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Geometria differenziale. —  Results and a conjecture on fixed  
points. N ota di B r ia n  F is h e r ,  presenta ta  (*> dal Socio B. S e g re .

R iassunto. •— Si dimostra che, se S ed T sono applicazioni di uno spazio metrico com
pleto X in sè, con S oppure T continuo, tali che

d  (fix , TSy) ^  c max {d (x , Sy) , d  (x , Sx) , d  (Sy , TSy) , |  [d (x , TSy) +  d  (Sy , Sx)]}

per tutti gli x  , y  di X, dove o ^  c <  1, allora S ed T hanno un unico punto fisso comune. 
Si ha la congettura che, se

d  (S;r , TSy) ^  c max { d  (x , Sy) , d  (x , S*) , d  (Sy , TSy) , d  (x , TSy) , d  (Sjf , S^)} , 

allora S ed T hanno un unico punto fisso comune.

In a recent paper, see [1], the following theorem was proved:

Theorem  i. Suppose S is a continuous mapping and T is a mapping 
of the complete metric space X into itself satisfying the inequality

d  (Sx , TSy) < a d ( x ,  Sy) -f b {d (x , Sx) +  d  (Sy , TSy)} +

+  c {d (x , TSy) +  d  (Sy , Sar)

fo r  all x  , y  in X, where a , b , c >_ o and a +  2 b +  2 c <  1, then S and T 
have a unique common fixed  point.

We first of all prove the following generalization of Theorem 1:

Theorem 2. Suppose S and T are mappings of the complete metric space 
X into itself^ with either S or T continuous, satisfying the inequality

d  (Sx , TSy) <  c max {d (x , Sy) , d  (x f Sx) , d  (Sy , TSy) , 

H d ( x , T S y )  +  d ( S y ,S x ) ) }

fo r  all x , y  in  X, where o < £ < i ,  then S and T have a unique common 
fixed  point.

Proof, Let # be an arbitrary point in X. Then 

d ((ST)n x  , T (ST)n x) <   ̂max { d ( T (ST) ”- 1 x  , (ST)n x) , d((ST)nx  , T  (ST)” *) , 

i  d  (T (ST)”“1* , T (ST)” *)} <  c max {d (T (ST)”“1 * , (ST)” *) , 

d ((ST)” * , T  (ST)” *) , i  [d (T  (ST)”“1* , (ST)” *) _

+  d  ((ST)” * , T  (ST)” *)]} =  cd (T (ST)”“1 * , (ST)” *) ,

(*) Nella seduta del 23 giugno 1977.



770 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LX II -  giugno 1977

since c <  I . Similarly, we have

d  (T (ST)"-1 * , (ST)" x) <  cd ((ST)"-1 * , T (ST)"”1 x ) , 

and it follows that

d  ((ST)" x  , T (ST)" x) <  c2"-1 (T* , ST*)

and

d  (T (ST)"-1 x  , (ST)" *) <  *2"~2 (T* , ST*) .

Since £ <  I, it follows that the sequence

{x , T* , ST* , , (ST)"* , T (ST)" * , • • •}

is a Cauchy sequence in the complete metric space X and so has a limit s  in X. 
Thus

lim (ST)"* =  lim T  (ST)" * =  s  .
n-> 00 n~>oo

Now suppose that S is continuous. Then

lim S [T (ST)” x] =  Sz  =  z
n-~>oQ

and so z  is a fixed point of S. Further

d  (s , Ts) =  d  (Sz  , TSs) <  c max {d (z , S z) , d  (S z  /TSs)., 

i  d  (s', TSs)} =  cd (z f Ts)

and, since c <  1, we see that Tz  =  z. Thus z  is a common fixed point of S 
and T-

Alternatively, let us now suppose that T is continuous. Then 

lim T  [(ST)" *] =  Tz  =  z
n-> 00

and so z  is a fixed point of T. Further

d  (s , Ss) <  d  (z , T  (ST)" *) +  d ( S z } T  (ST)" *)

<  d { z  , T  (ST)" *) +  -c max {d (z , (ST)" x ) , d  (s , Ss) , 

d  ((ST)"* , T (ST)"*) , i  [d(z  , T (ST)"*) +  d ((ST)"* , Ss)]}

and On letting n tend to infinity we see that

d  (s , Ss) <  cd (s', Ss) .

Since c <  I, it now follows that s is again a common fixed point of S and T.
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Now suppose that z* is a second common fixed point of S and T. Then

d  (z , z )  == d  (S z , TS z )  <   ̂ max (# , S z ) ,  d  (z , S z) , d  (Sz\ TSz')  ,

i  [d (z , T & 0  +  (S /, S*)]} =  cd (z , *').

Since c <  I , we see that z =  z f and so the common fixed point z  is unique. 
This completes the proof of the theorem.

It was shown in [i] that Theorem i would not hold if neither S nor T 
was continuous. The condition that either S or T be continuous in Theorem 2 
is therefore necessary.

On putting S =  T in Theorem 2 we have the following

COROLLARY. Suppose T is a continuous mapping of the complete metric 
space X into itself satisfying the inequality

d  (Tx. , T 2 y)  <  c max {d (pc , Ty) , d  (x , Tx) , d  (Ty , T 2 y) , 

è [d (x , T 2y)  +  d  (Ty , Tx)]}

fo r  all x  , y  in  X, where o <  c <  1, then T has a unique fixed  point.

We can however prove the following theorem which is a generalization 
of this corollary:

THEOREM 3. Suppose T is a continuous mapping of the complete metric 
space X into itself satisfying the inequality

(1) d  (Tx , T 2y ) < c  max {d (x , Ty) , d  (x , Tx)  , d  (Ty , T 2y ) ,

d ( x  , T i y) , d ( J y  ,Tx)}

fo r  all x } y  in  X, where o < £ < i ,  then T has a unique fixed  point.

Proof’. Let x  be an arbitrary point in X and let us suppose that 
the sequence {Tn x  : n =  1 , 2 , • • •} is unbounded. Then the sequence 
{d (Tx  , T n x) : n =  1 , 2 , • • •} is unbounded and so there must exist an 
integer n >  2 such that

d  (Tx } T n x) >  — ^ ( T # , at) .

We will suppose that this n is the smallest such n so that we will have

(2) d  (Tx  , T n x) >  — d  (Tx  , x) >

max {âf (Tx  ,T r *). : r  1 , 2 ,• • n — 1} .
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However, with this n we know that 

(3) d ( T x  ,T W4 <  c m ax {d (* , T ^ 1 x) , d  (x , T x ) , d  (T^ 1 x  yT n x) ,

d-(x . ,Tn x) yd  (Tx , T n_1 x)} <  c max {d (x , T n~l x) , 

d  (T71" 1 x  , T n x) j d  (x , T w x)}

on using inequality (2).
Now

d  (Tx  , T n x) <  (.r , T^“1 x)

implies that

d ( T x  , T n x ) <  c {d (x , Tx)  +  d  (Tx  , T n~l x)} < ( i  —  c)d  (T x  , T ”x) +  

+  cd (Tx  , T n_1 x) =  d  ( T x , T n x) ,

using inequality (2), which gives a contradiction.
Next

(4) d  (Tx yT n x) <  cd (Tn~x ^  , T n x)

implies that on using inequality (1)

d  (Tx y T n x) <  c2 max {d (Tn~2 # , T n~x x) , (T"“1 x  y T n x) , d  (T n~2 x  , T n x)}

<  max {d (T n~z x  , T n~2 x):y d ( T n~2 x  yT n~ 1 x ) , d (Tn~*x , T^-1 ,

^  j T> x) , ^  (Tn~2 ^ , T n x)}

and so on. Inequality (1) can be used indefinitely, since once we obtain a term 
of the form d  (Tx  , T r x) with r =  2 , 3 , • • •, n — 1, we can omit it because 
of inequality (2) and we can omit the term d (Tx , T n x), because of the ine
quality itself. It follows that

d  ÇTx yT n x)'<-xk' max {d'(TT x  , T s x) : r  =  1 , > 1 , s =' r  1 ,• * •

for £  =  I , 2 , • • • and so

d  (Tx  , T w <  ———  d  (Tx  , x)

for large enough k y since c <  1 and n is fixed. This contradicts the definition 
of n and so inequality (4) cannot hold.

Finally

d  (Tx  , T n x) <  cd (x , T n x)

implies that

d  (Tx  , T n x) <  c {d(x  \ T;r) +  d ( T x  y T n x)}



Brian Fisher, Results and a conjecture on fixed points 773

and so

d  (T x  , T* x) <  ~ ~ f i  d  (x , Tx) ,

which again gives a contradiction.
It follows that inequality (3) cannot hold and this implies that our assump

tion that the sequence {Tn x} is unbounded is false.
Having established that the sequence {Tn x} is bounded, let us put

M =  sup {d (Tv x  , T q x) : p  , q — o , 1 , 2 , • • •} <  00 .

Then, for arbitrary z >  o, choose N so that

M <  e .

It follows that for r , n >  N

d  (Tr x , T n x) <. c max {d (Tr~ 1 x  , T^_1 , d  (Tr-1 x , T r x) , d  (T^“1 x  , T n x) ,

d  (T^”1 x -,, T n x) , ^  (T**“1 x  , T r a:)} <  M <  e .

Thus x)  is a Cauchy sequence in the complete metric space X and so has 
a limit -s' in X. Since T is continuous it follows that

Ta' =  -s'

and so -S' is a fixed point of T. The uniqueness of z follows easily. This com
pletes the proof of the theorem.

The above results suggest that we make the following:

CONJECTURE. Suppose S and  T are mappings of the complete metric space 
X into itself \ With either S or T continuous, satisfying the inequality

d  (Sx , TSy) <  c max {d (x , Sy) , d  (x , S*) , d  (Sy  , TSy) , d  (x , TSy) , d  (Sy , S :̂)}

fo r  all x  , y  in X, where o <  c <  1, then S and T have a unique common 
fixed  point..

We now consider analogous results for compact metric spaces. First 
of all we have

Theorem 4. Suppose S and T are continuous mappings of the compact 
metric space X into itself satisfying either the inequality

d  (Sx , TSy) <  max {d (x , Sy) , dfix  , Sx) , d  (Sy , TSy) , \  [d (x , TSy) +

+  d  (Sy , Sx)]} i f  max {d (x , Sy) , d  (x , Sx) , d  (Sy , TSy) , 

d  (x , TSy) , d  (Sy , Sx)} f i  o

51 RENDICONTI 1977, voi. LXII, fase. 6.
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or the equality
d  (Sx , TSy) =  o

otherwise, fo r  all x  } y  in X, then S and T have a unique common fixed point. 

Proof \ First of all suppose there exists c <  1 such that

d  (S# , TSy) <  c max {d (x , Sy) , d  (x , Sx) , d  (Sy , TSy) , 

i [ d ( x , T S y )  +  d ( S y ,S x ) ] }

for all x  y y  in X. The result then follows from Theorem 2.
If no such c exists, then if {cn} is a monotonically increasing sequence 

of real numbers with lim cn =  1, we can find sequence {.xn} and {y n} in X 
such that tlr>~

d  (Sxn , TSyn) cn max {d  (xn ? Sy^) , d  (x n , S#w) , d  (Sy^ , bSy^) , 

i  [d (xn , TSy n) +  d  (Sy n , Sxn)]}

for n — I , 2 ,■••• . Since X is compact, we can choose convergent subse* 
quences {xn(r)} =  {y'} and {yn(r)} =  {y^} of {^} and {yw} converging to x  and 
y  respectively. Then if { ^ (r)} — {4 } , we have

(iSxr , TS') >  cr max {d (x\ , Sy') , d  (xr , S#') , d  (Sy' , TSy') ,

i [ ^ ( 4 ,TSy;) +  ^ (S y ; ,S 4 )]}

for r  =  I , 2 , * • •. Letting r  tend to infinity we see that

d  (Sx , TSy) >  max {d (x , Sy) , d  (x , Sat) , ^  (Sy , TSy) , 

■ i[ d ( x ,T S y )  +  J ( ß y , S x ) ] } .

This can happen only if

x  =  Ŝ r =  Sy =  TSy

and this implies that % is a common fixed point of S and T.
Now suppose that x ' is a second distinct common fixed point of S and T. 

Then we have

d  (x , x )  =  d  (S# , TS#')

<  max {d (x , Sx') , d  (x ,Sx)  , d  (S#', TS#') , \  [d (x , TS#') +

+  d ( S x ,) Sx)]} =  d ( x i x f) J

giving a contradiction The common fixed point must therefore be unique. 
This completes the proof of the theorem.
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When S =  T we have

Theorem  5. Suppose T is a continuous mapping of the compact metric 
space X into itself satisfying either the inequality

d  (Tx  , T 2 y) <  max {d (x ,Ty) , d  (x (Tx) , d  (Ty ,T2y)  , d  (x ,T 2y) yd (Ty  ,Tx)} 

i f  max {d (x , Ty) , d (x , Tx)  , d  (Ty  ,T 2 y)  , d  (x , T 2 y) , d  (Ty ,Ty)} f i  o 

or the equality
d  (Tx  , T 2y) =  o

otherwise y fo r  all x  , y  in X, T  then T  has a unique fixed  point.
The proof of this theorem is omitted, being very similar to that of 

Theorem 4 apart that Theorem 3 is used in the proof instead of Theorem 2. 
We finally have

THEOREM 6. Suppose S and T are continuous mappings of the compact 
metric space X into itself satisfying either the inequality

d  (Sx , TSy) <  max {d (x , Sy) , d  (x , Sy) , d  (Sy , TSy) , d  (x , TSy) , d  (Sy  , Sy)}

i f  max {d (x , Sy) , d  (x , Sx) , d  (Sy , TSy) , d  (x , TSy) , d  (Sy , Sx)} f i  o

or the equality
d  (Sx , TSy) =  0

otherwise y fo r  all x  , y  in X. Suppose further that there exists no c> with 
o <  c <  I , such that

d  ( fix , TSy) <  c max {d ( x , Sy) , d  ( x , Sx) y d  (Sy , TSy) , d ( x , TSy) , d  (S y , Sy)}

fo r  all x  ,y  in X, then S and T have a unique common fixed point.

The proof of this Theorem is omitted. The proof is again very similar 
to the proof of Theorem 4 but this time the condition of the theorem is used 
in the proof instead of Theorem 2.

If our conjecture is true, we can of course omit the condition in the 
Theorem that there exists no c <  1 such that

d  (S;r, TSy) <  c max {d (x , Sy) , d  ( x , Sy) , d  (Sy , TSy) , d (x , TSy) , d  (Sy, Sy)} 

for all x  , y  in X.
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