq \mathrm{~T} \quad(j=\mathrm{I}, 2, \cdots, m),
$$

then, in view of (ii), from equation ($\mathrm{E},+\mathrm{I}$) we obtain

$$
\begin{aligned}
& -\left(\mathrm{D}_{r}^{(n-1)} x\right)(t)+\left(\mathrm{D}_{r}^{(n-1)} x\right)(\mathrm{T})= \\
& =\int_{\mathrm{T}}^{t} \mathrm{~F}\left(s ; x\left[g_{1}(s)\right], x\left[g_{2}(s)\right], \cdots, x\left[g_{m}(s)\right]\right) \mathrm{d} s \\
& \geqq \int_{\mathrm{T}}^{t} \mathrm{~F}\left(s ; \frac{c}{r_{0}\left[g_{1}(s)\right]} \int_{t_{0}}^{g_{1}(s)} \frac{\mathrm{d} u}{r_{1}(u)}, \frac{c}{r_{0}\left[g_{2}(s)\right]} \int_{i_{0}}^{g_{2}(s)} \frac{\mathrm{d} u}{r_{1}(u)}, \cdots\right. \\
& \left.\cdots, \frac{c}{r_{0}\left[g_{m}(s)\right]} \int_{t_{0}}^{g_{m}(s)} \frac{\mathrm{d} u}{r_{1}(u)}\right) \mathrm{d} s
\end{aligned}
$$

for all $t \geqq \mathrm{~T}$. This, because of condition $\left(\mathrm{C}_{3}\right)$, gives

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(n-1)} x\right)(t)=-\infty
$$

a contradiction.
Hence, k must be zero, which obviously means that

$$
\begin{array}{ll}
x \in \mathrm{~S}_{2}^{+\infty}(+\mathrm{I}), & \text { if } n \text { is even, } \\
x \in \mathrm{~S}_{1}^{+\infty}(+\mathrm{I}), & \text { if } n \text { is odd. }
\end{array}
$$

Next, we consider the case where n is odd. By (ii), equation ($\mathrm{E},+\mathrm{I}$) yields

$$
\begin{aligned}
\left(\mathrm{D}_{r}^{(n)} x\right)(t) & =-\mathrm{F}\left(t ; x\left[g_{1}(t)\right], x\left[g_{2}(t)\right], \cdots, x\left[g_{m}(t)\right]\right) \leqq \\
& \leqq-\mathrm{F}(t ; \mathrm{o}, \mathrm{o}, \cdots, \mathrm{o})=\mathrm{o}
\end{aligned}
$$

for every $t \geqq \mathrm{~T}$, where $\mathrm{T}, \mathrm{T} \geqq \mathrm{T}_{0}$, is chosen as above. From this and the property (P_{3}) it follows that

$$
\left(\mathrm{D}_{r}^{(2)} x\right)(t)>0 \quad \text { for every } \quad t \geqq \mathrm{~T}_{1},
$$

where $\mathrm{T}_{1}, \mathrm{~T}_{1} \geqq \mathrm{~T}$, can be chosen so that $\left(\mathrm{D}_{r}^{(1)} x\right)\left(\mathrm{T}_{1}\right)>0$. Therefore, for every $t \geqq \mathrm{~T}_{1}$

$$
\left(\mathrm{D}_{r}^{(0)} x\right)(t)=\left(\mathrm{D}_{r}^{(0)} x\right)\left(\mathrm{T}_{1}\right)+\int_{\mathrm{T}_{1}}^{t} \frac{\mathrm{I}}{r_{1}(s)}\left(\mathrm{D}_{r}^{(1)} x\right)(s) \mathrm{d} s \geqq\left(\mathrm{D}_{r}^{(1)} x\right)\left(\mathrm{T}_{1}\right) \int_{\mathrm{T}_{1}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)}
$$

and so it is easy to see that there exists a positive constant K such that

$$
\left(\mathrm{D}_{r}^{(0)} x\right)(t) \geqq \mathrm{K} \int_{i_{0}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)} \quad \text { for all } \quad t \geqq \mathrm{~T}_{0}
$$

Thus, the contradiction $\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(n-1)} x\right)(t)=-\infty$ can again be derived in the considered case of odd n.

We have proved that

$$
\begin{array}{ll}
\mathrm{S}^{+\infty}(+\mathrm{I})=\mathrm{S}_{2}^{+\infty}(+\mathrm{I}), & \text { if } n \text { is even } \\
\mathrm{S}^{+\infty}(+\mathrm{I})=\varnothing, & \text { if } n \text { is odd }
\end{array}
$$

A similar argument gives

$$
\begin{array}{ll}
\mathrm{S}^{-\infty}(+1)=\mathrm{S}_{2}^{-\infty}(+1), & \text { if } n \text { is even } \\
\mathrm{S}^{-\infty}(+1)=\varnothing, & \text { if } n \text { is odd }
\end{array}
$$

and hence Theorem i completes the proof of our theorem.
Theorem 3. Consider the differential equation ($\mathrm{E},-\mathrm{I}$) subject to the conditions (i), (ii), ($\left.\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$. Then for n even the solutions of the equa-
tion ($\mathrm{E},-\mathrm{I}$) admit the decomposition

$$
S(-1)=S^{\sim}(-1) \cup S^{0}(-1) \cup S_{1}^{+\infty}(-1) \cup S_{1}^{-\infty}(-1),
$$

while for n odd, the decomposition

$$
S(-1)=S^{\sim}(-1) \cup S_{1}^{+\infty}(-1) \cup S_{1}^{-\infty}(-1) .
$$

Proof. We suppose that $\mathrm{S}_{2}^{+\infty}(-\mathrm{I}) \neq \varnothing$ and we consider a solution $x \in \mathrm{~S}_{2}^{+\infty}(-\mathrm{I})$ as well as the associated integer k. The function x is a solution on an interval $\left[\mathrm{T}_{0}, \infty\right), \mathrm{T}_{0}>t_{0}$, of ($\mathrm{E},-1$). Because of $\left(\mathrm{P}_{1}\right)$, we have $x(t)>0$ for all large t. Without loss of generality, we assume that x is positive on the whole interval $\left[\mathrm{T}_{0}, \infty\right)$.

Suppose that $k \geqq \mathrm{I}$. Then, as in the proof of Theorem 2, we conclude that there exists a positive constant c such that

$$
\left(\mathrm{D}_{r}^{(0)} x\right)(t) \geqq c \int_{t_{0}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)} \quad \text { for } \quad \text { every } \quad t \geqq \mathrm{~T}_{0}
$$

So, by (ii), from equation ($\mathrm{E},-\mathrm{I}$) we obtain

$$
\begin{gathered}
\left(\mathrm{D}_{r}^{(n-1)} x\right)(t)-\left(\mathrm{D}_{r}^{(n-1)} x\right)(\mathrm{T})= \\
=\int_{\mathrm{T}}^{t} \mathrm{~F}\left(s ; x\left[g_{1}(s)\right], x\left[g_{2}(s)\right], \cdots, x\left[g_{m}(s)\right]\right) \mathrm{d} s \\
\geqq \int_{\mathrm{T}}^{t} \mathrm{~F}\left(s ; \frac{c}{r_{0}\left[g_{1}(s)\right]} \int_{i_{0}}^{g_{1}(s)} \frac{\mathrm{d} u}{r_{1}(u)}, \frac{c}{r_{0}\left[g_{2}(s)\right]} \int_{i_{0}}^{g_{2}(s)} \frac{\mathrm{d} u}{r_{1}(u)}, \cdots\right. \\
\left.\cdots, \frac{c}{r_{0}\left[g_{m}(s)\right]} \int_{i_{0}}^{g_{m}(s)} \frac{\mathrm{d} u}{r_{1}(u)}\right) \mathrm{d} s
\end{gathered}
$$

for all $t \geqq \mathrm{~T}$, where $\mathrm{T}, \mathrm{T} \geqq \mathrm{T}_{\mathbf{0}}$, is chosen, by (i), so that

$$
g_{j}(t) \geqq \mathrm{T}_{0} \quad \text { for every } \quad t \geqq \mathrm{~T} \quad(j=\mathrm{I}, 2, \cdots, m) .
$$

This, because of condition $\left(\mathrm{C}_{3}\right)$, gives

$$
\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(n-1)} x\right)(t)=\infty
$$

But $k \leqq n-2$, since $n+k$ is even, and consequently the last relation is a contradiction.

Thus, k must be zero and therefore n is even. Furthermore, in view of (ii), from equation ($\mathrm{E},-\mathrm{I}$) we have

$$
\begin{aligned}
\left(\mathrm{D}_{r}^{(n)} x\right)(t) & =\mathrm{F}\left(t ; x\left[g_{1}(t)\right], x\left[g_{2}(t)\right], \cdots, x\left[g_{m}(t)\right]\right) \geqq \\
& \geqq \mathrm{F}(t ; 0,0, \cdots 0)=0, t \geqq \mathrm{~T} .
\end{aligned}
$$

Namely, $\mathrm{D}_{r}^{(n)} x$ is nonnegative on $[\mathrm{T}, \infty)$. By this and $\left(\mathrm{P}_{3}\right)$, there exists a $\mathrm{T}_{1} \geqq \mathrm{~T}$ such that $\left(\mathrm{D}_{r}^{(1)} x\right)\left(\mathrm{T}_{1}\right)>0$ and

$$
\left(\mathrm{D}_{r}^{(2)} x\right)(t) \geqq 0 \quad \text { for every } t \geqq \mathrm{~T}_{1} .
$$

Hence, as in the proof of Theorem 2, we conclude the existence of a constant $\mathrm{K}>0$ so that

$$
\left(\mathrm{D}_{r}^{(0)} x\right)(t) \geqq \mathrm{K} \int_{i_{0}}^{t} \frac{\mathrm{~d} s}{r_{1}(s)} \quad \text { for all } \quad t \geqq \mathrm{~T}_{\mathbf{0}}
$$

ans so the contradiction $\lim _{t \rightarrow \infty}\left(\mathrm{D}_{r}^{(n-1)} x\right)(t)=\infty$ can again be derived.
We have therefore proved that $\mathrm{S}_{2}^{+\infty}(-1)=\varnothing$. By a similar argument, we obtain $\mathrm{S}_{2}^{-\infty}(-\mathrm{I})=\varnothing$. Finally, Theorem I completes the proof of our theorem.

Remark. In the usual case where $r_{0}=r_{1}=\cdots=r_{n-1}=1$, the condition $\left(\mathrm{C}_{1}\right)$ holds by itself while the condition (C_{2}) becomes (cf. [I]):
$\left(\mathrm{C}_{2}^{0}\right)$ For every nonzero constant c,

$$
\int^{\infty} t^{n-1}|\mathrm{~F}(t ; c, c, \cdots, c)| \mathrm{d} t=\infty
$$

Moreover, the condition $\left(\mathrm{C}_{3}\right)$ takes the form:
$\left(\mathrm{C}_{3}^{0}\right)$ For every nonzero constant c,

$$
\int^{\infty}\left|\mathrm{F}\left(t ; c g_{1}(t), c g_{2}(t), \cdots, c g_{m}(t)\right)\right| \mathrm{d} t=\infty
$$

So, by applying our results for the differential equation

$$
x^{(n)}(t)+\delta \mathrm{F}\left(t ; x\left[g_{1}(t)\right], x\left[g_{2}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)=0,
$$

we obtain recent ones due to Staikos and Sficas [2].
Acknowledgment. The Author would like to thank Prof. V.A. Staikos for his helpful suggestions concerning this paper.

References

[1] Ch. G. Philos (1978) - Oscillatory and asymptotic behavior of the bounded solutions of differential equations with deviating arguments «Hirashima Math. J. », 8, 31-48.
[2] V.A. Staikos and Y. G. Sficas (1975) - Oscillatory and asymptotic characterization of the solutions of differential equations with deviating arguments, "J. London Math. Soc.》, Io, 39-47.

