ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

CHRISTOS G. PHILOS

A n oscillatory and asymptotic classification of the solutions of differential equations with deviating arguments

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.3-4, p. 195–203.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_3-4_195_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1977.

Equazioni differenziali ordinarie. — An oscillatory and asymptotic classification of the solutions of differential equations with deviating arguments (*). Nota di CHRISTOS G. PHILOS, presentata (**) dal Socio G. SANSONE.

RIASSUNTO. — In questa Nota, estendendo alcuni risultati ottenuti recentemente da Staikos e da Sficas, si classificano le soluzioni di una classe di equazioni differenziali ordinarie con argomenti deviati, rispetto al loro carattere oscillatorio e al loro comportamento per $t \rightarrow \infty$.

Let $r_i (i = 0, 1, \dots, n)$ be positive continuous functions on the interval $[t_0, \infty)$. For a real-valued function h on $[T, \infty), T \ge t_0$, and any $\mu = 0, 1, \dots, n$ we define the μ -th *r*-derivative of h by the formula

$$D_r^{(\mu)} h = r_{\mu} (r_{\mu-1} (\cdots (r_1 (r_0 h)')' \cdots)')',$$

when obviously we have

 $D_r^{(0)} h = r_0 h$ and $D_r^{(i)} h = r_i (D_r^{(i-1)} h)'$ $(i = 1, 2, \dots, n).$

Moreover, if $D_r^{(n)}h$ is defined on $[T, \infty)$, then h is said to be *n*-times *r*-dif*ferentiable*. We note that in the case where $r_0 = r_1 = \cdots = r_n = I$ the above notion of *r*-differentiability specializes to the usual one.

Now, we consider the *n*-th order (n > 1) differential equation with deviating arguments of the form

$$(E, \delta) \qquad (D_r^{(n)} x)(t) + \delta F(t; x [g_1(t)], x [g_2(t)], \dots, x [g_m(t)]) = 0,$$

where $r_n = 1$ and $\delta = \pm 1$. The continuity of the real-valued functions F on $[t_0, \infty) \times \mathbb{R}^m$ and $g_j (j = 1, 2, \dots, m)$ on $[t_0, \infty)$ as well as sufficient smoothness to guarantee the existence of solutions of (E, δ) on an infinite subinterval of $[t_0, \infty)$ will be assumed without mention. In what follows the term "solution" is always used only for such solutions x(t) of (E, δ) which are defined for all large t. The oscillatory character is considered in the usual sense, i.e. a continuous real-valued function which is defined on an interval of the form $[T, \infty)$ is called *oscillatory* if it has no last zero, and otherwise it is called *nonoscillatory*.

(*) This paper is a part of the Author's Doctoral Thesis submitted to the School of Physics and Mathematics of the University of Ioannina.

(**) Nella seduta del 23 giugno 1977.

Furthermore, conditions (i) and (ii) below are assumed to hold throughout the paper:

(i) For every $j = 1, 2, \dots, m$ $\lim_{t \to \infty} g_j(t) = \infty.$ (ii) For every $t \ge t_0$, $F(t; 0, 0, \dots, 0) = 0$

and, moreover, F(t; y) is nondecreasing with respect to y in \mathbb{R}^{m} .

Note. The order in \mathbb{R}^m is considered in the usual sense, i.e.

$$y \leq z \iff (\forall j = 1, 2, \dots, m) y_j \leq z_j.$$

In this paper we shall classify all solutions of the differential equation (E, δ) with respect to their oscillatory character and to their behaviour at ∞ . For this purpose, S (δ) will denote the set of all solutions of the equation (E, δ) and S[~](δ), S⁰(δ), S^{+ ∞}(δ), S^{+ ∞}(δ), S^{- ∞}(δ), S^{- ∞}(δ) subsets of S (δ) defined as follows:

(a) $S^{\sim}(\delta)$ is the set of all oscillatory $x \in S(\delta)$.

(b) $S^{0}(\delta)$ is the set of all nonoscillatory $x \in S(\delta)$ with $\lim_{t \to \infty} (D_{r}^{(i)} x)(t) = 0 \quad \text{monotonically} \quad (i = 0, 1, \dots, n-1).$

(c) $S_1^{+\infty}(\delta)$ is the set of all $x \in S(\delta)$ for which there exists an integer $k, 0 \leq k \leq n-1$, with n+k odd and such that:

 $(P_1) \lim_{t \to \infty} (D_r^{(i)} x)(t) = \infty \quad \text{for every} \quad i = 0, 1, \dots, k.$ $(P_2) \text{ If } k \leq n-2, \quad \text{then } \lim_{t \to \infty} (D_r^{(k+1)} x)(t) \quad \text{exists in } \mathbf{R}.$ $(P_3) \text{ If } k \leq n-3, \quad \text{then for every} \quad i = k+2, \dots, n-1$ $\lim_{t \to \infty} (D_r^{(i)} x)(t) \neq 0, \quad \text{for all large } t,$ $(D_r^{(i)} x)(t) (D_r^{(i+1)} x)(t) \leq 0 \quad \text{for all large } t.$

(d) $S_2^{+\infty}(\delta)$ is the set of all $x \in S(\delta)$ which possess properties (P_1) - (P_3) for some integer k, $0 \le k \le n-1$, with n+k even.

(e) $S_1^{-\infty}(\delta)$ is the set of all $x \in S(\delta)$ for which the function -x possesses properties (P_1) - (P_3) for some integer k, $0 \le k \le n - 1$, with n + k odd.

(f) $S_2^{-\infty}(\delta)$ is the set of all $x \in S(\delta)$ for which the function -x possesses properties (P_1) - (P_3) for some integer k, $0 \le k \le n - 1$, with n + k even.

 $(g) \quad \mathbf{S}^{+\infty}(\delta) = \mathbf{S}_{1}^{+\infty}(\delta) \cup \mathbf{S}_{2}^{+\infty}(\delta) \ .$

(*h*) $S^{-\infty}(\delta) = S_1^{-\infty}(\delta) \cup S_2^{-\infty}(\delta)$.

We introduce, now, the main conditions which will be used in the classification of the solutions of the equation (E, δ).

(C₁) For every
$$i = 1, 2, \dots, n-1$$

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}t}{r_i(t)} = \infty \; .$$

 (C_2) For every nonzero constant c there exists an integer λ , $0 \leq \lambda \leq \leq n-1$, such that

$$\int \left| F\left(t; \frac{c}{r_0[g_1(t)]}, \frac{c}{r_0[g_2(t)]}, \dots, \frac{c}{r_0[g_m(t)]}\right) \right| dt = \infty, \quad if \ \lambda = n - 1$$

$$\int \frac{1}{r_{\lambda+1}(s_{\lambda+1})} \cdots \int \frac{1}{s_{n-2}} \int \frac{1}{r_{n-1}(s_{n-1})} \int \frac{1}{s_{n-1}} F\left(s; \frac{c}{r_0[g_1(s)]}, \frac{c}{r_0[g_2(s)]}, \dots \right)$$

$$\dots, \frac{c}{r_0[g_m(s)]} \right) \left| ds \ ds_{n-1} \cdots ds_{\lambda+1} = \infty, \quad if \ \lambda < n - 1.$$

 (C_3) For every nonzero constant c,

$$\int \left| F\left(t; \frac{c}{r_0[g_1(t)]} \int_{t_0}^{g_1(t)} \frac{ds}{r_1(s)}, \frac{c}{r_0[g_2(t)]} \int_{t_0}^{g_2(t)} \frac{ds}{r_1(s)}, \cdots \right. \\ \left. \cdots, \frac{c}{r_0[g_m(t)]} \int_{t_0}^{g_m(t)} \frac{ds}{r_1(s)} \right) \right| dt = \infty$$

The oscillatory and asymptotic behavior of the solutions x of the differential equation (E, δ) with $x(t) = O(I/r_0(t))$ as $t \to \infty$ is well described by the following theorem due to the Author [I].

THEOREM 0. Consider the differential equation (E, δ) subject to the conditions (i), (ii), (C_1) and (C_2) . Then every solution x of the equation (E, +1)[respectively, (E, -1)] with $x(t) = O(1/r_0(t))$ as $t \to \infty$ for n even [resp. odd] is oscillatory, while for n odd [resp. even] is either oscillatory or such that

 $\lim_{t\to\infty} (\mathcal{D}_r^{(i)}x)(t) = 0 \quad \text{monotonically} \quad (i = 0, 1, \dots, n-1).$

In order to obtain our first result (Theorem 1) we need the following elementary lemma which has been proved by the Author in [1].

LEMMA. Let h be an n-times r-differentiable function on $[T, \infty)$, $T \ge t_0$, such that $D_r^{(n)}$ h is of constant sign on $[T, \infty)$. Moreover, let $\mu, 0 \le \mu \le n-2$, be an integer so that

$$\int^{\infty} \frac{\mathrm{d}t}{r_{\mu+1}(t)} = \infty \, .$$

If
$$\lim_{t \to \infty} (D_r^{(\mu)} h)(t)$$
 is finite, then
 $\lim_{t \to \infty} (D_r^{(\mu+1)} h)(t) = 0$.

THEOREM I. Consider the differential equation (E, δ) subject to the conditions (i), (ii), (C_1) and (C_2) . Then for n even [resp. odd] the solutions of the equation (E, +1) [resp. (E, -1)] admit the decomposition

$$S(+I) = S^{\sim}(+I) \cup S^{+\infty}(+I) \cup S^{-\infty}(+I)$$

[resp. $S(-I) = S^{\sim}(-I) \cup S^{0}(-I) \cup S^{+\infty}(-I) \cup S^{-\infty}(-I)$],

while for n odd [resp. even], the decomposition

$$S(+I) = S^{\sim}(+I) \cup S^{0}(+I) \cup S^{+\infty}(+I) \cup S^{-\infty}(+I)$$

[resp. S(-I) = S[~](-I) \cup S^{+\infty}(-I) \cup S^{-\infty}(-I)].

Proof. Let x be a nonoscillatory solution on an interval $[T_0, \infty)$, $T_0 \ge t_0$, of the equation (E, δ) with $\limsup_{t\to\infty} |(D_r^{(0)}x)(t)| = \infty$. Without loss of generality, we suppose that $x(t) \ne 0$ for all $t \ge T_0$. Next, by (i), we choose a $T \ge T_0$ so that

$$g_j(t) \ge T_0$$
 for every $t \ge T$ $(j = 1, 2, \dots, m)$.

Then, in view of (ii), equation (E, δ) yields

$$- \delta x(t) (D_r^{(n)} x)(t) = x(t) F(t; x [g_1(t)], x [g_2(t)], \dots, x [g_m(t)]) \ge$$

$$\ge x(t) F(t; 0, 0, \dots, 0) = 0$$

for every $t \ge T$. Thus $D_r^{(n)} x$ is of constant sign on $[T, \infty)$ and so the functions $D_r^{(i)} x (i = 1, 2, \dots, n-1)$ are also eventually of constant sign.

Now, we consider the following two possible cases:

Case I.
$$\lim_{t\to\infty} (D_r^{(0)} x)(t) = \infty.$$

Let k be the greatest integer with $0 \le k \le n - 1$ and

$$\lim_{t\to\infty} \left(\mathbf{D}_r^{(i)} x \right)(t) = \infty \quad \text{for every} \quad i = 0, 1, \dots, k.$$

Obviously, if $k \leq n-2$, then

$$\lim_{t\to\infty} (\mathbf{D}_r^{(k+1)} x)(t) \quad \text{exists in } \mathbf{R} .$$

So, if $k \leq n-3$, then, by Lemma, for every $i = k+2, \dots, n-1$

$$\lim_{t \to \infty} \left(\mathbf{D}_r^{(i)} \, x \right) (t) = \mathbf{0}$$

and consequently it is easy to see that

 $(\mathbf{D}_r^{(i)} x)(t) (\mathbf{D}_r^{(i+1)} x)(t) \leq 0$ for all large t.

Finally, to derive that for $i = k + 2, \dots, n - 1$.

$$(D_r^{(i)} x)(t) \neq 0$$
 for all large t

it is enough to verify that $(D_r^{(n)} x)(t)$ is not identically zero for all large t. To do this, we suppose that there exists a $T_1 \ge T$ such that

$$(\mathbf{D}_{r}^{(n)} x)(t) = \mathbf{0}$$
 for every $t \ge \mathbf{T}_{1}$

and we consider a positive constant c so that for every $t \ge T_0$

$$(D_r^{(0)} x)(t) \ge c$$
, i.e. $x(t) \ge \frac{c}{r_0(t)}$.

Then, in view of (ii), from equation (E, δ) we obtain

$$o = -\delta (D_r^{(n)} x) (t) = F (t; x [g_1(t)], x [g_2(t)], \dots, x [g_m(t)])$$

$$\geq F \left(t; \frac{c}{r_0[g_1(t)]}, \frac{c}{r_0[g_2(t)]}, \dots, \frac{c}{r_0[g_m(t)]} \right)$$

$$\geq F (t; o, o, \dots, o) = o$$

for all $t \ge T_1$. Therefore,

$$\mathbf{F}\left(t\,;\,\frac{c}{r_0\left[g_1(t)\right]}\,,\,\frac{c}{r_0\left[g_2(t)\right]}\,,\cdots,\,\frac{c}{r_0\left[g_m(t)\right]}\right)=0\qquad\text{for every}\quad t\geq \mathbf{T}_1\,,$$

which contradicts (C_2) .

Thus, x possesses properties (P_1) - (P_3) , i.e. $x \in S^{+\infty}(\delta)$.

Case 2.
$$\lim_{t\to\infty} (D_r^{(0)} x)(t) = -\infty$$

Let k be the greatest integer with $0 \leq k \leq n-1$ and

$$\lim_{t\to\infty} (\mathcal{D}_r^{(i)} x) (t) = -\infty \quad \text{for every} \quad i = 0, 1, \dots, k.$$

An argument similar to that used in Case I proves that the function -x possesses properties $(P_1)-(P_3)$, which means that $x \in S^{-\infty}(\delta)$.

We have proved that, if $\hat{S}(\delta)$ is the set of all solutions x of the equation (E, δ) with $\limsup_{t\to\infty} |(D_r^{(0)}x)(t)| = \infty$,

$$\hat{S}(\delta) = S^{\sim}(\delta) \cup S^{+\infty}(\delta) \cup S^{-\infty}(\delta).$$

This proves the theorem, since, by Theorem o,

$$\overline{S}(+I) = S^{\sim}(+I) \text{ and } \overline{S}(-I) = S^{\sim}(-I) \cup S^{0}(-I), \text{ if } n \text{ is even,}$$

$$\overline{S}(+I) = S^{\sim}(+I) \cup S^{0}(+I) \text{ and } \overline{S}(-I) = S^{\sim}(-I), \text{ if } n \text{ is odd,}$$

where $\overline{S}(\delta)$ is the set of all solutions x of the equation (E, δ) with $x(t) = O(1/r_0(t))$ as $t \to \infty$.

THEOREM 2. Consider the differential equation (E, +1) subject to the conditions (i), (ii), (C_1) , (C_2) and (C_3) . Then for n even the solutions of the equation (E, +1) admit the decomposition

$$S(+I) = S^{\sim}(+I) \cup S_2^{+\infty}(+I) \cup S_2^{-\infty}(+I),$$

while for n odd, the decomposition

$$S(+I) = S^{\sim}(+I) \cup S^{0}(+I)$$
.

Proof. Let $x \in S^{+\infty}(+1)$ and k be the associated integer. The function x is a solution on an interval $[T_0, \infty), T_0 > t_0$, of the equation (E, +1). By property (P_1) , x is eventually positive. Without loss of generality, we assume that x(t) > 0 for every $t \ge T_0$.

Now, we suppose that $k \ge 1$. Then, by property (P₁), we have

$$\lim_{t \to \infty} (\mathbf{D}_r^{(0)} x)(t) = \lim_{t \to \infty} (\mathbf{D}_r^{(1)} x)(t) = \infty$$

and consequently, using the Hospital rule, we can derive that

$$\lim_{t\to\infty}\frac{(\mathbf{D}_r^{(0)}x)(t)}{\int\limits_{t_0}^t\frac{\mathrm{d}s}{r_1(s)}}=\infty.$$

So, there exists a positive constant c such that for every $t \ge T_0$

$$(\mathbb{D}_{r}^{(0)} x)(t) \ge c \int_{t_{0}}^{t} \frac{\mathrm{d}s}{r_{1}(s)}, \quad \text{i.e.} \ x(t) \ge \frac{c}{r_{0}(t)} \int_{t_{0}}^{t} \frac{\mathrm{d}s}{r_{1}(s)}.$$

Thus, if, by (i), $T \ge T_0$ is chosen so that

$$g_j(t) \ge T_0$$
 for every $t \ge T$ $(j = 1, 2, \dots, m)$,

then, in view of (ii), from equation (E, + I) we obtain

$$- (D_r^{(n-1)} x) (t) + (D_r^{(n-1)} x) (T) =$$

= $\int_{T}^{t} F(s; x [g_1(s)], x [g_2(s)], \dots, x [g_m(s)]) ds$

$$\ge \int_{T}^{t} F\left(s \; ; \; \frac{c}{r_{0}\left[g_{1}(s)\right]} \int_{t_{0}}^{g_{1}(s)} \frac{du}{r_{1}(u)} \; , \; \frac{c}{r_{0}\left[g_{2}(s)\right]} \int_{t_{0}}^{g_{2}(s)} \frac{du}{r_{1}(u)} \; , \cdots \right. \\ \left. \cdots \; , \; \frac{c}{r_{0}\left[g_{m}(s)\right]} \int_{t_{0}}^{g_{m}(s)} \frac{du}{r_{1}(u)} \right) ds$$

for all $t \ge T$. This, because of condition (C₃), gives

$$\lim_{t\to\infty} \left(\mathbf{D}_r^{(n-1)} \, x \right) (t) = -\infty \,,$$

a contradiction.

Hence, k must be zero, which obviously means that

$$x \in S_2^{+\infty} (+ I)$$
, if *n* is even,

$$x \in S_1^{+\infty}(+1)$$
, if *n* is odd.

Next, we consider the case where n is odd. By (ii), equation (E, + 1) yields

$$(D_r^{(n)} x) (t) = - F (t; x [g_1(t)], x [g_2(t)], \dots, x [g_m(t)]) \le \\ \le - F (t; 0, 0, \dots, 0) = 0$$

for every $t \ge T$, where T, $T \ge T_0$, is chosen as above. From this and the property (P₃) it follows that

$$\left(\mathbb{D}_{r}^{(2)}x\right)(t) > 0 \quad \text{for every } t \geq \mathrm{T}_{1},$$

where T_1 , $T_1 \ge T$, can be chosen so that $(D_r^{(1)} x)(T_1) > 0$. Therefore, for every $t \ge T_1$

$$(D_r^{(0)} x)(t) = (D_r^{(0)} x)(T_1) + \int_{T_1}^t \frac{1}{r_1(s)} (D_r^{(1)} x)(s) ds \ge (D_r^{(1)} x)(T_1) \int_{T_1}^t \frac{ds}{r_1(s)}$$

and so it is easy to see that there exists a positive constant K such that

$$(\mathcal{D}_r^{(0)} x)(t) \ge \mathrm{K} \int_{t_0}^{t} \frac{\mathrm{d}s}{r_1(s)} \quad \text{for all} \quad t \ge \mathrm{T}_0.$$

Thus, the contradiction $\lim_{t\to\infty} (D_r^{(n-1)}x)(t) = -\infty$ can again be derived in the considered case of odd n.

We have proved that

$$S^{+\infty}(+ I) = S_2^{+\infty}(+ I), \quad \text{if } n \text{ is even,}$$

$$S^{+\infty}(+ I) = \emptyset, \qquad \text{if } n \text{ is odd.}$$

A similar argument gives

$$S^{-\infty}(+I) = S_2^{-\infty}(+I), \quad \text{if } n \text{ is even},$$
$$S^{-\infty}(+I) = \emptyset, \quad \text{if } n \text{ is odd}$$

and hence Theorem 1 completes the proof of our theorem.

THEOREM 3. Consider the differential equation (E, -1) subject to the conditions (i), (ii), (C_1) , (C_2) and (C_3) . Then for n even the solutions of the equa-

tion (E, -1) admit the decomposition

$$S(-I) = S^{\sim}(-I) \cup S^{0}(-I) \cup S_{1}^{+\infty}(-I) \cup S_{1}^{-\infty}(-I)$$

while for n odd, the decomposition

$$S(-I) = S^{\sim}(-I) \cup S_{I}^{+\infty}(-I) \cup S_{I}^{-\infty}(-I) .$$

Proof. We suppose that $S_2^{+\infty}(-I) \neq \emptyset$ and we consider a solution $x \in S_2^{+\infty}(-I)$ as well as the associated integer k. The function x is a solution on an interval $[T_0, \infty), T_0 > t_0$, of (E, -I). Because of (P_1) , we have x(t) > 0 for all large t. Without loss of generality, we assume that x is positive on the whole interval $[T_0, \infty)$.

Suppose that $k \ge 1$. Then, as in the proof of Theorem 2, we conclude that there exists a positive constant c such that

$$(\mathbf{D}_r^{(0)}x)(t) \ge c \int_{t_0}^t \frac{\mathrm{d}s}{r_1(s)} \quad \text{for every } t \ge \mathbf{T}_0.$$

So, by (ii), from equation (E, -I) we obtain

$$(D_{r}^{(n-1)} x) (t) - (D_{r}^{(n-1)} x) (T) =$$

$$= \int_{T}^{t} F(s; x [g_{1}(s)], x [g_{2}(s)], \cdots, x [g_{m}(s)]) ds$$

$$\geq \int_{T}^{t} F\left(s; \frac{c}{r_{0}[g_{1}(s)]} \int_{t_{0}}^{g_{1}(s)} \frac{du}{r_{1}(u)}, \frac{c}{r_{0}[g_{2}(s)]} \int_{t_{0}}^{g_{2}(s)} \frac{du}{r_{1}(u)}, \cdots, \frac{c}{r_{0}[g_{m}(s)]} \int_{t_{0}}^{g_{m}(s)} \frac{du}{r_{1}(u)} ds$$

for all $t \ge T$, where T, $T \ge T_0$, is chosen, by (i), so that

$$g_j(t) \ge T_0$$
 for every $t \ge T$ $(j = I, 2, \dots, m)$.

This, because of condition (C_3) , gives

$$\lim_{t\to\infty} \left(\mathcal{D}_r^{(n-1)} x \right) (t) = \infty .$$

But $k \leq n-2$, since n+k is even, and consequently the last relation is a contradiction.

Thus, k must be zero and therefore n is even. Furthermore, in view of (ii), from equation (E, -1) we have

$$(\mathbf{D}_{r}^{(n)} x)(t) = \mathbf{F}(t; x [g_{1}(t)], x [g_{2}(t)], \dots, x [g_{m}(t)]) \ge$$
$$\geq \mathbf{F}(t; 0, 0, \dots 0) = 0, t \ge \mathbf{T}.$$

Namely, $D_r^{(n)} x$ is nonnegative on [T, ∞). By this and (P₃), there exists a $T_1 \ge T$ such that $(D_r^{(1)} x)(T_1) > 0$ and

$$(\mathbf{D}_{t}^{(2)} x)(t) \ge 0$$
 for every $t \ge \mathbf{T}_{1}$.

Hence, as in the proof of Theorem 2, we conclude the existence of a constant K > o so that

$$(\mathbf{D}_r^{(0)} \mathbf{x})(t) \ge \mathbf{K} \int_{t_0}^t \frac{\mathrm{d}s}{r_1(s)} \quad \text{for all} \quad t \ge \mathbf{T}_0$$

ans so the contradiction $\lim_{r} (D_r^{(n-1)} x)(t) = \infty$ can again be derived.

We have therefore proved that $S_2^{+\infty}(-I) = \emptyset$. By a similar argument, we obtain $S_2^{-\infty}(-I) = \emptyset$. Finally, Theorem I completes the proof of our theorem.

Remark. In the usual case where $r_0 = r_1 = \cdots = r_{n-1} = 1$, the condition (C₁) holds by itself while the condition (C₂) becomes (cf. [1]):

 (C_2^0) For every nonzero constant c,

$$\int_{0}^{\infty} t^{n-1} \left| \mathbf{F}(t; c, c, \cdots, c) \right| \mathrm{d}t = \infty.$$

Moreover, the condition (C_3) takes the form:

 (C_3^0) For every nonzero constant c,

$$\int_{0}^{\infty} |\mathbf{F}(t; cg_{1}(t), cg_{2}(t), \cdots, cg_{m}(t))| dt = \infty$$

So, by applying our results for the differential equation

$$x^{(n)}(t) + \delta F(t; x[g_1(t)], x[g_2(t)], \cdots, x[g_m(t)]) = 0,$$

we obtain recent ones due to Staikos and Sficas [2].

Acknowledgment. The Author would like to thank Prof. V. A. Staikos for his helpful suggestions concerning this paper.

References

- [1] CH. G. PHILOS (1978) Oscillatory and asymptotic behavior of the bounded solutions of differential equations with deviating arguments « Hirashima Math. J. », 8, 31-48.
- [2] V. A. STAIKOS and Y. G. SFICAS (1975) Oscillatory and asymptotic characterization of the solutions of differential equations with deviating arguments, « J. London Math. Soc. », 10, 39-47.