Atti Accademia Nazionale dei Lincei Classe Scienze Fisiche Matematiche Naturali **RENDICONTI**

Anna Luisa Gilotti, Luigi Serena

p-Injectors and finite supersoluble groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.3-4, p. 164–169.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_3-4_164_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Algebra. — p-Injectors and finite supersoluble groups (*). Nota (**) di Anna Luisa Gilotti e Luigi Serena, presentata dal Socio G. ZAPPA.

RIASSUNTO. — In questa Nota gli Autori, proseguendo lo studio iniziato in [2] sui p-iniettori nei gruppi finiti, introducono la definizione di p-I-catena e provano che l'esistenza in un gruppo finito G di p-I-catene per ogni primo p che divide |G| equivale alla supersolubilità di G.

Given a finite group G, a p-subgroup V of G is said to be a p-injector if the family

$$\mathbf{F}(\mathbf{V}) = \{\mathbf{S}, \mathbf{S} \subseteq \mathbf{V}^x, x \in \mathbf{G}\}\$$

is closed with respect to normal product; that is if A, $B \in \mathbf{F}(V)$ and A, $B \leq \trianglelefteq AB$, then $AB \in \mathbf{F}(V)$.

Trivial examples of p-injectors are given by the Sylow p-subgroups and the normal p-subgroups. In [2] the Authors study general properties of p-injectors and give a characterization of them with respect to the class of p-soluble groups. In this Note, a necessary and sufficient condition is given for the supersolubility of a finite group in terms of p-injectors. More precisely after introducing the definition of p-I-chain, it is proved that the existence of such p-I-chains in G for any prime p which divides the order of G is equivalent to the supersolubility of G.

In the proof of the principal theorem, it is fundamental that there exists a p-I-chain relative to the smallest prime p which divides the order of G. In fact, if there is such a chain, then G will not be simple, since there is a p-normal complement.

All the groups considered will be finite.

Ι.

Let G be a group and let \mathbf{F}_p be a family of *p*-subgroups of G which satisfies the conditions:

i) If $H \trianglelefteq S$, $S \in \mathbf{F}_p$ then $H \in \mathbf{F}_p$;

ii)	If A, B $\in \mathbf{F}_p$	and	A,B⊴AB	then $AB \in \mathbf{F}_p$;
iii)	If $S \in \mathbf{F}_p$	then	$S^x \in \mathbf{F}_p$	for any $x \in G$.

 \mathbf{F}_p will be called a p-Fitting set.

(*) Eseguito nell'ambito dell'attività del G.N.S.A.G.A del C.N.R.

(**) Pervenuta all'Accademia il 6 ottobre 1977.

If N is a subnormal subgroup of G we write $\mathbf{F}_{p|N}$ for the set of those subgroups of N which lie in $\mathbf{F}_{p} \cdot \mathbf{F}_{p|N}$ is a *p*-Fitting set of N.

Let **A** be a set of *p*-subgroups of **G** and let $V \in \mathbf{A}$. V will be called **A**-maximal if no element of **A** contains V properly. V will be said to be an **A**-injector if V is **A**-maximal and for any $N \leq \mathbf{G}$, $V \cap N$ is $\mathbf{A}_{|_{N}}$ -maximal.

A *p*-subgroup V of G is said to be a *p*-injector if there exists a *p*-Fitting set \mathbf{F}_p such that V is a \mathbf{F}_p -injector.

The equivalence with the definition given in the introduction comes from the following proposition whose proof is in [2].

PROPOSITION 1.1. Let V be a p-subgroup of G, then V is a p-injector if and only if the family $\mathbf{F}(V) = \{S, S \subseteq V^x, x \in G\}$ is closed with respect to normal product.

Now we recall other propositions whose proofs are in [2].

PROPOSITION 1.2. Let V be a p-injector and let P be a p-Sylow subgroup of G such that $V \subseteq P$, then V is weakly closed in P with respect to G;

PROPOSITION 1.3. Let V be a p-injector of G, then:

- i) If H is a subgroup of G such that $V \subseteq H$, then V is a p-injector of H.
- ii) If $N \leq G$ then $V \cap N$ is a p-injector of G.

PROPOSITION 1.4. Let G be a p-soluble group and let V be a p-subgroup of G. Then V is a p-injector of G is and only if $V = P \cap N$, where N is a normal subgroup of G and P is a p-Sylow subgroup of G.

In the following, we will use the next proposition the proof of which follows that of Anderson ([1] Proposition 2.2).

PROPOSITION 1.5. Let **F** be a p-Fitting set of G and let A be a normal subgroup of G, then the family $\overline{\mathbf{F}} = \{SA|A, S \in \mathbf{F}\}$ is a p-Fitting set of G|A.

In the proof we need the following:

LEMMA. A set \mathbf{F} of p-subgroups of G is a p-Fitting set if and only if \mathbf{F} is invariant with respect to inner automorphisms and any subgroup H of G contains $\mathbf{F}_{|\mathbf{H}}$ -injectors.

Proof. \Rightarrow trivial.

 \leftarrow It is sufficient to prove that for any $A \in \mathbf{F}$ and $N \leq A$ then $N \in \mathbf{F}$ and if $A, B \in \mathbf{F}$ with $A, B \leq AB$ then $AB \in \mathbf{F}$.

Let $A \in \mathbf{F}$ and $N \trianglelefteq A$. By hypothesis, A contains $\mathbf{F}_{|A}$ -injectors.

Since $A \in \mathbf{F}$, A is a $\mathbf{F}_{|A}$ -injector. It follows that $N = A \cap N$ is $\mathbf{F}_{|N}$ -maximal. Therefore $N \in \mathbf{F}$. Now let A, $B \in \mathbf{F}$ with A, $B \leq AB = M$. M contains $\mathbf{F}_{|M}$ -injectors. Let V be one of them. Since $A \leq M$, $B \leq M$ it follows that $V \cap A$ and $V \cap B$ are $\mathbf{F}_{|A}$ and $\mathbf{F}_{|B}$ -maximal respectively.

We have $V \cap A \subseteq A \in \mathbf{F}$ and $V \cap B \subseteq B \in \mathbf{F}$. Therefore $V \cap A = A$ and $V \cap B = B$ and then $V \supseteq (V \cap A) (V \cap B) = AB$. Since $V \subseteq AB$ it follows that $V = AB \in \mathbf{F}$.

Proof of Proposition 1.5. We indicate by "—" the natural homomorphism: $G \rightarrow G/A$ in such way that \overline{G} means G/A and \overline{H} means the homomorphic image of a subgroup H of G under "—".

To prove that $\overline{\mathbf{F}}$ is a *p*-Fitting set of $\overline{\mathbf{G}}$ it is sufficient to show that $\overline{\mathbf{F}}$ is closed with respect to inner automorphisms, and for any subgroup $\overline{\mathbf{H}}$ of $\overline{\mathbf{G}}$, $\overline{\mathbf{H}}$ contains $\overline{\mathbf{F}}_{|\overline{\mathbf{H}}}$ -injectors. It is obvious that $\overline{\mathbf{F}}$ is closed with respect to the inner automorphisms. We prove the proposition by induction on $|\mathbf{G}|$.

Let \overline{H} be a proper subgroup of \overline{G} . We consider the family

$$\mathbf{F}_{|\mathrm{H}} = \{\mathrm{S} \ , \, \mathrm{S} \subseteq \mathrm{H} \ , \, \mathrm{S} \in \mathbf{F} \}$$
 .

The $\mathbf{F}_{|H|}$ is a *p*-Fitting set of H. Since $A \leq H$ and $|H| \leq |G|$, by induction $\overline{\mathbf{F}_{|H}} = \{\overline{S}, S \in \mathbf{F}_{|H}\}$ is a *p*-Fitting set of \overline{H} .

It follows that in $\overline{\mathbf{H}}$ there is a $\overline{\mathbf{F}}_{|\mathbf{H}}$ -maximal element and then a $\mathbf{F}_{|\mathbf{H}}$ -injector. But $\overline{\mathbf{F}}_{|\mathbf{H}} = \overline{\mathbf{F}}_{|\overline{\mathbf{H}}} = \{\overline{\mathbf{S}} \subseteq \overline{\mathbf{H}}, \mathbf{S} \in \mathbf{F}\}$ therefore $\overline{\nabla}$ is $\overline{\mathbf{F}}_{|\overline{\mathbf{H}}}$ -injector. It remains to prove that $\overline{\mathbf{G}}$ contains $\overline{\mathbf{F}}$ -injectors.

Let V be an **F**-injector of G. We prove that \overline{V} is an **F**-injector of \overline{G} . Since V is **F**-maximal in G, and since the maximal elements of **F** are conjugate, we have that \overline{V} is **F**-maximal in \overline{G} . In fact, if we suppose $\overline{V} \subsetneq \overline{W}$ with $\overline{W} \in \overline{F}$, then there is a maximal element of **F** which contains W, say V^x with $x \in G$. It follows $\overline{V} \subsetneq \overline{W} \subset \overline{V}^x = (\overline{V})^x$ and this is a contraddiction.

It remains to prove that, for any $\overline{N} \leq \overline{G}$, $\overline{V} \cap \overline{N}$ is $\overline{F}_{|\overline{N}}$ -maximal.

We have $\overline{V} \cap \overline{N} = \overline{V \cap N}$. $V \cap N$ is an injector of N, and therefore $V \cap N$ is $\mathbf{F}_{|N}$ -maximal. But any maximal element of $\mathbf{F}_{|N}$ is conjugate with $V \cap N$. It follows that $\overline{V} \cap \overline{N} = \overline{V \cap N}$ is $\overline{\mathbf{F}}_{|\overline{N}}$ -maximal.

REMARK. We observe that if V is a *p*-injector of G, then \overline{V} is a *p*-injector of \overline{G} .

2.

DEFINITION 2.1. Let G be a finite group and let P be a p-Sylow subgroup of G. We say that G has a p-I-chain if there is a chain of the type:

$$\langle I \rangle \triangleleft P_0 \triangleleft P_1 \triangleleft \cdots \triangleleft P_r = P$$
 with $|P_i/P_{i-1}| = p$

and where P_i is a p-injector of G.

THEOREM 2.2. Let G be a p-soluble group, then G is p-supersoluble if and only if G has a p-I-chain.

Proof. Let G be p-supersoluble, then G contains a chain of normal subgroups

$$\langle \mathbf{1} \rangle = \mathbf{N}_0 \triangleleft \mathbf{N}_1 \triangleleft \mathbf{N}_2 \triangleleft \cdots \triangleleft \mathbf{N}_l = \mathbf{G}$$
,

166

where N_i/N_{i-1} $(i = 1, \dots, l)$ is either a p'-group or a p-group of order p. Let P be a p-Sylow subgroup. If N_i/N_{i-1} is cyclic of order p, then $N_i \cap P/N_{i-1} \cap P$ is cyclic of order p, since $N_i \cap P$ and $N_{i-1} \cap P$ are p-Sylow subgroups of N_i and N_{i-1} respectively. If N_i/N_{i-1} is a p'-group, the $N_i \cap P = N_{i-1} \cap P$.

Now we consider the chain of subgroups of P:

$$\langle I \rangle = N_0 \cap P \trianglelefteq N_1 \cap P \trianglelefteq \cdots \trianglelefteq N_l \cap P = P$$
.

The factors of such a chain are either cyclic of order p or the identity group. If we take away the repetitions, then we have a chain

$$\langle \mathbf{I} \rangle = \mathbf{P}_0 \triangleleft \mathbf{P}_1 \triangleleft \cdots \triangleleft \mathbf{P}_r = \mathbf{P}$$

where $|\mathbf{P}_i/\mathbf{P}_{i-1}| = p$.

 $P_i (i = 1, \dots, r)$ is a *p*-injector by Proposition 1.4.

Viceversa, let

$$\langle \mathbf{I} \rangle = \mathbf{P}_0 \triangleleft \mathbf{P}_1 \triangleleft \cdots \triangleleft \mathbf{P}_r = \mathbf{P}$$

a p-I-chain of G.

We procede by induction on |G|.

Suppose $O_{p'}(G) \neq (1)$; we indicate by $\overline{G} = G/O_{p'}(G)$ and $\overline{P}_i = P_i O_{p'}(G)/O_{p'}(G)$. Then the chain of \overline{P}

$$\langle \mathbf{I} \rangle = \overline{\mathbf{P}}_{\mathbf{0}} \triangleleft \overline{\mathbf{P}}_{\mathbf{1}} \triangleleft \cdots \triangleleft \overline{\mathbf{P}}_{r} = \overline{\mathbf{P}}$$

is a *p*-I-chain of \overline{G} , since \overline{P}_i is a *p*-injector of \overline{G} and

$$\bar{\mathbf{P}}_{i}/\bar{\mathbf{P}}_{i-1} = \frac{\mathbf{P}_{i} \mathbf{O}_{p'}\left(\mathbf{G}\right)/\mathbf{O}_{p'}\left(\mathbf{G}\right)}{\mathbf{P}_{i-1} \mathbf{O}_{p'}\left(\mathbf{G}\right)/\mathbf{O}_{p'}\left(\mathbf{G}\right)} \cong \mathbf{P}_{i}/\mathbf{P}_{i-1}$$

is cyclic of order p.

By induction, \overline{G} is *p*-supersoluble, therefore G is *p*-supersoluble.

If $O_{p'}(\mathbb{G}) = \langle I \rangle$, then $O_p(\mathbb{G}) \neq \langle I \rangle$. We consider $P_1(|P_1| = p)$.

Since $\mathscr{C}_{G}(O_{p}(G)) \subseteq O_{p}(G)$, $P_{1} \cap O_{p}(G) = P_{1}$, so P_{1} is subnormal and pronormal in G, therefore it is normal in G.

Now, let $\overline{G} = G/P_1$ and $\overline{P}_i = P_i/P_1$ $(i = 2, \dots, r)$.

In \overline{G} there is a *p*-I-chain. By induction, \overline{G} is *p*-supersoluble, therefore G is *p*-supersoluble.

COROLLARY 2.3. Let G be a finite soluble group. Then G is supersoluble if and only if G contains p-I-chains for any prime p which divides |G|.

We observe that the Theorem 2.2 can't be extended to the class of finite groups for any prime p. In fact, if we consider A_5 (the alternating group of degree 5), then there are a 3-I-chain and a 5-I-chain, but A_5 is neither 3-supersoluble nor 5-supersoluble.

167

But, for the smallest prime which divides |G|, we have the following:

THEOREM 3.1. Let G be a finite group and let p be the smallest among the prime divisors of |G|. Then G has a p-normal complement if and only if G contains a p-I-chain.

Proof. Suppose that G contains a p-normal complement K. Then G is p-supersoluble, so, by Theorem 2.2, G contains a p-I-chain.

Now let P be a p-Sylow subgroup of G relative to the smallest prime which divides |G| and let

$$\langle \mathbf{I} \rangle = \mathbf{P}_{\mathbf{0}} \triangleleft \mathbf{P}_{\mathbf{1}} \triangleleft \cdots \triangleleft \mathbf{P}_{r} = \mathbf{P}$$

a p-I-chain of G. We proceed by induction on |G|. Since $|P_1| = p$ then $P_1 \subseteq Z(P)$. P_1 is weakly closed in G by Proposition 1.2.

By Grun's theorem, we have

$$P \cap G' = P \cap H'$$
. Where $H = \mathscr{N}_G(P_1)$.

Since $H = \mathcal{N}_G(P_1) \supseteq \mathcal{N}_G(P) \supseteq P$ it follows, by Proposition 1.3, that $\langle I \rangle = P_0 \triangleleft P_1 \triangleleft \cdots \triangleleft P_r = P$ is a *p*-I-chain of H, because P_i $(i = I, \dots, r)$ is a *p*-injector of H.

If H = G, then P_1 is normal in G. Let $\overline{G} = G/P_1$ and $\overline{P}_i = P_i/P_1$ $(i = 1, \dots, r)$. The chain

$$\langle \mathbf{I} \rangle = \overline{\mathbf{P}}_1 \triangleleft \overline{\mathbf{P}}_2 \triangleleft \cdots \triangleleft \overline{\mathbf{P}}_r = \overline{\mathbf{P}}$$

is a p-I-chain of \overline{G} . By induction, \overline{G} contains a p-normal complement K, that is $\overline{G} = \overline{KP}$ and $\overline{K} \cap \overline{P} = \langle I \rangle$.

If $\overline{K} = K/P_1$, it follows KP = G and $K \cap P = P_1$.

Then |K| = pm with (p, m) = 1. Since p is the smallest prime dividing |K|, K contains a p-normal complement which is a p-normal complement of G. Let now $H \subsetneq G$. By induction H contains a p-normal complement Q; that is H = QP, $Q \cap P = \langle I \rangle$.

Since $Q \leq H$, there is a normal subgroup in H of index a power of p; then $H' \cap P \neq P$. It follows $G' \cap P = H' \cap P \neq P$, therefore in G there is a normal subgroup such that the factor group is an abelian group of order a power of p. There is therefore a normal subgroup M of G whose index is p. $M \cap P$ is a p-Sylow subgroup of M and it contains the chain:

$$\langle I \rangle = M \cap P_0 \trianglelefteq M \cap P_1 \cdots \oiint M \cap P_r = M \cap P$$
.

For any $i = 0, 1, \dots, r-1$, we have either $|M \cap P_{i+1}: M \cap P_i| = p$ or $M \cap P_{i+1} = M \cap P_i$. Taking away the repetitions, we have a chain:

$$\langle I \rangle = K_0 \triangleleft K_1 \cdots \triangleleft K_s = M \cap P$$
 where $|K_i/K_{i-1}| = p$ $(i = I, \cdots, s)$

and K_i is a *p*-injector of M, by Proposition 1.3.

A. L. GILOTTI e L. SERENA, p-Injectors and finite supersoluble groups

It follows, by induction, that M contains a p-normal complement L which is a p-normal complement of G.

COROLLARY 3.2. A finite group G is supersoluble if and only if it contains p-I-chains for any prime p which divides |G|.

Proof. Let G be supersoluble; then, by Theorem 2.2, it contains such chains. On the other hand, let p be the smallest prime dividing |G|. By Theorem, 3.1, G contains a p-normal complement K. Since K contains q-I-chains for any prime q which divides |K|, proceeding by induction K is supersoluble; therefore G is soluble. By Corollary 2.3, G is supersoluble.

References

- [I] W. ANDERSON (1975) Injectors in finite solvable groups, « Journal of Algebra », 36, 333-338.
- [2] A. L. GILOTTI e L. SERENA p-Iniettori nei gruppi finiti p-risolubili, «Rend. Acc. Naz. dei Lincei» (to appear).

[3] POWELL-HIGMAN (1971) - Finite simple groups. Academic Press.