Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Shri Krishna Deo Dubey

Decompositions of recurrent conformal and Weyl's projective curvature tensors

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.6, p. 760-768.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_6_760_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - Decompositions of recurrent conformal and Weyl's projective curvature tensors. Nota di Shri Krishna Deo Dubey, presentata (*) dal Socio B. Segre.

Riassunto. - In analogia con quanto già effettuato da Takano [4], Sinha e Singh [3] Singh [2], qui si ottengono varie decomposizioni dei tensori ricorrenti di curvature $\mathrm{R}_{j k l}^{* \cdots i}, \mathrm{C}_{j k l}^{* \cdots i}$ e $\mathrm{W}_{j k l}^{i}$ in uno spazio speciale di Kawaguchi.

i. Introduction

In an n-dimensional special Kawaguchi space K_{n} of order 2, the arc length of a curve $x^{i}=x^{i}(t)$ is given by the integral (Kawaguchi [1])

$$
\begin{equation*}
s=\int\left[\mathrm{A}_{i}(x, x) x^{\prime \prime} i+\mathrm{B}(x, x)\right]^{1 / p} \mathrm{~d} t \quad, \quad p \neq 0 \quad, \quad 3 / 2 \tag{I.I}
\end{equation*}
$$

where $x^{\prime}=\mathrm{d} x^{i} / \mathrm{d} t$ and $\ddot{x}^{i}=\mathrm{d}^{2} x^{i} / \mathrm{d} t^{2}$.
Let v^{i} be a contravariant vector field homogeneous of degree zero with respect to x^{i}. The covariant derivatives of v^{i} are defined by ([I])

$$
\begin{array}{ll}
\nabla_{j} v^{i}=\partial_{j} v^{i}-v_{(k)}^{i} \Gamma_{(j)}^{k}+\Gamma_{(k)(j)}^{i} v^{k} \\
\nabla_{j}^{\prime} v^{i}=v_{(j)}^{i}=\frac{\partial v^{i}}{\partial x^{j}}, & \left(\partial_{j}=\partial / \partial x^{j}\right)
\end{array}
$$

The conformal curvature tensor $\mathrm{C}_{j k l}^{* \cdots i}$ in a special Kawaguchi space is defined as

$$
\begin{gather*}
\mathrm{C}_{j k l}^{* \ldots i}=\mathrm{R}_{j k l}^{* \ldots i}- \tag{I.2}\\
-\frac{\delta_{l}^{i}}{n+\mathrm{I}} \mathrm{~S}_{j k}^{*}+\frac{\delta_{k}^{i}}{n-\mathrm{I}}\left(\mathrm{R}_{j l}^{*}-\frac{\mathrm{I}}{n+\mathrm{I}} \mathrm{~S}_{l j}^{*}\right)-\frac{\delta_{j}^{i}}{n-\mathrm{I}}\left(\mathrm{R}_{k l}^{*}-\frac{\mathrm{I}}{n+\mathrm{I}} \mathrm{~S}_{l k}^{*}\right)
\end{gather*}
$$

where
($\mathrm{I} \cdot 3) \quad \mathrm{R}_{j k l}^{* \ldots i}=\frac{\partial \Pi_{l j}^{i}}{\partial x^{k}}-\frac{\partial \Pi_{l k}^{i}}{\partial x^{j}}+\Pi_{l j}^{h} \Pi_{k h}^{i}-\Pi_{l k}^{h} \Pi_{j h}^{i}+\Pi_{j}^{h} \Pi_{l k(k)}^{i}-\Pi_{(k)}^{h} \Pi_{l j(h)}^{i}$,

$$
\begin{equation*}
\mathrm{R}_{k l}^{*}=\mathrm{R}_{a k i}^{* \ldots a} \quad, \quad \mathrm{~S}_{j k}^{*}=\mathrm{R}_{j k a}^{*} \ldots a, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{j k l}^{* \cdots i}=-\mathrm{R}_{k j l}^{* \cdots i} . \tag{1.5}
\end{equation*}
$$

(*) Nella seduta del 23 giugno 1977 .

Also, we have

$$
\begin{align*}
& \mathrm{C}_{j k l}^{* \cdots i}+\mathrm{C}_{k l j}^{* \cdots i}+\mathrm{C}_{l j k}^{* * \cdots}=\mathrm{o}, \tag{I.6}\\
& \mathrm{C}_{j k l i}^{* \cdots i}+\mathrm{C}_{k j l}^{* \cdots i}=\mathrm{o} \tag{I.7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{j k l}^{* \ldots i}=\mathrm{C}_{j k l}^{* \cdots i} \dot{x}^{\prime} . \tag{I.8}
\end{equation*}
$$

The Weyl tensor in a special Kawaguchi space is expressed as

$$
\begin{equation*}
\mathrm{W}_{k}^{i}=\mathrm{H}_{k}^{i}-\mathrm{H} \delta_{k}^{i}-\frac{\mathrm{I}}{n+\mathrm{I}}\left(\frac{\partial \mathrm{H}_{k}^{a}}{\partial \dot{x}^{a}}-\frac{\partial \mathrm{H}}{\partial \dot{x}^{k}}\right) \dot{x}^{\dot{i}} \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{H}_{k}^{i}=\mathrm{K}_{j k}^{\ddot{x}^{i} \ddot{x}^{j}} \quad, \quad \mathrm{H}=\frac{\mathrm{I}}{n-\mathrm{I}} \mathrm{H}_{i}^{i} \tag{1.10}
\end{equation*}
$$

The Weyl projective curvature tensors have the following properties:

$$
\begin{align*}
& \mathrm{W}_{j k l}^{i}+\mathrm{W}_{k l j}^{i}+\mathrm{W}_{l j k}^{i}=0 \tag{I.II}\\
& \mathrm{~W}_{j k}^{i} x^{\prime j}=\mathrm{W}_{k}^{i} \quad, \quad \mathrm{~W}_{j k l}^{i} x^{l}=\mathrm{W}_{j k}^{i} \tag{I.12}\\
& \mathrm{~W}_{j k l}^{i}=-\mathrm{W}_{k j l}^{i}, \tag{1.13}\\
& \mathrm{~W}_{k}^{i}=\mathrm{C}_{j k l}^{*}{ }^{i} x^{j} x^{\prime} \tag{I.14}\\
& \mathrm{W}_{j k l}^{i}=\mathrm{W}_{j k(l)}^{i}, \tag{1.15}\\
& \mathrm{~W}_{i}^{i}=0 \quad, \quad \mathrm{~W}_{k}^{i} x^{\prime k}=0 \quad, \quad \mathrm{~W}_{k(i)}^{i}=0 . \tag{1.16}
\end{align*}
$$

The curvature tensor $\mathrm{R}_{j k l}^{* \ldots i}$ in a special Kawaguchi space is said to be recurrent or bi-recurrent, if it satisfies the conditions

$$
\begin{equation*}
\nabla_{m} \mathrm{R}_{j k l}^{* \cdots i}=v_{m} \mathrm{R}_{j k l}^{* \cdots i} \quad, \quad v_{m} \neq 0 \tag{1.17}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{p} \nabla_{m} \mathrm{R}_{j k l}^{* \ldots i}=\alpha_{p m} \mathrm{R}_{j k l}^{* \cdots i} \quad\left(\mathrm{R}_{j k l}^{* \cdots i} \neq 0\right) \tag{1.18}
\end{equation*}
$$

respectively, in which v_{m} and $\alpha_{p m}$ are the recurrence vector field and the recurrence tensor field.

Equations (1.2), (1.4), (1.17), (1.18) yield that the curvature tensor $\mathrm{C}_{j k l}^{* \ldots i}$ is recurrent and bi-recurrent with the same recurrence vector field and recurrence tensor field as in the case of $\mathrm{R}_{j k l}^{* \cdots i}$, that is,

$$
\begin{equation*}
\nabla_{m} \mathrm{C}_{j k l}^{* \cdots i}=v_{m} \mathrm{C}_{j k l}^{* \cdots i} \quad, \quad\left(\mathrm{C}_{j k l}^{* \cdots i} \neq 0\right) \tag{1.19}
\end{equation*}
$$

and
(1.20) $\quad \nabla_{p} \nabla_{m} \mathrm{C}_{j k l}^{* \ldots i}=\alpha_{p m} \mathrm{C}_{j k l}^{* \cdots i} \quad, \quad\left(\mathrm{C}_{j k l}^{* \cdots i} \neq 0\right)$.

The Weyl projective curvature tensor $W_{j k l}^{i}$ in a special Kawaguchi space is said to be recurrent or bi-recurrent, if it satisfies the conditions

$$
\begin{equation*}
\nabla_{m} \mathrm{~W}_{j k l}^{i}=\lambda_{m} \mathrm{~W}_{j k l}^{i} \quad\left(\mathrm{~W}_{j k l}^{i} \neq \mathrm{o}\right) \tag{1.2I}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{q} \nabla_{m} \mathrm{~W}_{j k l}^{i}=a_{q m} \mathrm{~W}_{j k l}^{i} \quad\left(\mathrm{~W}_{j k l}^{i} \neq 0\right) \tag{1.22}
\end{equation*}
$$

respectively, where λ_{m} and $a_{q m}$ are the recurrence vector field and the recurrence tensor field.

2. Decomposition of recurrent curvature tensor $\mathrm{R}_{j}^{* \ldots j}$ i

We assume that the decomposition of the recurrent curvature tensor $\mathrm{R}_{j k l}^{*}{ }^{*}{ }^{W}$ has the following form

$$
\begin{equation*}
\mathrm{R}_{j k l}^{* \cdots i}=r^{i} \varepsilon_{j k l}, \tag{2.1}
\end{equation*}
$$

where $\varepsilon_{j k l}$ is a non zero decomposed tensor field and r^{i} is a non zero vector field satisfying the condition

$$
\begin{equation*}
r^{m} v_{m}=\mathrm{I}, \tag{2.2}
\end{equation*}
$$

in which v_{m} is the recurrence vector field.
We suppose that the curvature tensor is recurrent of the first order.
Equations (1.17) and (2.1) yield

$$
\begin{equation*}
\left(\nabla_{m} r^{i}\right) \varepsilon_{j k l}+r^{i} \nabla_{m} \varepsilon_{j k l}=v_{m} r^{i} \varepsilon_{j k l} \tag{2.3}
\end{equation*}
$$

If we suppose that $\left(\nabla_{m} r^{i}\right)=0$, then (2.3) can be written as

$$
\begin{equation*}
r^{i}\left(\nabla_{m} \varepsilon_{j k l}-v_{m} \varepsilon_{j k l}\right)=0 \tag{2.4}
\end{equation*}
$$

Since $r^{i} \neq 0$

$$
\begin{equation*}
\nabla_{m} \varepsilon_{j k l}=v_{m} \varepsilon_{j k l}, \tag{2.5}
\end{equation*}
$$

which gives the following:
Theorem (2.1). If the recurrent curvature tensor $\mathrm{R}_{j k l}^{* \cdots i}$ has the decomposition (2.1) and the vector field r^{i} satisfies the condition $\nabla_{m} r^{i}=0$ then the decomposed tensor field $\varepsilon_{j k l}$ is recurrent with the same recurrence vector field as the tensor $\mathrm{R}_{j k i}^{* \cdots i}$.

THEOREM (2.2). If $r^{i}=\dot{x}^{i}{ }^{i}$ and the recurrent curvature tensor $\mathrm{R}_{j k l}^{* \cdots i}$ has the decomposition (2.1) then the decomposed tensor field $\varepsilon_{j k l}$ is recurrent with the same recurrence vector field as the tensor $\mathrm{R}_{j k i}^{* \cdots i}$.

Equations (1.5) and (2.1) yield

$$
\begin{equation*}
\varepsilon_{j k l}=-\varepsilon_{k j l} \tag{2.6}
\end{equation*}
$$

Using the fact that $\Pi_{j k}^{i}=\Pi_{k j}^{i}$ and equation (I.3), we have

$$
\begin{equation*}
\mathrm{R}_{j k l}^{* \cdots i}+\mathrm{R}_{k l j}^{* \cdots i}+\mathrm{R}_{l j k}^{* \cdots i}=0 . \tag{2.7}
\end{equation*}
$$

Equations (2.1) and (2.7) yield

$$
\begin{equation*}
\varepsilon_{j k l}+\varepsilon_{k l j}+\varepsilon_{l j k}=0 \tag{2.8}
\end{equation*}
$$

Contracting the indices i, l and i, j in equation (2.1) and using (1.4), we get

$$
\begin{equation*}
\mathrm{S}_{j k}^{*}=r^{a} \varepsilon_{j k a} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{k l}^{*}=r^{a} \varepsilon_{a k l} \tag{2.10}
\end{equation*}
$$

Theorem (2.3). If the recurrent curvature tensor $\mathrm{R}_{j k l}^{* \cdots i}$ is decomposed with the tensor field $\varepsilon_{j k l}$ then a sufficient condition in order that $\mathrm{R}_{j k l}^{*}{ }^{*}$ is equal to the conformal curvature tensor $\mathrm{C}_{j k l}^{* \cdots i}$ is that the relation
(2.11) $\delta_{l}^{i}(n-\mathrm{I}) \varepsilon_{j k a}+(n+\mathrm{I})\left(\delta_{j}^{i} \varepsilon_{a k l}-\delta_{k}^{i} \varepsilon_{a j l}\right)+\delta_{k}^{i} \varepsilon_{l j a}-\delta_{j}^{i} \varepsilon_{k l a}=\mathrm{o}$
holds.
Proof. Equations (1.2), (2.1), (2.9) and (2.10) yield

$$
\begin{gather*}
\mathrm{C}_{j k l}^{* \cdots i}=r^{i} \varepsilon_{j k l}- \tag{2.12}\\
-\frac{r^{a}}{(n+\mathrm{I})(n-\mathrm{I})}\left[\delta_{l}^{i}(n-\mathrm{I}) \varepsilon_{j k a}-\delta_{k}^{i}(n+\mathrm{I}) \varepsilon_{a j l}+\right. \\
\left.+\delta_{k}^{i} \varepsilon_{l j a}+\delta_{j}^{i}(n+\mathrm{I}) \varepsilon_{a k l}-\delta_{j}^{i} \varepsilon_{k l a}\right]
\end{gather*}
$$

The proof of the above theorem is an immediate consequence of equations (2.1), (2.1I) and (2.12).

THEOREM (2.4). If the bi-recurrent curvature tensor $\mathrm{R}_{j k l}^{* \cdots i}$ has the decomposition (2.1) and the vector field r^{i} satisfies the condition $\nabla_{p} \nabla_{m} r^{i}=0$ then the decomposed tensor field $\varepsilon_{j k l}$ is bi-recurrent with the same bi-recurrence tensor field as the tensor $\mathrm{R}_{j k l}^{* \cdots i}$.

Proof. Equations (1.18) and (2.1) yield

$$
\begin{equation*}
r^{i}\left(\nabla_{p} \nabla_{m} \varepsilon_{j k l}-\alpha_{p m} \varepsilon_{j k l}\right)+\varepsilon_{j k l}\left(\nabla_{p} \nabla_{m} r^{i}\right)=0 . \tag{2.13}
\end{equation*}
$$

Using the relation $\nabla_{p} \nabla_{m} r^{i}=0$ and the fact that $r^{i} \neq 0$, we find that $\varepsilon_{j k l}$ is bi-recurrent with the bi-recurrence tensor field $\alpha_{p m}$.

3. Decompositions of recurrent conformal curvature tensors

We suppose that the decomposition of the recurrent conformal curvature tensor $\mathrm{C}_{j k l}^{* \cdots i}$ has the following form:

$$
\begin{equation*}
\mathrm{C}_{j k l}^{* \ldots i}=s^{i} \rho_{j k l}, \tag{3.1}
\end{equation*}
$$

where $\rho_{j k l}$ is a non zero decomposed tensor field and s^{i} is a non zero vector field satisfying the condition

$$
\begin{equation*}
s^{i} v_{m}=\mathrm{I}, \tag{3.2}
\end{equation*}
$$

in which v_{m} is the recurrence vector field.
Equations (1.6), (1.7) and (3.1) yield

$$
\begin{align*}
& \rho_{j k l}+\rho_{k l j}+\rho_{l j k}=0, \tag{3.3}\\
& \rho_{j k l}+\rho_{k j l}=0 . \tag{3.4}
\end{align*}
$$

Multiplying equation (3.1) by x^{l} and using (1.8), we get

$$
\begin{equation*}
\mathrm{C}_{j k}^{* \cdots i}=s^{i} \rho_{j k}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{j k}=\rho_{j k l} x^{l} . \tag{3.6}
\end{equation*}
$$

Equations (1.19) and (3.1) yield

$$
\begin{equation*}
\left(\nabla_{m} \rho_{j k l}-v_{m} \rho_{j k l}\right) s^{i}+\left(\nabla_{m} s^{i}\right) \rho_{j k l}=0 . \tag{3.7}
\end{equation*}
$$

The following theorems are an immediate consequence of equation (3.7):
Theorem (3.1). If the recurrent conformal curvature tensor $\mathrm{C}_{j k l}^{* \cdots i}$ has the decomposition (3.1) and the vector field s^{i} satisfies the condition $\nabla_{m} s^{i}=0$ then the decomposed tensor field $\rho_{j k l}$ is recurrent with the same recurrence vector field. as the tensor $\mathrm{C}_{j \neq l}^{* \ldots i}$.

THEOREM (3.2). If the recurrent conformal curvature tensor $\mathrm{C}_{j k i}^{* \cdots i}$ has the decomposition $\mathrm{C}_{j k l}^{* \cdots i}=\dot{x}^{\prime i} \rho_{j k l}$, then the decomposed tensor $\rho_{j k l}$ is recurrent with the same recurrence vector field as the tensor $\mathrm{C}_{j k l}^{* \cdots i}$.

Equations (1.20) and (3.1) give

$$
\begin{equation*}
s^{i}\left(\nabla_{p} \nabla_{m} \rho_{j k l}-\alpha_{p m} \rho_{j k l}\right)+\rho_{j k l} \nabla_{p} \nabla_{m} s^{i}=0 . \tag{3.8}
\end{equation*}
$$

Using the relation $\nabla_{p} \nabla_{m} s^{i}=0$ and the fact $s^{i} \neq 0$, we find that

$$
\begin{equation*}
\nabla_{p} \nabla_{m} \rho_{j k l}=\alpha_{p m} \rho_{j k l} \tag{3.9}
\end{equation*}
$$

Thus, we have
Theorem (3.3). If the bi-recurrent conformat curvature tensor has the decomposition (3.1) and the vector field s^{i} satisfies the condition $\nabla_{p} \nabla_{m} s^{i}=0$ then the decomposed tensor field $\rho_{j k l}$ is bi-recurrent with the same bi-reccurrence tensor. field as the tensor $\mathrm{C}_{j k l}^{* \cdots i}$.

We suppose that the recurrent conformal curvature tensor $\mathrm{C}_{j k l}^{* \omega_{i}^{i}}$ has the decomposition in the following form:

$$
\begin{equation*}
\mathrm{C}_{j k l}^{* \ldots i}=\mathrm{X}_{j}^{i} \psi_{k l}, \tag{3.10}
\end{equation*}
$$

where $\psi_{k l}(x, \dot{x})$ is a decomposed tensor field and $\mathrm{X}_{j}^{i}(x, x)$ is a tensor field.
Theorem (3.4). If the recurrent conformal curvature tensor has the decomposition (3.10), then the following identity holds:

$$
\begin{equation*}
p_{j} \psi_{k l}+p_{k} \psi_{l j}+p_{l} \psi_{j k}=\mathrm{o} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{j}=\mathrm{X}_{j}^{i} v_{i} \tag{3.12}
\end{equation*}
$$

Proof. Equations (1.6) and (3.10) yield

$$
\begin{equation*}
\mathrm{X}_{j}^{i} \psi_{k l}+\mathrm{X}_{k}^{i} \psi_{l j}+\mathrm{X}_{l}^{i} \psi_{j k}=0 \tag{3.13}
\end{equation*}
$$

Multiplying (3.13) by the recurrence vector field v_{i} and using (3.12), we obtain the identity (3.1I).

Multiplying equation (3.10) by the recurrence vector field v_{i} and using relation (3.12) we get

$$
\begin{equation*}
v_{i} \mathrm{C}_{j k l}^{* \ldots i}=p_{j} \psi_{k l} \tag{3.14}
\end{equation*}
$$

Equations (1.7) and (3.10) give

$$
\begin{equation*}
\mathrm{X}_{j}^{i} \psi_{k l}=-\mathrm{X}_{k}^{i} \psi_{j l} \tag{3.15}
\end{equation*}
$$

Multiplying (3.15) by v_{i} and using (3.12), we get

$$
\begin{equation*}
p_{j} \psi_{k l}=-p_{k} \psi_{j l} . \tag{3.16}
\end{equation*}
$$

Equations (3.1I) and (3.16) yield the following:
THEOREM (3.5). If the recurrent conformal curvature tensor has the decomposition (3.10), then the identity.

$$
\begin{equation*}
p_{k} \psi_{l j}=p_{j}\left(\psi_{l k}-\psi_{k l}\right) \tag{3.17}
\end{equation*}
$$

holds.

Equations (I.19) and (3.10) give

$$
\begin{equation*}
\mathrm{X}_{j}^{i}\left(\nabla_{m} \psi_{k l}-v_{m} \psi_{k l}\right)+\left(\nabla_{m} \mathrm{X}_{j}^{i}\right) \psi_{k l}=0 . \tag{3.18}
\end{equation*}
$$

We assume that $\nabla_{m} \mathrm{X}_{j}^{i}=0$. Since $\mathrm{X}_{j}^{i} \neq 0$, equation (3.18) gives the following:
Theorem (3.6). If the recurrent conformal curvature tensor has the decomposition (3.10) and the tensor field X_{j}^{i} satisfies the condition $\nabla_{m} \mathrm{X}_{j}^{i}=0$ then the decomposed tensor field $\psi_{k i}$ is recurrent with the same recurrence vector field as the tensor $\mathrm{C}_{j k l}^{* \cdots i}$.

In a similar way, equations (1.20) and (3.10) yield the following:
THEOREM (3.7). If the bi-recurrent conformal curvature tensor has the decomposition (3.10) and the tensor field X_{j}^{i} satisfies the condition $\nabla_{p} \nabla_{m} \mathrm{X}_{j}^{i}=0$ then the decomposed tensor field $\psi_{k l}$ is recurrent with the same bi-recurrence tensor field as the tensor $\mathrm{C}_{j k l}^{* \cdots i}$.

4. Decomposition of recurrent Weyl's projective curvature tensors

We suppose that the Weyl projective curvature tensor has the following decomposition:

$$
\begin{equation*}
\mathrm{W}_{j k l}^{i}=\xi^{i} \sigma_{j k l}, \tag{4.I}
\end{equation*}
$$

where $\sigma_{j k l}$ is a non zero decomposed tensor field and ξ^{i} is a non zero vector field satisfying the condition

$$
\begin{equation*}
\xi^{i} \lambda_{i}=1, \tag{4.2}
\end{equation*}
$$

λ_{i} being the recurrence vector field.
Equations (I.II), (I.I3) and (4.I) give

$$
\sigma_{j k l}+\sigma_{k l j}+\sigma_{l j k}=0,
$$

$$
\begin{equation*}
\sigma_{j k l}=-\sigma_{k j l} \tag{4.4}
\end{equation*}
$$

Multiplying equation (4.1) by x^{\prime} then by $x^{\prime j}$ and using (1.12), we get

$$
\begin{equation*}
W_{j k}^{i}=\xi^{i} \sigma_{j k}, \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{W}_{k}^{i}=\xi^{i} \sigma_{k}, \tag{4.6}
\end{equation*}
$$

in which we have used the notations:

$$
\begin{align*}
\sigma_{j k} & =\sigma_{j k l} x^{\prime} \tag{4.7}\\
\sigma_{k} & =\sigma_{j k} x^{\prime j} \tag{4.8}
\end{align*}
$$

We consider the conformal and Weyl's curvature tensors having the decomposition (3.1) and (4.1) respectively. Putting

$$
\begin{equation*}
\rho_{k}=\rho_{j k l} x^{j} x^{\prime} l \tag{4.9}
\end{equation*}
$$

equations (1.14), (3.1), (4.1) and (4.6) yield the relation

$$
\begin{equation*}
\xi^{i} \sigma_{k}=\rho_{k} s^{i} \tag{4.IO}
\end{equation*}
$$

Thus, we have
Theorem (4.1). If the conformal and Weyl's curvature tensor have the decomposition (3.1) and (4.1) respectively and $\xi^{i}=s^{i}$ then the vector fuelds ρ_{k} and σ_{k} are equal.

Theorem (4.2). If the recurrent Weyl's projective curvature tensor has the decomposition (4.1) and the vector field ξ^{i} satisfles the condition $\nabla_{m} \xi^{i}=0$ then the decomposed tensor field $\sigma_{j k l}$ is recurrent with the same recurrence vector field as the tensor $\mathrm{W}_{j k l}^{i}$.

Theorem (4.3). If the recurrent Weyl's projective curvature tensor has the decomposition

$$
\mathrm{W}_{j k l}^{i}=x^{i} \sigma_{j k l},
$$

then the decomposed tensor field $\sigma_{j k l}$ is recurrent with the same recurrence vector field as the tensor $\mathrm{W}_{j k l}^{i}$.

Differentiating equation (4.5) covariantly with respect to x^{l} and using the equations (1.15) and (4.I), we get

$$
\begin{equation*}
\xi^{i} \sigma_{j k l}=\xi_{(l)}^{i} \sigma_{j k}+\xi^{i} \sigma_{j k(l)} \tag{4.1I}
\end{equation*}
$$

Equations (I.16), (I.12), (4.7) and (4.11) give the following:
Theorem (4.4). If the recurrent Weyl's projective curvature tensor $\mathrm{W}_{j k}^{i}$ has the decomposition (4.1) and the vector field ξ^{i} is positively homogeneous of degree zero in x^{l} then $\sigma_{j k}$ is positively homogeneous of the first degree in x^{\prime}.

We suppose that the Weyl's projective curvature tensor $\mathrm{W}_{j k l}^{i}$ is recurrent and bi-recurrent with the recurrent vector field λ_{m} and bi-recurrence tensor field $a_{p m}$ and $\xi^{i}=x^{i}$. Differentiating equation (4.I) covariantly with respect to x^{m}, using (I.2I), we get

$$
\begin{equation*}
\nabla_{m} \sigma_{j k l}=\lambda_{m} \sigma_{j k l} \tag{4.12}
\end{equation*}
$$

Again, differentiating equation (4.12) covariantly with respect to x^{p} and using (1.22), we get

$$
\begin{equation*}
\nabla_{p} \nabla_{m} \sigma_{j k l}=a_{p m} \sigma_{j k l} \tag{4.13}
\end{equation*}
$$

Thus, we have
Theorem (4.5). If the recurrent, bi-recurrent Weyl's projective curvature tensor has the decomposition

$$
\mathrm{W}_{j k l}^{i}=\sigma_{j k l} x^{l}
$$

then the decomposed tensor field $\sigma_{j k l}$ is recurrent and bi-recurrent with the recurrence vector field λ_{m} and bi-recurrence tensor field $a_{p m}$ which are also the recurrence vector field and bi-recurrence tensor field of $\mathrm{W}_{j k l}^{i}$.

Acknowledgement. The author is extremely thankful to Dr. U. P. Singh for his guidance during the course of preparation of this work.

References

[1] A. KAWAGUCHI (1938) - Geometry in an n-dimensional space with the arc length $\mathrm{S}=\int\left(\mathrm{A}_{i} \ddot{x}^{i}+\mathrm{B}\right)^{1 / p} \mathrm{~d} t$, "Trans. of the Amer. Math. Soc.», 44, 153-167.
[2] S. P. Singh (1973) - Decompositions of recurrent curvature tensor field in a special Kazaguchi space, "Tensor (N.S.)", 27 (1), 1-6.
[3] B. B. Sinha and S. P. Singh (i97o) - On decomposition of recurrent curvature tensor fields in Finsler spaces, "Bull. Cal. Math. Soc.", 62, 91-96.
[4] K. TAKANO (1967) - Decomposition of curvature tensor in a recurrent space, "Tensor (N.S.) ", 18 (3), 343-347.

