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Geometria differenziale. —- Decompositions o f recurrent conformal 
and WeyVs projective curvature tensors. Nota di S h r i  K r i s h n a  D e o  

D u b e y ,  presentata <*> dal Socio B. S e g r e .

R iassunto. — In analogia con quanto già effettuato da Takano [4], Sinha e Singh [3] 
Singh [2], qui si ottengono varie decomposizioni dei tensori ricorrenti di curvature 
^jìcl l , ^k l 1 e 'W'jhl *n uno spazio speciale di Kawaguchi.

i . In t r o d u c t io n

In an ^-dimensional special Kawaguchi space Kn of order 2, the arc 
length of a curve x l =  x l (t) is given by the integral (Kawaguchi [1])

(1.1) J =  j  [Aj (x , X) x l +  B \ x  , x ) fp  At , fi 7^0  , 3/2,

where x 1 — dxildt and x i = d 2x ildt2.
Let vl be a contra variant vector field homogeneous of degree zero with 

respect to x*. The covariant derivatives of vi are defined by ([1 ])

Vi ^  ^  ~~ 4 )  +  r ^ )0-) vh,

v X JU)
dvl
di?

(dj =  a /a ^ ) .

The conformal curvature tensor C*ii’1 in a special Kawaguchi space is 
defined as

• •% _ p *• • -Î^jkl — ---(1.2)

n +  I

where

( r -3) p*- • ■t ĵki

(14)

and

(1-5)

S% + (r* -  4 -  sd  -  ( r h -----4 v s«) •n — 1 \  n-\- I / n — 1 \  n +  1 /

dxk +  n ^ - n i n i  +  n î n 1dx* Llj 1Lkh Lj l l lk(h) nh T T Ì(k) >

p * _ p*- • aU — ^akl

j k l ------ Kkjl •

s i'jk •p*- • aF̂ jka y

(*) Nella seduta del 23 giugno 1977.
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Also, we have

(1.6) i I -i I^jU 1 Ĵclj 1 ÎjJc — °  >

( 1-7) '* -\- Ctji"1 — 0

and

(1.8) €% :*=  €%■* A

The Weyl tensor in a special Kawaguchi space is expressed as

0 -9) w i - H t  m i -  * ( 3H* 9 H ) x \
n ~b 1 \ dxa dxk )

where

(1.10) Hi- — K J '  x } , H — 1 H i.n -— I

The Weyl projective curvature tensors have the following properties:

(I.U ) w } „ - w v :  wjj,. — 0 ,

(1.12) W%X* =  W i , w M i l = w%,

W}« =  - W iM,

(1.14) w i = c*hl-i x j i l ,

(I-IS)

(1.16) II 0 & ** II 0 II 0

The curvature tensor R * ^ ' i n  a special Kawaguchi space is said to be 
recurrent or bi-recurrent, if it satisfies the conditions

(DI 7) Vm R jjcl ' y Vm O

or

(1. 18) Vm R % r l =  R* '̂ 1 ( ß -M  * ^  o)

respectively, in which vm and are the recurrence vector field and the 
recurrence tensor field.

Equations (1.2), (1.4), (1.17), (1.18) yield that the curvature tensor 
% is recurrent and bi-recurrent with the same recurrence vector field 

and recurrence tensor field as in the case of that is,

(1.19) v wc * * r  -  vmc % r  , (c* * r ^ o )

and

(1.20) Vp Vm =  v  (%•* , (C ji V o ) .
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The Weyl projective curvature tensor W ljkl in a special Kawaguchi space 
is said to be recurrent or bi-recurrent, if it satisfies the conditions

(1.21) VmW5w =  Xw Wjw (W 5w ^o)

or

(1.22) v g Vw Wj« =  w Jb (W},, #  o)

respectively, where Xw and aqm are the recurrence vector field and the recur
rence tensor field.

2. D ecom p osition  o f  r e c u r r e n t  c u r v a tu r e  t e n s o r  R*k l'1

We assume that the decomposition of the recurrent curvature tensor 
R h a s  the following form

( 2 - 0  R - M  l =  r % Zjki>

where sjkï is a non zero decomposed tensor field and r l is a non zero vector 
field satisfying the condition

(2.2) rmvm =- 1,-

in which vm is the recurrence vector field.
We suppose that the curvature tensor is recurrent of the first order. 
Equations (1.17) and (2.1) yield

(2-3) (Vm r*) zjU +  4  Vm zm = vmr l zJkl.

If we suppose that (Vm^ )  =  o, then (2.3) can be written as
i

(2-4) fi  (Vw zm  — vm zm) =  o .

Since f i  o

(2 *S) Vm &jlcl ~  ^jkl y

which gives the following:

THEOREM (2.i). I f  the recurrent curvature tensor R*fi has ^ e decompo
sition (2.1) and the vector field r l satisfies the condition VOT r% ~  o then the 
decomposed tensor field Sjkl is recurrent with the same recurrence vector field  
as the tensor R*$‘\

Theorem (2.2). I f  r l — x l and the recurrent curvature tensor 1 has 
the decomposition (2.1) then the decomposed tensor field Sjki ts recurrent with 
the same recurrence vector field as the tensor R ^ - 'V
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Equations (1.5) and (2.1) yield

(2.6) Zjty =  Zfcji .

Using the fact that =  Tllj and equation (1.3), we have

(2.7) +  +  =

Equations (2.1) and (2.7) yield

(2.8) Zjjci +  Zjcij +  Zijk — o .

Contracting the indices 7 , /  and 7 , j  in equation (2.1) and using (1.4), we get

(2.9) Sjk==raeßa

and

(2.10) Rti =  ra eaU.

THEOREM (2.3). I f  the recurrent curvature tensor R% fl is decomposed 
with the tensor field then a sufficient condition in order that is equal
to the conformal curvature tensor '1 is that the relation

(2.11) SJ (n — 1) Zjfca +  (n +  1) (8} zaU — 8\ zâ  +  8& zlja — 8} zUa — o 

holds.

Proof. Equations (1.2), (2.1), (2.9) and (2.10) yield

(2.12) ^  r ' z jM

~~ (n +  1) (n ~ j y  (̂  — 0 em  — K  O + 0 tan +

+ K  z l ja +  $} (« +  1) z aU — ZUa] .

The proof of the above theorem is an immediate consequence of equations 
(2.1), (2.11) and (2.12).

THEOREM (2.4). I f  the bi-recurrent curvature tensor has the decom
position (2.1) and the vector field r l satisfies the condition Vw *̂ =  o then 
the decomposed tensor field is bi-re current with the same bi-recurrence tensor 
field as the tensor

Proof. Equations (1.18) and (2.1) yield

(2 *1 3 ) r * ( f i p  ^ m  z jU  ^pm  z jJcl) “f~ e jkl ( f i p ^ r n  r ^) =  ° •

Using the relation Vp 1  mr{ =  o and the fact that r{ -fi o, we find that zm  is 
bi-recurrent with the bi-recurrence tensor field apm.



764 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. L X IT - giugno 1977

3. D ecompositions of recurrent conformal curvature tensors

We suppose that the decomposition of the recurrent conformal curvature 
tensor C^u '1 has the following form:

(3*0 C’jkl =  S* PjJcl t

where pjU is a non zero decomposed tensor field and si is a non zero vector 
field satisfying the condition

(3-2) S*vm =  I ,

in which vm is the recurrence vector field.
Equations (1.6), (1.7) and (3.1) yield

(3-3) 9m  +  Puj +  Pm =  0 >

(3 4 ) Pm +  Pm ~ °  •

Multiplying equation (3.1) by #r and using (1.8), we get

(3, 5) =

where

(3-6) Pjk ~  Pjkifi1-

Equations (1.19) and (3.1) yield 

(3*7) m Pjkl ' Pjkl) ^  “t" Pjkl ^  O .

The following theorems are an immediate consequence of equation (3.7):

Theorem (3.1). I f  the recurrent conformal curvature tensor C*ki 1 has the 
decomposition (3.1) and the vector field s% satisfies the condition Vm s% — o then 
the decomposed tensor field pjja is recurrent with the same recurrence vector field  
as the tensor C

Theorem (3.2), I f  the recurrent conformal curvature tensor C '% has the 
decomposition — x % pjkl, then the decomposed tensor pjU is recurrent with
the same recurrence vector field as the tensor 

Equations (1.20) and (3.1) give

(3*8) s^  ( f i p  Vw pjki — dpm p j k l ) . 4  Pjkl ^ p  ^ m  == .9 *

Using the relation Vmsi =  o and the fact si 9^0, we find that

(3*9) V pjkl ^  Mpm Pjkl •
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Thus, we have

T heorem  (3.3). I f  the bi-re current conformal curvature tensor has the 
decomposition (3.1) and the vector field s% satisfies the condition Vp Vm s '1 ~  o 
then the decomposed tensor field pjkl is bi-recurrent with the same bi-recmrrenee 
tensor, field as the tensor C \

We suppose that the recurrent conformal curvature tensor C*k{ '1 has 
the decomposition in the following form:

(3.10) =

where <\)kl (x , x) is a decomposed tensor field and X} (x , x) is a tensor field,

THEOREM (3.4). I f  the recurrent conformal curvature tensor has the 
decomposition (3.10), then the following identity holds'.

(3-10 Pi tykl +  Pk tyli +  Pi ^ik —

where

(3-12) Pi =  ~̂ -i v i •

Proof. Equations (1.6) and (3.10) yield

(3*13) X} ^ kl +  X \ +  XI ^ jk =  o .

Multiplying (3.13) by the recurrence vector field v{ and using (3.12), we 
obtain the identity (3.11).

Multiplying equation (3.10) by the recurrence vector field vx and using 
relation (3.12) we get

(3 • *4) vi Cjjci * — p-j fykl •

Equations (1.7) and (3.10) give 

(3.1-5)

M ultiplying (3.15) by v{ and using (3.12), we get 

(3-i6)' Pòdici ~

Equations (3.11) and (3.16) yield the following:

THEOREM (3.5). I f  the recurrent conformal curvature tensor has the 
decomposition (3.10), then the identity,

(3-17) Pk i'll =  Pi ( fe  — i>ki)

holds.
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Equations (1.19) and (3.10) give 

(3.18) X} (Vm «ta — Vm «P«) +  (VOT X}) t a  =  o .

We assume that Vm X} =. o. Since X} fi- o, equation (3.18) gives the following:

THEOREM (3.6). I f  the recurrent conformal curvature tensor has the decom
position (3.10) and the tensor field  X} satisfies the condition Vw X} =  o then 
the decomposed tensor field is recurrent with the same recurrence vector 
field as the tensor C*^” \

In a similar way, equations (1.20) and (3.10) yield the following:

Theorem (3.7). I f  the bi-recurrent conformal curvature tensor has the 
decomposition (3.10) and the tensor field  X} satisfies the condition Vw X} == o 
then the decomposed tensor field  ^  recurrent with the same bi-recurrence 
tensor field as the tensor C*ki '1.

4. D ecomposition of recurrent W eyl’s projective curvature tensors

We suppose that the Weyl projective curvature tensor has the following 
decomposition:

(4-1) =  1? ajkl,

where ajU is a non zero decomposed tensor field and is a non zero vector 
field satisfying the condition

(4 -2) I* h  =  I ,

X; being the recurrence vector field.
Equations ( i .n ) ,  (1.13) and (4.1) give

(4-3) GiU +  aUj +  Gijk —' o ,

(44) am — — akji •.

M ultiplying equation (4.1) by A th e n  by A  and using (1.12), we get 

(4-5) . W* =  S S * .

(4-6) Wl =  ^<Tfc(

in which we have used the notations:

(4-7), G'jk = óm x l ,

(4.8) ak =  Gjk &.
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We consider the conformal and WeyTs curvature tensors having the 
decomposition (3.1) and (4.1) respectively. Putting

(4-9) ?k =  PjM x l >

equations (1.14), (3.1), (4-0 and (4.6) yield the relation

(4.ïo) % ak =  9ks \

Thus, we have

THEOREM (4.1). I f  the conformal and WeyTs curvature tensor have the 
decomposition (3.1) and (4.1) respectively and Zj = s% then the vector fields 9k 
and ak are equal.

Theorem (4.2). I f  the recurrent WeyTs projective curvature tensor has 
the decomposition (4.1) and the vector field  ^  satisfies the condition Vm — o 
then the decomposed tensor field a jkl is recurrent with the same recurrence vector 
field as the tensor .

Theorem (4.3). 
the decomposition

I f  the recurrent WeyTs projective curvature tensor has

w m =  #  ,

then the decomposed tensor field a^u is recurrent with the same recurrence vector 
field as the tensor W}^ .

Differentiating equation (4.5) covariantly with respect to x l and using 
the equations (1.15) and (4.1), we get

(4 -1 0  ^  GjU = Vq) Gjk +  V ajk(l) •

Equations (1.16), (1.12), (4.7) and (4.11) give the following:

Theorem (4.4). I f  the recurrent WeyTs projective curvature tensor W)k 
has the decomposition (4.1) and the vector field is positively homogeneous 
of degree zero in x l then GjJc is positively homogeneous of the first degree in x \  

We suppose that the W eyl’s projective curvature tensor W}^ is recur
rent and bi-recurrent with the recurrent vector field and bi-recurrence 
tensor field apm and =  x i. Differentiating equation (4.1) covariantly with 
respect to xm> using (1.21), we get

(4*12) Vm &jkl I'm Gjkl •

Again, differentiating equation (4.12) covariantly with respect to x? and 
using (1.22), we get

(4-13) ^p  0 jkl apm 6jU •
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Thus, we have

THEOREM (4.5). I f  the recurrent, bi-re current WeyFs projective curvature 
tensor has the decomposition

w =

then the decomposed tensor field ajlcl is recurrent and bi-re current with the recur
rence vector field \ m and bi-recurrence tensor field apm which are also the recur
rence vector field and bi-recurrence tensor field of W)u .
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