Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Haruo Murakami, Shin-Ichi Nakagiri, Cheh-Chih Yeh

Asymptotic Behavior of Solutions of Nonlinear Functional Equations via Nonstandard Analysis

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.6, p. 749-754. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_6_749_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni funzionali. - Asymptotic Behavior of Solutions of Nonlinear Functional Equations via Nonstandard Analysis. Nota di Haruo Murakami (*), Shin-ichi Nakagiri ${ }^{(*)}$ e Cheh-Chih Yeh (*), presentata ${ }^{(* *)}$ dal Socio G. Sansone.

RIASSUNTO. - Gli Autori usano speciali tecniche per trovare alcune proprietà caratteristiche delle soluzioni delle equazioni

$$
\mathrm{L}_{n} x(t)+\delta f\left(t, x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)=h(t) \quad, \quad \delta= \pm \mathbf{I}
$$

I. INTRODUCTION

Nonstandard analysis was introduced in oscillatory theory by Komkov and Waid [1] and Komkov [2]. Recently, the Authors [3] improved their results and gave some new criteria for the asymptotic behavior of solutions of the following n-th order differential equation with deviating arguments

$$
x^{(n)}(t)+\delta a(t) \mathrm{G}\left(x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)=h(t) \quad, \quad \delta= \pm \mathrm{I}
$$

In this Note, we extend these results to the more general differential equation

$$
\mathrm{E}(\delta) \quad \mathrm{L}_{n} x(t)+\delta f\left(t, x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)=h(t) \quad, \quad \delta= \pm \mathrm{I}
$$

by using nonstandard techniques, in the frame-work of Robinson's theory $[4,5]$. Here L_{n} is an operator defined by

$$
\mathrm{L}_{0} x(t)=x(t) \quad, \quad \mathrm{L}_{i} x(t)=\frac{\mathrm{I}}{r_{i}(t)} \frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~L}_{i-1} x(t) \quad, \quad r_{n}(t)=\mathrm{r}
$$

for $i=1, \cdots, n$.
Let R* denote the nonstandard extension of the real line R, which has the property that sentences formulated in language L are true in R^{*} if and only if they are true in R (see [5]). We see that R is a subset of R^{*} and R^{*} also contains infinitesimal numbers and infinite numbers which are not in R. An infinite positive (resp. negative) number is a nonstandard number which is greater (resp. smaller) than any real number. We shall denote by $R_{+\infty}^{*}$ and $\mathrm{R}_{-\infty}^{*}$, respectively, the set of the infinite positive and negative numbers. The

[^0]reciprocal of an infinite number is called an infinitesimal number. If x is a real number, then we call x a standard number of R^{*}, otherwise it is called a nonstandard number. Let $R_{b d}^{*}$ denote the set of the elements of R^{*} which are bounded in absolute value by a standard number. If x, y are elements of R^{*} such that $x-y$ is an infinitesimal, we shall say that x is infinitely close to y, and denote this by $x={ }_{1} y$.

For related results, we refer to Saito [6], Stroyan and Luxemburg [7].
Let $\mathrm{I} \equiv\left[t_{0}, \infty\right)$ for some fixed $t_{0}>0$. Throughout this paper, we assume that the following two conditions always hold:
(a) $r_{i}, g_{j}, h \in \mathrm{C}[\mathrm{I}, \mathrm{R}], r_{i}(t)>0, \int_{i_{0}}^{\infty} r_{i}(t) \mathrm{d} t=\infty$ and $\lim _{t \rightarrow \infty} g_{j}(t)=\infty$ for $i=\mathrm{I}, \cdots, n$ and $j=\mathrm{I}, \cdots, m$.
(b) $f \in \mathrm{C}\left[\mathrm{I} \times \mathrm{R}^{m}, \mathrm{R}\right]$.

We need the following four lemmas. The first is due to Robinson [4], and the others are due to Komkov and Waid [I].

Lemma I. $\int_{i_{0}}^{\infty} g(t) \mathrm{d} t$ converges if and only if $\int_{t_{1}}^{t_{2}} g(t) \mathrm{d} t={ }_{1}$ o for any $t_{1}, t_{2} \in \mathrm{R}_{+\infty}^{*}([4]$, p. 75).

Lemma 2. A standard function $x(t), t \in \mathrm{I}$, is oscillatory if and only if $x(t), t \in \mathrm{R}^{*}$, vanishes for some $t \in \mathrm{R}_{+\infty}^{*}$.

Lemma 3. A standard function $x(t)$ is unbounded if and only if $|x(t)| \in \mathrm{R}_{+\infty}^{*}$ for some $t \in \mathrm{R}_{+\infty}^{*}$.

Lemma 4. Let $\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} g(s) \mathrm{d} s=+\infty(-\infty)$. Then for any $\mathrm{A} \in \mathrm{R}^{*}, \mathrm{~A}>0$ (resp. < 0), and any $t_{1}>t_{0}, t_{1} \in \mathrm{R}^{*}$, there exists $t_{2} \in \mathrm{R}^{*}, t_{2}>t_{1}$, such that $\int_{t_{1}}^{t_{2}} g(t) \mathrm{d} t>\mathrm{A}($ resp. $<\mathrm{A})$. Moreover, for any $t_{3} \in \mathrm{R}_{b d}^{*}, t_{4} \in \mathrm{R}_{+\infty}^{*}\left(\right.$ resp. $\left.\mathrm{R}_{-\infty}^{*}\right)$, we have $\int_{t_{3}}^{t_{4}} g(t) \mathrm{d} t \in \mathrm{R}_{+\infty}^{*}\left(\right.$ resp. $\left.\mathrm{R}_{-\infty}^{*}\right)$

2. Main Results

Theorem i. Let
$\left(\mathrm{C}_{1}\right) f\left(t, y_{1}, \cdots, y_{m}\right)$ be a nondecreasing function with respect to y_{1}, \cdots, y_{m} and

$$
0<f\left(t, y_{1}, \cdots, y_{m}\right) \leq-f\left(t,-y_{1}, \cdots,-y_{m}\right)
$$

for $y_{i}>0, i=1, \cdots, m$,
(C_{2})

$$
\int_{i_{0}}^{\infty} h(t) \mathrm{d} t \quad \text { converge },
$$

and
$\left(\mathrm{C}_{3}\right)$

$$
\int_{\iota_{0}}^{\infty}|f(t, c, \cdots, c)| \mathrm{d} t=\infty
$$

for any nonzero constant c. Then every nonoscillatory solution of $\mathrm{E}(\mathrm{r})$ cannot be bounded away from zero.

Proof. Assume, to the contrary, that there exists a solution $x(t)$ of $\mathrm{E}(\mathrm{I})$ such that $x(t)$ is bounded away from zero on I. Without loss of generality, we assume that $x(t)>c>0$ for some standard number c. Condition (a) implies that there exists a $t_{1}>t_{0}$ such that

$$
x\left[g_{i}(t)\right]>c
$$

for $t>t_{1}$ and $i=1, \cdots, m$. Hence, by (b) and ($\mathrm{C}_{\mathbf{1}}$), we have

$$
\begin{equation*}
f\left(t, x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right) \geq f(t, c, \cdots, c) \tag{I}
\end{equation*}
$$

for $t \geq t_{1}$ and particularly for all $t \in \mathrm{R}_{+\infty}^{*}$. It follows from $\left(\mathrm{C}_{2}\right)$ and Lemma I that

$$
\int_{\xi}^{n} h(t) \mathrm{d} t={ }_{1} 0
$$

for any $\xi, \eta \in \mathrm{R}_{+\infty}^{*}$. Hence
(2)

$$
\int_{\xi}^{n} h(t) \mathrm{d} t<\mathrm{I} .
$$

By (1), (2) and the fundamental theorem of calculus
(3) $\mathrm{L}_{n-1} x(\eta)=\mathrm{L}_{n-1} x(\xi)+\int_{\xi}^{\eta}\left[h(t)-f\left(t, x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)\right] \mathrm{d} t$

$$
<\mathrm{L}_{n-1} x(\xi)+\mathrm{I}-\int_{\xi}^{\eta} f(t, c, \cdots, c) \mathrm{d} t .
$$

Regarding ξ as fixed, by $\left(\mathrm{C}_{3}\right)$ and Lemma 4, we can choose η so that
(4)

$$
\int_{\xi}^{n} f(t, c, \cdots, c) \mathrm{d} t>\left[2+\mathrm{L}_{n-1} x(\xi)\right]
$$

From (3) and (4), we have

$$
\begin{equation*}
\mathrm{L}_{n-1} x(\eta)<-\mathrm{I} \tag{5}
\end{equation*}
$$

for all η satisfying (4). Since $x(t)$ is positive, (5) and (a) imply that $x(t)$ changes sign for some $t \in \mathrm{R}_{+\infty}^{*}$. Therefore, by Lemma 2, $x(t)$ is oscillatory, a contradiction. This contradiction proves our theorem.

Corollary. Under the assumptions of Theorem I, every solution $x(t)$ of $\mathrm{E}(\mathrm{I})$ is oscillatory or such that $\liminf _{t \rightarrow \infty}|x(t)|=0$.

Example I. The equation

$$
\begin{equation*}
\left(t^{-1 / 2} x^{\prime}(t)\right)^{\prime}+4^{-1} t^{-2} x(t)=4^{-1} t^{-3 / 2}-2^{-1} t^{-2} \tag{6}
\end{equation*}
$$

satisfies the conditions $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$, but does not satisfy $\left(\mathrm{C}_{3}\right)$. This equation has a nonoscillatory solution $x(t)=t^{1 / 2}$ which is bounded away from zero.

Example 2. The differential equation

$$
\begin{equation*}
\left(e^{-t} x^{\prime}\right)^{\prime}+x(t)=e^{-2 t}(\sin t-3 \cos t)+e^{-t} \sin t \tag{7}
\end{equation*}
$$

satisfies all the conditions of Theorem 1. Hence every solution $x(t)$ of (7) is oscillatory or such that $\underset{t \rightarrow \infty}{\liminf }|x(t)|=0$. In fact, $x(t)=e^{-t} \sin t$ is an oscillatory solution of (7).

Theorem 2. Let $\left(\mathrm{C}_{\mathbf{1}}\right), \lim _{t \rightarrow \infty} h(t)=0$ and the following condition hold:

$$
\begin{equation*}
f\left(t, y_{1}, \cdots, y_{m}\right)=p(t) \mathrm{F}\left(y_{1}, \cdots, y_{m}\right) \tag{4}
\end{equation*}
$$

where $p(t) \in \mathrm{C}[\mathrm{I},(0, \infty)]$. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} p(t) \equiv c>0, \tag{5}
\end{equation*}
$$

then every solution $x(t)$ of $\mathrm{E}(\mathrm{I})$ is oscillatory or such that $\lim _{t \rightarrow \infty} x(t)=0$.
Proof. Let $x(t)$ be a nonoscillatory solution of $\mathrm{E}(\mathrm{I})$. Without loss of generality, we assume that $x(t)>0$ for all $t \in \mathrm{R}_{+\infty}^{*}$. If $x\left[g_{i}(t)\right] \neq 10$ for some $t_{1} \in \mathrm{R}_{+\infty}^{*}, i=\mathrm{I}, \cdots, m$, then, by $\left(\mathrm{C}_{1}\right)$

$$
p\left(t_{1}\right) \mathrm{F}\left(x\left[g_{1}\left(t_{1}\right)\right], \cdots, x\left[g_{m}\left(t_{1}\right)\right]\right) \neq 10
$$

It follows from $\mathrm{E}(\mathrm{I})$ that $\mathrm{L}_{n} x\left(t_{1}\right)<0$ and $\mathrm{L}_{n} x\left(t_{1}\right) \neq 10$. We see that there must exist $t_{2} \in R_{+\infty}^{*}, t_{2}>t_{1}$, such that

$$
\mathrm{L}_{n} x(t)<0 \quad \text { and } \quad \mathrm{L}_{n} x(t)={ }_{1} 0
$$

for $t \geq t_{2}$. Otherwise $\mathrm{L}_{n} x(t)$ is negative and bounded away from zero for $t \geq t_{1}$. By the condition (a), $x(t)$ must eventually become negative, a contradiction. But $\mathrm{L}_{n} x(t)={ }_{1} \circ$ for $t \geq t_{2}$ implies

$$
p(t) \mathrm{F}\left(x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)={ }_{j} \circ,
$$

thus, by $\left(\mathrm{C}_{5}\right)$,

$$
\mathrm{F}\left(x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)=
$$

which implies $x\left[g_{i}(t)\right]={ }_{1} \mathrm{o}$, i.e. $x(t)={ }_{1} \mathrm{o}$ for $t \in \mathrm{R}_{+\infty}^{*}$.
Example 3. The differential equation

$$
\begin{equation*}
\left(t\left(t\left(t x^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}+t[x(\log t)]^{3}=\left(t^{3}-6 t^{2}+7 t-\mathrm{I}\right) e^{-t}-t^{2} \tag{8}
\end{equation*}
$$

satisfies every condition of Theorem 2. Hence, every solution $x(t)$ of (8) is oscillatory or tends to zero as $t \rightarrow \infty$. In fact, $x(t)=e^{-t}$ is a nonoscillatory solution of (8) which tends to zero as $t \rightarrow \infty$.

Example 4. From Example I, we see that $x(t)=t^{1 / 2}$ is an unbounded solution of (6). Here $p(t)=4^{-1} t^{-2}$ does not satisfy the condition $\left(\mathrm{C}_{5}\right)$.

Theorem 3. Let $\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{5}\right)$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{h(t)}{p(t)}=+\infty \tag{6}
\end{equation*}
$$

hold. Then every solution of $\mathrm{E}(\delta)$ is unbounded.
Proof. Assume, to the contrary, that there exists a solution $x(t)$ of $\mathrm{E}(\delta)$ which is bounded. Then $x\left[g_{i}(t)\right]$ is bounded for $i=\mathrm{r}, \cdots, m$. Since

$$
\begin{equation*}
2 c^{-1} \mathrm{~L}_{n} x(t)>\frac{\mathrm{L}_{n} x(t)}{p(t)}=\frac{h(t)}{p(t)}-\delta \mathrm{F}\left(x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right) \tag{9}
\end{equation*}
$$

$\mathrm{L}_{n} x(t)$ must be of positive sign for all $t \in \mathrm{R}_{+\infty}^{*}$. If $\mathrm{L}_{n} x\left(t_{1}\right)={ }_{1} \mathrm{o}$ for some $t_{1} \in \mathrm{R}_{+\infty}^{*}$, then we have

$$
\begin{equation*}
\delta \mathrm{F}\left(x\left[g_{1}\left(t_{1}\right)\right], \cdots, x\left[g_{m}\left(t_{1}\right)\right]\right)={ }_{1} \frac{h\left(t_{1}\right)}{p\left(t_{1}\right)}, \tag{⿺辶}
\end{equation*}
$$

which, by $\left(\mathrm{C}_{6}\right)$, is an infinite positive number. Since $x\left[g_{i}(t)\right]$ is bounded for $i=\mathrm{I}, \cdots, m$, the left hand side of (10) is bounded, a contradiction. If $\mathrm{L}_{n} x(t) \neq 1 \circ$ for all $t \in \mathrm{R}_{+\infty}^{*}$, it follows from (9) that $\mathrm{L}_{n} x(t)$ is an infinite positive number for all $t \in \mathrm{R}_{+\infty}^{*}$. This and the condition (a) imply $x(t)$ is an infinite number for all $t \in \mathrm{R}_{+\infty}^{*}$, a contradiction. Thus the proof is complete.

Example 5. The equation

$$
\begin{equation*}
\left(t^{-1}\left(t^{-1 / 2} x^{\prime}\right)^{\prime}\right)^{\prime}+x(t)=t^{1 / 2}+\frac{3}{2} t^{-4} \tag{II}
\end{equation*}
$$

satisfies the conditions of Theorem 3. Thus, every solution of (II) is unbounded. In fact, this equation has an unbounded solution $x(t)=t^{1 / 2}$.

Theorem 4. Let $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{4}\right)$ hold. If
$\left(\mathrm{C}_{7}\right)$

$$
\liminf _{t \rightarrow \infty} p(t) \geq c>0
$$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{h(t)}{p(t)} \geq r>0 \tag{8}
\end{equation*}
$$

then no nonoscillatory solution of $\mathrm{E}(\delta)$ approaches zero as $t \rightarrow \infty$.
Proof. We only prove the case $\mathrm{E}(\mathrm{I})$. Let $x(t)$ be a nonoscillatory solution of $\mathrm{E}(\mathrm{I})$ which approaches zero. Then there exists a $t_{1} \geq t_{0}$ such that for all $t \geq t_{1}$

$$
\mathrm{F}\left(x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)<4^{-1} r
$$

Since

$$
\begin{gathered}
2 c^{-1} \mathrm{~L}_{n} x(t)>\frac{\mathrm{L}_{n} x(t)}{p(t)}=-\mathrm{F}\left(x\left[g_{1}(t)\right], \cdots, x\left[g_{m}(t)\right]\right)+\frac{h(t)}{p(t)} \\
>-4^{-1} r+2^{-1}=4^{-1} r>0
\end{gathered}
$$

for $t \geq t_{1}, x(t)$ is an infinite positive number for $t \in \mathrm{R}_{+\infty}^{*}$, a contradiction. This contradiction completes our proof.

Example 6. The equation

$$
\begin{equation*}
\left(e^{-t}\left(e^{--t} x^{\prime}(t)^{\prime}\right)^{\prime}+6[x(t)]^{3}=6\left(\mathrm{I}+3 e^{-t}+3 e^{-2 t}\right)\right. \tag{I2}
\end{equation*}
$$

satisfies the conditions of Theorem 4. Thus no nonoscillatory solution of (I2) approaches zero as $t \rightarrow \infty$. In fact, $x(t)=1+e^{-t}$ is a nonoscillatory solution of (I2) which satisfies $\lim _{t \rightarrow \infty} x(t)=\mathrm{I} \neq 0$.

References

[I] V. Komkov and C. Waid (1973) - Asymptotic behavior of nonlinear inhomogeneous differential equations via nonstandard analysis, "Ann. Polonici Math.", 28, 67-87.
[2] V. Kомкоv (1974) - Asymptotic behavior of nonlinear inhomogeneous differential equations via nonstrandard analysis, "Ann. Polo. Math.», 30, 205-219.
[3] H. Murakami; S. Nagakiri and C. C. Yeh - Asymptotic behavior of solutions of nonlinear differential equations with deviating arguments via nonstandard analysis, «Ann. Polonici Math.».
[4] A. Robinson (1966) - Introduction to model theory and to the mathematics of algebra, North Holland, Amsterdam.
[5] A. Robinson (1966) - Nonstandard analysis, North Holland, Amsterdam.
[6] M. Saito (1976) - Nonstandard analysis (Japanese).
[7] K. D. Stroyan and W.A. J. Luxemburg (1976) - Introduction to the theory of infinitesimal, Academic Press.

[^0]: (*) Department of Applied Mathematics, Kobe University, Kobe, Japan.
 (**) Department of Mathematics, National Central University, Taiwan and Institute of Mathematics, Kobe University, Kobe, Japan.
 (***) Nella seduta del 23 giugno 1977.

