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Teorie relativistiche. —- Minimal prescription for matter terms 
in the gravitational theory (*b Nota di G ia n c a r l o  S p i n e l l i , presen
tata <**> dal Socio C. C a t t a n e o .

RIASSUNTO. — È noto che una teoria gravitazionale può essere costruita con un approc
cio di teoria dei campi nello spazio tempo pseudoeuclideo ove il potenziale gravitazionale 
viene rappresentato con un tensore doppio simmetrico <jjaß. Poiché tale approccio ha carattere 
iterativo, si presenta il problema della convergenza. Deser ha dimostrato che i termini di 
puro campo convergono ai corrispondenti della relatività generale. Nel presente lavoro si 
mostra come i termini della densità lagrangiana della teoria esatta, relativi alla materia ed 
alla sua interazione con il campo, si possano ottenere con un metodo di minima prescrizione 
a partire dalla densità lagrangiana di ordine zero. In tal maniera si ottengono i corrispondenti 
termini della relatività generale.

i . In t r o d u c t io n

It is well known [1, 2] that gravitation can also be treated as a usual 
field theory starting from the flat space-time. A symmetric tensor i];aß repre
sents the gravitational potential in the pseudo-Euclidean “ unrenormalized ” [1] 
space-time (i.e. the space measured by ideal clocks and rods unaffected by 
gravity). Real rods and clocks are affected by ^aß and one can alternatively 
describe the motion measured by such real rods and clocks thinking of them 
as unaltered but so obtaning a curved space-time.

The fact is that such theories can be constructed only in an iterative form. 
One of the major problems is to show the convergence of the method and 
obtain the exact theory to which it converges. It was shown by Ogievetsky 
and Polubarinov [3] and independently by Wyss [4] that such a procedure 
converges to general relativity, imposing gauge invariance to all orders and 
only for the pure field terms. In a fundamental paper [5] Deser has shown 
the convergence to general relativity in a more general case and also in the 
presence of m atter. As to the pure field terms Deser implements a linear 
action integral written in the Palatini form. He observes that taking as initial 
variables the contravariant components of the fundamental metric tensor, 
the exact action integral is reached at the third step of the iteration. As to 
the m atter part (pure m atter term  and interaction terms between m atter and 
gravitation) he uses the argument of the minimal prescription.

The minimal prescription for m atter terms is here treated explicitly and 
the convergence to the relevant term  of general relativity shown. The thing 
is of interest also for a future application to the pure field terms in order to

(*) Lavoro eseguito nell’ambito dell’attività del G.N.F.M. del C.N.R.
(**) Nella seduta del 23 giugno 1977.
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have a general procedure to obtain the exact theory from the iteration even 
in those cases where the lucky circumstance of the end of the iteration pro
cedure at the third step only, does not take place.

2. T h e  it e r a t io n  pr o c e d u r e

The usual flat space-time iterative procedure is here briefly reported for 
reader’s convenience and for stating the problem.

We consider an “ unrenorm alized” [1] pseudo-Euclidean space-time 
(i.e. the space measured by ideal clocks and rods unaffected by gravity). 
Gravity is represented by a symmetric tensor potential <J;aß. The theory deals 
with test particles whose coordinates are za in a generic reference frame of 
such flat space-time. The Dicke framework is accepted and then the theory 
has to be Lagrangean [6].

By varying the gravitational tensor potential in the action integral I, 
and equating to zero,

the field equations are obtained.
By varying the dynamical variables and equating to zero,

(2) *I =  o ,(z)

the equations of motion are obtained.
The action integral is:

where xa are the coordinates of the generic point of the pseudo-Euclidean 
space-time, a is the determinant of the fundamental metric tensor aa§ of the 
pseudo-Euclidean space-time, and L is the Lagrangean density. The latter 
can be seen as the sum of a part relevant to pure field terms L F and a part 
relevant to m atter plus interaction LM:

(4) L  =  L f +  Lm •

Taking into account that in this kind of theories the maximum order 
of the derivatives of tpaß is the second one, éq. (1) is equivalent to

where semicolons stand for covariant differentiation.
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Here we consider only the case of m atter made out of incoherent point
like particles. Taking into account that in the pseudo-Euclidean space-time 
the components of the four velocity of a generic particle are subjected to 
the constraint

(6) z  za =  I ,

(where z a =  dza/ds  , ds2 =  aa$ dza djsP, and we put the light speed c =  i), 
eq. (2) is equivalent to [7, 8]

(is A A __ A  = A IVA * 1
ds 5z“ dz“ d j [[&>  /  “ J  ’

where D/cLs* denotes covariant differentiation.
At first order (in the coupling constant / )  the well known Lagrangean 

densities are

(8)

and

(9)

U1’ = Ì U y A ’" -  'U r r V;ß + T  -  i *;« .

Lff =  - A ,  f  dt A $  S4 (x -  xw ) =  
y — a j

=  —A —- j di- §4 (x —  z (q>) ( /^ aP — Æa3) xa xß .
y — a J

where m (q) is the proper mass and z {q) the coordinates of the ^-th particle of 
the considered incoherent m atter and, in general, is defined by Lm* =

=  (— d y 1̂  j* S4 (x  — z iq)) dt, t being an auxiliary integration variable.

Putting eqs. (8) and (9) into eqs. (5) gives the first order field equations

(IO) U V *  -  k <a;W° +  r 3 +  (<T;oX -  □ + ) =  / T (P)a3 .

where

(I I) T lp)aß =  - U .  2  « (,) f  ds S4 (* — *(,>) *3 ,
y  a (q) J

and where G ^ aß =  ^aß;xX and parentheses containing two indices denote 
symmetrization.

Putting eqs. (8) and (9) into eqs. (7) gives the first order equations of 
motion

0 ^ )  [ ( i  ~f" / lV v  %(q) %{q)) %(q)a ^($)];y  %{q) ~  .Alh'Xîa ^(ff) ^(q)  >

for the ç~th particle.
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Eqs. (10) and (12) are not consistent. Indeed the left hand side (LHS) 
of eqs. (10) is divergenceless, thus the same must happen for the RHS. 
But this is in contrast with eqs. (12). To overcome this drawback one takes 
as second order field equations eqs. (10) in which the RHS has been sub
stituted by the total energy-momentum tensor Taß, i.e. a symmetric tensor 
whose divergence equated to zero gives eqs (12). It can be shown that a parti
cular energy-momentum tensor can be obtained [9, 10]as

0 3 )
, 2  $(V — a L)

___\ d ( j - a  L) / d (1 —  a L ) \  ]
Ì ~ a  L \ ^ “e.r / ;yJ

It is given explicitly in eqs. (13) of Ref. [10] (where the presence of an electro
magnetic field is also considered). But it is not unique [11], since it can be 
implemented by the most general second order divergenceless tensor con
taining 5 arbitrary parameters (4 if one requires the theory to be Lagrangean). 
Eventually we have:

( J4) Taß =  Taß +  4 ß •

This is the tensor to be substituted for T ^  at the RHS of (10) in order to 
have the second order field equations.

Now one can get the second order action integral I (2) as the one which 
inserted in (1) gives the second order field equations. Then, by (7), one gets 
the second order equations of motion. Again these two sets of equations are 
not consistent as it happened for the first order. One repeats the procedure 
and J:he method becomes iterative. The same happens also if one assumes 
the H ilbert gauge to all orders [12].

3. C o n v e r g e n c e  (to  g e n e r a l  r e l a t iv it y )

As to the pure field terms it was shown by Deser [5] that the exact action 
integral is reached at the third step of the iteration. He obtains such result 
by writing the first order action integral in the Palatini form and taking as 
“ initial variables” the contra variant components of the fundamental metric 
tensor. The same result has been obtained taking into account all the arbi
trariness of the energy-momentum tensor, both assuming the Hilbert gauge 
[12] and without such limitation [11 ].

As to the m atter part (pure m atter and interaction terms between m atter 
and gravitational potential) the argument of minimal prescription is used [5]. 
A deduction of such minimal prescription for the m atter terms is here given.
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Let L be the exact Lagrangean density to which the theory converges, 
and L u) the Lagrangean density of the ^-th step.

As we have seen in the preceding section SL^/S^aß — °  gives the n-Xh order 
field equations. The same equations can also be obtained starting from the 
(n — i)-th order field equations by substituting in the RHS of them T^ß =  
— 2 (— ^)“ 1/2 8 (L(w-1) ]/■— a ) / 8aa® for T ^ “ 1}. We are now considering only 
the m atter terms of such equations, that is terms in which the m atter appears 
either alone or coupled with the gravitational field. Such terms appear only 
at the RHS of field equations written in the form of eqs. (io). Thus, if we 
call L if  the part of the n-th. order Lagrangean density relevant to matter, 
our procedure implies

(15) /
s c u r 1’ f ■a) §Lta)M

f 8a,«3 8+«ß

The minus sign comes from the fact that SL^/S^aß gives the m atter terms 
of the field equations written at the LHS of them, i.e. it gives —

Now it can be noticed that Lm\ because of its structure, does depend 
neither on the derivatives of aaß nor on the derivatives of ^aß. (In passing 
we can notice that none of these lucky circumstances does happen for 
the other part of the Lagrangean density, that is for pure field terms). 
This fact is taken into account by using the symbols 3/ 9aaß and 3/ 3^aß for 
the functional; derivatives S/Saaß and 8/8^aß. Hence, eqs. (15) can be writ
ten as

(16) 3 (Lm y — & ) _3 (Lj? y — o  )
2 aocß dh{aß

where h^ß =  — 2 / ^ aß. Because of the structure of LM [see eqs. (9)], and 
because it cannot simultaneously be for every a if q^f=-si eqs. (16)
imply

(17) da^ß
i A g

3̂ aß

where is calculated with v*q) — a <® is a function of aaß (g) and of
haß (g). Equations (17) are ten for each n and q (a , ß =  o , 1 , 2 , 3 ) .

To the set of conditions (17) one must add that is the exact expres
sion of A(ff) when no gravitational field is present, i.e.

(18) Aw («>*)  =  A<?> (« . o) =  9 (ï) («) •

The symbols a and h denote that depends on all the components aaß 
and haß\ the function 9 ^  (a) is introduced for shortening the notation.
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Eliminating the gravitational field gives, to every order of approximation, 
the zeroth order approximation; we have therefore to add the condition

(19) A(ï) (« . o) =  A(î) (a , 6) =  <p(î) (a) .

For sake of simplicity, let us first consider one particle only and the 
monodimensional case. Here the eqs. (17), (18) and (19) reduce to

(20) df(n) Clfln~1)
ch 9(2

(21) f 0) (a , h) = f ( a  , o) =  <p (d) ,

(22) f n) {a , o) = / (a , o) =  9 (a) ,

where we have substituted by a function / (n) (a , h) with a =  a(z)
and h — h (2).

Equations (20) imply
h

(23) ( a  , À)  = / * > ( « ,  o )  +  J d? .
By eqs. (21), (22), and (23) we get

(24) /<»> (a , h ) =  yj- cp0'' (a) ,

where 9 (-?‘) is the j - th  order derivative of 9 with respect to a. If the se
quence { f {n)} converges uniformly, in a domain D, to a function f  (a , k), 
it is

(25) f ( a , k )  =  cp(a +  k ) .

Let us now generalize to our case where a and h have both ten com
ponents, and eqs. (17) are ten for each n and q. By eqs. (17), (18), and (19) 
one can obtain

(26) ( a , Ä) =  <p( y (a) +   ̂ H------- b (^aß — —) 9<$> (a) •2a ^  \  da-tf /

If  the sequence {A^j} uniformity converges to a function A (q) (a , h), eq. (26) 
implies

(27) A (g) (a , h) =  ep(?) (a +  Ä) =  A $ (a +  h) .

This is what one usually calls minimal prescription.
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In our case of point-like particles it is 

, 0, A(0) (  dx° d ^ \ 1/2
(28) - A y  =  W(s) .

By eq. (26) one gets

(29) -  A(J) =  »*«,> %  (  l l* )  (A.3 ^  (a aß —

The sequence {A^} uniformly (with respect haf) converges for x * =  zfó if 
i ha$ z*9) zfq)\ <  I. Under this condition we have

[
d x a d x p 
(« a ß  +  Axß)

Now we make the hypothesis that the exact A(̂ } of the theory is an 
analytic function of the haß.

Under this hypothesis we can make an analytic continuation of A iq) on the 
real axis for ha$ >  — 1. By the identity principle for analytic functions,
the two functions (the original and the continued one) will remain the same 
(given by eq. (30)) in the whole domain ha$ z^q) >  — 1.

If the theory is reinterpreted [1, 5, 11] in a Riemannian space whose 
fundamental metric tensor in given by

(31) Äxß — aa$ +  >

the exact A(ff) (and hence the exact action integral IM) in such space time is 
obtained by Afq) (or by Im) of the flat space-time by the substitution aa$ —> ga$. 
In such a way the m atter term  of general relativity is obtained:

(32) Im ”  I }
q J

where the star denotes that d h a s  been calculated in the curved space-time. 
The condition ha$ z^q) >  — 1 corresponds to d ^ )  >  o, i.e. to having speeds 
lower than the light speed.

As to the pure field terms, the convergence to general relativity was pro
ved by Deser [5]. Thus the equivalence of the two approaches to general 
relativity (the curved space-time approach and the field theory approach in 
the flat space-time) seems to be proved. The convenience of the use of one 
or of the other approach will only be technical and will depend on the parti
cular problem to be treated.
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