ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Haruo Murakami, Shin-ichi Nakagiri, Cheh-chih Yeh

Asymptotic Behavior of Solutions of Nonlinear Functional Equations via Nonstandard Analysis

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **62** (1977), n.6, p. 749–754. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_62_6_749_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1977.

Equazioni funzionali. — Asymptotic Behavior of Solutions of Nonlinear Functional Equations via Nonstandard Analysis. Nota di HARUO MURAKAMI^(*), SHIN-ICHI NAKAGIRI^(*) e CHEH-CHIH YEH^(**), presentata^(***) dal Socio G. SANSONE.

RIASSUNTO. — Gli Autori usano speciali tecniche per trovare alcune proprietà caratteristiche delle soluzioni delle equazioni

$$\mathcal{L}_{n} x(t) + \delta f(t, x[g_{1}(t)], \cdots, x[g_{m}(t)]) = h(t) \quad , \quad \delta = \pm 1.$$

I. INTRODUCTION

Nonstandard analysis was introduced in oscillatory theory by Komkov and Waid [1] and Komkov [2]. Recently, the Authors [3] improved their results and gave some new criteria for the asymptotic behavior of solutions of the following n-th order differential equation with deviating arguments

$$x^{(n)}(t) + \delta a(t) G(x[g_1(t)], \dots, x[g_m(t)]) = h(t) , \quad \delta = \pm 1.$$

In this Note, we extend these results to the more general differential equation

$$\mathbf{E}\left(\delta\right) = \mathbf{L}_{n} x\left(t\right) + \delta f\left(t, x\left[g_{1}\left(t\right)\right], \cdots, x\left[g_{m}\left(t\right)\right]\right) = h\left(t\right) \quad , \quad \delta = \pm \mathbf{1}$$

by using nonstandard techniques, in the frame-work of Robinson's theory [4, 5]. Here L_n is an operator defined by

$$L_0 x(t) = x(t)$$
, $L_i x(t) = \frac{I}{r_i(t)} \frac{d}{dt} L_{i-1} x(t)$, $r_n(t) = I$,

for $i = 1, \cdots, n$.

Let R* denote the nonstandard extension of the real line R, which has the property that sentences formulated in language L are true in R* if and only if they are true in R (see [5]). We see that R is a subset of R* and R* also contains infinitesimal numbers and infinite numbers which are not in R. An infinite positive (resp. negative) number is a nonstandard number which is greater (resp. smaller) than any real number. We shall denote by $R_{+\infty}^*$ and $R_{-\infty}^*$, respectively, the set of the infinite positive and negative numbers. The

(*) Department of Applied Mathematics, Kobe University, Kobe, Japan.

(**) Department of Mathematics, National Central University, Taiwan and Institute of Mathematics, Kobe University, Kobe, Japan.

(***) Nella seduta del 23 giugno 1977.

reciprocal of an infinite number is called an infinitesimal number. If x is a real number, then we call x a standard number of R*, otherwise it is called a nonstandard number. Let R_{bd}^* denote the set of the elements of R* which are bounded in absolute value by a standard number. If x, y are elements of R* such that x - y is an infinitesimal, we shall say that x is infinitely close to y, and denote this by $x =_1 y$.

For related results, we refer to Saito [6], Stroyan and Luxemburg [7]. Let $I \equiv [t_0, \infty)$ for some fixed $t_0 > 0$. Throughout this paper, we assume that the following two conditions always hold:

(a)
$$r_i, g_j, h \in \mathbb{C} [\mathbb{I}, \mathbb{R}], r_i(t) > 0, \int_{t_0}^{\infty} r_i(t) dt = \infty \text{ and } \lim_{t \to \infty} g_j(t) = \infty$$

for $i = 1, \dots, n$ and $j = 1, \dots, m$.

(b) $f \in \mathbb{C} [I \times \mathbb{R}^m, \mathbb{R}].$

We need the following four lemmas. The first is due to Robinson [4], and the others are due to Komkov and Waid [1].

LEMMA I. $\int_{t_0}^{\infty} g(t) dt \text{ converges if and only if } \int_{t_1}^{t_2} g(t) dt =_1 0 \text{ for any}$ $t_1, t_2 \in \mathbb{R}^*_{+\infty} ([4], p. 75).$

LEMMA 2. A standard function x(t), $t \in I$, is oscillatory if and only if x(t), $t \in \mathbb{R}^*$, vanishes for some $t \in \mathbb{R}^*_{+\infty}$.

LEMMA 3. A standard function x(t) is unbounded if and only if $|x(t)| \in \mathbb{R}^*_{+\infty}$ for some $t \in \mathbb{R}^*_{+\infty}$.

LEMMA 4. Let $\lim_{t\to\infty} \int_{t_0}^t g(s) ds = +\infty (-\infty)$. Then for any $A \in \mathbb{R}^*$, A > 0(resp. < 0), and any $t_1 > t_0$, $t_1 \in \mathbb{R}^*$, there exists $t_2 \in \mathbb{R}^*$, $t_2 > t_1$, such that $\int_{t_2}^{t_2} g(t) dt > A$ (resp. < A). Moreover, for any $t_3 \in \mathbb{R}_{bd}^*$, $t_4 \in \mathbb{R}_{+\infty}^*$ (resp. $\mathbb{R}_{-\infty}^*$), t_1 we have $\int_{t_3}^{t_4} g(t) dt \in \mathbb{R}_{+\infty}^*$ (resp. $\mathbb{R}_{-\infty}^*$)s

2. MAIN RESULTS

THEOREM I. Let

 (C_1) f (t, y_1, \dots, y_m) be a nondecreasing function with respect to y_1, \dots, y_m and

$$0 < f(t, y_1, \dots, y_m) \leq -f(t, -y_1, \dots, -y_m)$$

for
$$y_i > 0$$
, $i = 1, \dots, m$,

(C₂)
$$\int_{t_0} h(t) dt \quad converge,$$

and

(C₃)
$$\int_{t_0}^{\infty} |f(t, c, \dots, c)| dt = \infty$$

for any nonzero constant c. Then every nonoscillatory solution of E(I) cannot be bounded away from zero.

Proof. Assume, to the contrary, that there exists a solution x(t) of E(1) such that x(t) is bounded away from zero on I. Without loss of generality, we assume that x(t) > c > 0 for some standard number c. Condition (a) implies that there exists a $t_1 > t_0$ such that

$$x \left[g_i(t) \right] > c$$

for $t > t_1$ and $i = 1, \dots, m$. Hence, by (b) and (C₁), we have

(I)
$$f(t, x [g_1(t)], \cdots, x [g_m(t)]) \ge f(t, c, \cdots, c)$$

for $t \ge t_1$ and particularly for all $t \in \mathbb{R}^*_{+\infty}$. It follows from (C₂) and Lemma I that

$$\int_{\xi}^{\eta} h(t) \, \mathrm{d}t =_{1} \mathrm{o}$$

for any ξ , $\eta \in \mathbb{R}^*_{+\infty}$. Hence

(2)
$$\int_{\xi} h(t) dt < I.$$

By (1), (2) and the fundamental theorem of calculus

(3)
$$L_{n-1} x(\eta) = L_{n-1} x(\xi) + \int_{\xi}^{\eta} [h(t) - f(t, x[g_1(t)], \dots, x[g_m(t)])] dt$$

 $< L_{n-1} x(\xi) + 1 - \int_{\xi}^{\eta} f(t, c, \dots, c) dt.$

Regarding ξ as fixed, by (C₃) and Lemma 4, we can choose η so that

(4)
$$\int_{\xi}^{\eta} f(t, c, \dots, c) dt > [2 + L_{n-1} x(\xi)].$$

From (3) and (4), we have

$$L_{n-1} x(\eta) < -1$$

Since x(t) is positive, (5) and (a) imply that x(t)for all η satisfying (4). changes sign for some $t \in \mathbb{R}^*_{+\infty}$. Therefore, by Lemma 2, x(t) is oscillatory, a contradiction. This contradiction proves our theorem.

COROLLARY. Under the assumptions of Theorem 1, every solution x(t)of E (1) is oscillatory or such that $\liminf |x(t)| = 0$. $t \rightarrow \infty$

Example 1. The equation

(6)
$$(t^{-1/2} x'(t))' + 4^{-1} t^{-2} x(t) = 4^{-1} t^{-3/2} - 2^{-1} t^{-2}$$

satisfies the conditions (C_1) and (C_2) , but does not satisfy (C_3) . This equation has a nonoscillatory solution $x(t) = t^{1/2}$ which is bounded away from zero.

Example 2. The differential equation

(7)
$$(e^{-t}x')' + x(t) = e^{-2t}(\sin t - 3\cos t) + e^{-t}\sin t$$

satisfies all the conditions of Theorem 1. Hence every solution x(t) of (7) is oscillatory or such that $\liminf |x(t)| = 0$. In fact, $x(t) = e^{-t} \sin t$ is an oscillatory solution of (7).

THEOREM 2. Let (C_1) , $\lim h(t) = 0$ and the following condition hold: $t \rightarrow \infty$ 1 / + N $(u) = \phi(t) F(u)$ (C) , y_m

$$(C_4) f(t, y_1, \cdots, y_m) = p(t) \Gamma(y_1, \cdots)$$

where $p(t) \in \mathbb{C}$ [I, $(0, \infty)$]. If

(C₅)
$$\liminf_{t \to \infty} p(t) \equiv c > 0,$$

then every solution x(t) of E(I) is oscillatory or such that $\lim x(t) = 0$.

Proof. Let x(t) be a nonoscillatory solution of E(1). Without loss of generality, we assume that x(t) > 0 for all $t \in \mathbb{R}^*_{+\infty}$. If $x[g_i(t)] \neq_1 0$ for some $t_1 \in \mathbb{R}^*_{+\infty}$, $i = 1, \dots, m$, then, by (C₁)

$$p(t_1) \operatorname{F} (x [g_1(t_1)], \cdots, x [g_m(t_1)]) \neq_1 \operatorname{o}$$

It follows from E(I) that $L_n x(t_1) < 0$ and $L_n x(t_1) \neq_1 0$. We see that there must exist $t_2 \in \mathbb{R}^*_{+\infty}$, $t_2 > t_1$, such that

$$L_n x(t) < 0$$
 and $L_n x(t) = 0$

for $t \ge t_2$. Otherwise $L_n x(t)$ is negative and bounded away from zero for $t \ge t_1$. By the condition (a), x(t) must eventually become negative, a contradiction. But $L_n x(t) = 0$ for $t \ge t_2$ implies

$$p(t) \operatorname{F} (x [g_1(t)], \cdots, x [g_m(t)]) =_1 \mathrm{o},$$

thus, by (C_5) ,

$$\mathbf{F}\left(x\left[g_{1}\left(t\right)\right],\cdots,x\left[g_{m}\left(t\right)\right]\right)=$$

which implies $x [g_i(t)] = 0$, i.e. x(t) = 0 for $t \in \mathbb{R}^*_{+\infty}$.

Example 3. The differential equation

(8)
$$(t (t (tx')')')' + t [x (\log t)]^3 = (t^3 - 6 t^2 + 7 t - 1) e^{-t} - t^2$$

satisfies every condition of Theorem 2. Hence, every solution x(t) of (8) is oscillatory or tends to zero as $t \to \infty$. In fact, $x(t) = e^{-t}$ is a nonoscillatory solution of (8) which tends to zero as $t \to \infty$.

Example 4. From Example 1, we see that $x(t) = t^{1/2}$ is an unbounded solution of (6). Here $p(t) = 4^{-1}t^{-2}$ does not satisfy the condition (C₅).

THEOREM 3. Let (C_4) , (C_5) and

(C₆)
$$\lim_{t\to\infty}\frac{h(t)}{p(t)} = +\infty$$

hold. Then every solution of $E(\delta)$ is unbounded.

Proof. Assume, to the contrary, that there exists a solution x(t) of $E(\delta)$ which is bounded. Then $x[g_i(t)]$ is bounded for $i = 1, \dots, m$. Since

(9)
$$2 c^{-1} L_n x(t) > \frac{L_n x(t)}{p(t)} = \frac{h(t)}{p(t)} - \delta F(x[g_1(t)], \dots, x[g_m(t)]),$$

 $L_n x(t)$ must be of positive sign for all $t \in \mathbb{R}^*_{+\infty}$. If $L_n x(t_1) =_1 0$ for some $t_1 \in \mathbb{R}^*_{+\infty}$, then we have

(10)
$$\delta F(x[g_1(t_1)], \dots, x[g_m(t_1)]) =_1 \frac{h(t_1)}{p(t_1)},$$

which, by (C₆), is an infinite positive number. Since $x[g_i(t)]$ is bounded for $i = 1, \dots, m$, the left hand side of (10) is bounded, a contradiction. If $L_n x(t) \neq_1 0$ for all $t \in \mathbb{R}^*_{+\infty}$, it follows from (9) that $L_n x(t)$ is an infinite positive number for all $t \in \mathbb{R}^*_{+\infty}$. This and the condition (a) imply x(t) is an infinite number for all $t \in \mathbb{R}^*_{+\infty}$, a contradiction. Thus the proof is complete.

Example 5. The equation

(11)
$$(t^{-1}(t^{-1/2}x')')' + x(t) = t^{1/2} + \frac{3}{2}t^{-4}$$

satisfies the conditions of Theorem 3. Thus, every solution of (11) is unbounded. In fact, this equation has an unbounded solution $x(t) = t^{1/2}$.

THEOREM 4. Let (C₁) and (C₄) hold. If
(C₇)
$$\liminf_{t\to\infty} p(t) \ge c > 0$$
(C₈)
$$\liminf_{t\to\infty} \frac{h(t)}{p(t)} \ge r > 0,$$

then no nonoscillatory solution of $E(\delta)$ approaches zero as $t \to \infty$.

Proof. We only prove the case E(I). Let x(t) be a nonoscillatory solution of E(I) which approaches zero. Then there exists a $t_1 \ge t_0$ such that for all $t \ge t_1$

$$F(x[g_1(t)], \cdots, x[g_m(t)]) < 4^{-1}r.$$

Since

$$2 c^{-1} L_n x(t) > \frac{L_n x(t)}{p(t)} = -F(x[g_1(t)], \dots, x[g_m(t)]) + \frac{h(t)}{p(t)}$$
$$> -4^{-1}r + 2^{-1} = 4^{-1}r > 0$$

for $t \ge t_1$, x(t) is an infinite positive number for $t \in \mathbb{R}^*_{+\infty}$, a contradiction. This contradiction completes our proof.

Example 6. The equation

(12)
$$(e^{-t}(e^{-t}x'(t)')' + 6[x(t)]^3 = 6(1 + 3e^{-t} + 3e^{-2t})$$

satisfies the conditions of Theorem 4. Thus no nonoscillatory solution of (12) approaches zero as $t \to \infty$. In fact, $x(t) = 1 + e^{-t}$ is a nonoscillatory solution of $(12)^{t}$ which satisfies $\lim_{t\to\infty} x(t) = 1 \neq 0$.

References

- [1] V. KOMKOV and C. WAID (1973) Asymptotic behavior of nonlinear inhomogeneous differential equations via nonstandard analysis, «Ann. Polonici Math.», 28, 67–87.
- [2] V. KOMKOV (1974) Asymptotic behavior of nonlinear inhomogeneous differential equations via nonstrandard analysis, «Ann. Polo. Math.», 30, 205–219.
- [3] H. MURAKAMI, S. NAGAKIRI and C. C. YEH Asymptotic behavior of solutions of nonlinear differential equations with deviating arguments via nonstandard analysis, «Ann. Polonici Math. ».
- [4] A. ROBINSON (1966) Introduction to model theory and to the mathematics of algebra, North Holland, Amsterdam.
- [5] A. ROBINSON (1966) Nonstandard analysis, North Holland, Amsterdam.
- [6] M. SAITO (1976) Nonstandard analysis (Japanese).
- [7] K. D. STROYAN and W. A. J. LUXEMBURG (1976) Introduction to the theory of infinitesimal, Academic Press.

754