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Magnetofluidodinamica. — Unsteady magnetoaerodynamic forces 
on an oscillating circular cylindrical shell of finite length. I. Simple 
harmonic motion. Nota di L iviu  L ibrescu , presentata (*> dal Socio 
C. F err ar i .

R iassunto. — Il presente lavoro è dedicato alla determinazione analitica delle forze 
magnetoaerodinamiche, agenti su un pannello cilindrico circolare che oscilla armonicamente 
in una corrente di gas supersonico, perfetto conduttore dell’elettricità, in presenza di un 
campo magnetico.

1. The study of the structural instability phenomena resulting from the 
reciprocal interaction between the electrodynamic field, a conducting gas 
flow and an elastic thin body (interaction occuring e.g. when an electrically 
conducting gas flows past an elastic thin body, a magnetic field being pre­
sent), plays an important role in the design of some modern technological 
devices (space vehicles, ionic engines, etc.).

In this context, the importance of investigating the magneto-aeroelastic 
stability of finitely long circular cylindrical thin shells becomes obvious.

In order to undertake such a stability analysis, an indispensable prere­
quisite is the determination of the appropriate magneto-aerodynamic unsteady 
forces; it is just this determination that constitutes the subject of the present 
Note.

2. Let us consider a circular cylindrical thin shell of finite length /  placed 
in an external and separately in an internal supersonic ideally conducting 
gas flow, a magnetic field H 0 (with U || H 0) being also present, where U, i.e. 
the velocit vector of the gas is considered to be parallel to the cylinder axis.

Let us refer the points of the space to the cylindrical coordinate system 
(^3 , x2 , at3), where xx denotes the streamwise, x2 =  R 0—the circumferential 
and x 3 =  r—the radial coordinates, respectively, (R being the radius of the 
cylinder mid-surface) and let the initial and terminal sections of the cylinder 
bee defined by x1 =  o ; /, respectively.

In approaching the proposed problem we start from the linearized 
magnetoaerodynamic field equations established in [1], independently 
of any particular coordinate system, for the case of simple media (see 
in this sense [2]), by also disregarding the thermoelectric and viscosity 
effects. By further considering the case of an ideally conducting medium,

(*) Nella seduta del 14 maggio 1977.
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in the absence of the Hall effect, the pertinent field equations write:

D *  =  R  3v  I H i  D P I  
D t 1 dXi p0 ~Dt 1 ’

Dw I , /  2 - , I t t  7 \ , dh
(I) T F = - ^ raM * ” p +  ^ H l N + ^ i s r '

Dp , 1.
-jg- +  p0 div v =  o ,

p  =  a 0 ? , (fio =  K P o l Po) ; P  =  P o + P

where h ( =  hl I*) ; © (== z/* I{) ; p and p  denote the perturbations of the pri­
m ary fields; i.e. of the applied magnetic field H 0, of the velocity U, of the 
density p0 and of the pressure p 0y respectively, where the perturbations are 
considered to be functions of and t , while the prim ary fields are considered
to be constant quantities in both time and space; (i — 1 , 2 , 3) are the unit 
base vectors; D /D/ =  d\dt + U dldxly denotes the substantial derivative, while 
a0 denotes the speed of sound.

The solution to the above exhibited field equations is to be subjected to 
the appropriate conditions at infinity (in the case of external flow), to the 
finiteness condition at r  — o (in the case of internal flow) and to the impene­
trability condition at r  — R, i.e.

(2) J 3 |&3=R

D w
1

o

for (pc1 , x2) e D 

for (x1 , x2) $ Q

where £i denotes the domain of the cylinder mid-surface, while w (xx , #2 , *), 
its radial deflection.

3. The pertinent field equations being already exhibited, we may pass 
to the determination of the pressure P |æ3=R=  (p+ — p _ — *33)33=11 acting on 
the cylinder mid-surface, where the subscripts ±  mean that the quantities 
thus affected are obtained for x 3 =  R ±  o, respectively, while the transversal 
component /33 of the linearized Maxwell tensor ty (i yj  =  1 , 2 , 3), is given 
in the present instance by

(3) t 33 =  H x Aj/(4 7r) .

Consistent with the cylinder deflection-function defined by

(4) w (xx , x2 , t) — W (x-P) ej(ùt cos nO , ( /  =  (— \ f )

the remaining unknown functions are adequately represented as:
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/  {pcI, t) and g  , /) denoting generically one of the functions vx {x{, t) , vz (xi , /), 
hx {xi , t) , h3 (xI , f) and v2 (pct , t) , h2 {xi , £), respectively, while ^ denotes the 
circumferential wave number.

M aking use in the field equations of the dimensionless coordinates 
xi =  x j l , (i =  I , 2) , x3 — r/R  and of (5) and taking in the so obtained 
equations the Laplace transform (henceforth denoted by L. T.) with respect 
to the xx -coordinate, i.e.

00
(6) f ( s , x s) =  I f ( x x , x3) e~SXl dxx = £ ?  { f }

b

(s denotes L. T. variable) and using the continuity condition of disturbances 
at xx =  o (expressed generically as f  (o+, x3) = /( o ~ ,  xB) =  o), it is easy to

O O . Q

see that z>i(s ,x3) and & i ( s , x 3), expressed in terms of p (s , x3) as:

( F  —  v
Po A3

nl  ji2+ X a ((i2— r2) 
po p? r  p? X2 s2

(7)
h3

H , i  I ji2+ X 2(fi2 — -r2) 0 
Po R p,2 — X2j 2 P’8

o a 0 s
Vi =  — ---- -Po ft P >

_  aQ nl [i2+  X2 (p,2— s2) o o ___  a0 1  £2+ X 2.(jia — s2) 0
2 po r  j i . ( j i2 — X2 ^2)  P V3 Po R  A  (£*2 — - X2 s2) P’3

(( ),3 = '9/ ^ 3) >

satisfy identically Eqs. (1)1,2,3 (transformed through (6)) while Eq. (i)4 in 
conjunction with (7) (also transformed through (6)) leads to the governing 
equation for p ( j ,æ 3):

(8) p,çç +  -ç- P,c— ^  +  "^2) P =  0 » ((),*: — s/30

which is a modified Bessel equation, where

fd) r  R2 , ( f f - ^ (y - X 2^
W  V  R /2 ji2+X*(ji* — s2)
while

(10) (i =  M (ya> +  j) ' , ù) =  ; M =  —  — (Mach number),
U a0

tt2
X2 =  ------ L__ — (Alfvén number).

4 7rPo ^ 0

Satisfying the condition of finitness at infinity (in the case of the external 
flow) and the “ impenetrability condition ”

( i o 138=1 =
— ^  W  ( o  <  Xj  <  1 )

o (1 <  xx <  o)

43- — RENDICONTI 1977, voi. LXII, fase. 5.
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O
where W (V) ==j£? {W (#x)}, the solution to Eq. (8) turns out to be

( 12) o , - s  R
9 \s y x z) — Po ~yr 

/ 2
F2 %T<S)

where K n (Ç) denotes the modified Bessel functions.
Now, by using adequatelly Eqs. (1 2 ), (3), (7)1, (1)4,5 anc  ̂ assimilating 

the pressure into vacuum with p 0, one gets:

( U ) P  1*3=1 ---  ( / +  P o  ^33)  1 *3 -1

Kk ( Q
l K n(X)

^ o P o - t e 2- ^ ) W (s) (X ^ t \ r = R ) .

At this stage, the difficulty consists in performing the inverse L. T. of (13), 
as to obtain P |j8=1 explicitely. For this purpose, two asymptotic approxi­
mations of VP (Q  =  K„ (X')I(XK (X)) will be used:

i) W ithin the first one (see in this sense [3, 4])

(14) T ( 0 ^ - ( ^ 2 +  XT*,

evaluation valid for large n and arbitrary Re (Q  >  o.
Inserting (14) into Eq. (13), having in view (10) and making use of the 

convolution and the shifting theorems to the resulting equation, we get the 
original as:

dW (*0 ?1
f e = i =  «  [

OS) X

=(K (%) +  j  K f o  — 5 0 X
0

) W (5 0 d f xJ > *  ,

^  =  — a°Po ^  cos ^

\  d^x

in which the Kernel function : K (^x) expresses as:

(16) K (x) =  Jo (Tx) exp (— j u x )

where
_  M2 go X

> ci =  M2 — X2 for X2 > I
and

to

while

M2 — X2

M 2 w 
M2 — I

r 2 =

’ 1 (M2 — X2>1

; =  (M2— i)~

M2 <L2 X2

ci =  M2 — X2 for X2 I

(M2 — X2) 2

M 2 ,r,2

(M2

/  ?i i V  x2

L R /  M2 — X2 for X2> I

i i V
+  - r )  (M2-  !)-1 for X2«  I
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Another form ot the magnetoaerodynamic pressure given by:

0

may easily be obtained from (15) through successive integrations by parts, 
where

( M2 (M2 — i ) _1 for X2 < I

[ M2 (M2 — X2)-1 for X2 > I

while

Jn being Bessel functions of the first kind.
It is worth remarking that Eqs. (15) and (17) specialized for the non­

conducting gas flow, coincide with those derived in [5] and in [6], respectively. 
In the instance o>2 1, the pressure form (17) reduces to the magnetoaero­
dynamic quasi-steady approximation, whose classical counterpart has been 
widely used in the supersonic flutter of cylindrical shells.

ii) Another approximation of 'F  (Q  (see in this sense [7, 8]) valid for 
large n and small £ ( / /R > i )  results from (14) as

O 8) Y & s i  — fr-1.

Making use of (18) and (10) in Eq. (13), we may compute its original to obtain 
the following pressure-expression

TJ2 0 -D
(19) P l*3=i =  --- %— K 1 —  2 j â w tl — VA2> o

(( ) ,i  =  3/3*i)»

which constitutes the magnetoaerodynamic generalization of the so called 
“ slender-body theory aerodynamics ” derived first in [7, 8] and subsequently 
in [9]; it is also discussed in [10, 11 ].

4. In the case of finitely long circular cylindrical duct with an internal, 
supersonic, perfectly conducting gas flow, a magnetic field (with U || H 0) 
being also present, the determination of the unsteady magnetoaerodynamic 
pressure expression leads to the governing equation (8). Its solution, subjected 
to the condition (11) and the finiteness condition at x 3 =  o, yields for what 
concerns p0 («?':> *3) and P l^3=i expressions similar to those given by (12) and 
(13), respectively, where KW"(Ç) is to be replaced by l n (Ç) (the modified Bessel 
function of the first kind).

For reasons already discussed, two asymptotic evaluations of 9 ÇQ =  
=  L(X)l(XK(Zj)  shall be used, i.e.: i) 9 (Q  ^  («* — ?«)-* (see e.g. [4]) and
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ii) 7Z“1, obtained respectively under similar conditions as for Y  (Ç).
W ithin the two above mentioned evaluations, one gets the pressure P(i ,u) 
formally expressed as P(I ,u) =  — P(+u), where P(j ’n) denotes the asymptotic 
pressure obtained for the external flow conditions, in the case of the 
evaluations i) or ii) (expressed by Eq. (17) and (19), respectively). The 
above given result valid for the first-order approximation theories only, is 
also met in the classical case of the non-conducting gas flow (see e.g. [4]). 
In  the case of the simultaneous internal and external flow of a supersonic 
ideally conducting gas with U + =  U_ =  U and U | | H 0, within the above 
considered approximate theories i) and ii) one gets:

p(bü) __ p(U0 __p(i>ii) _  2 p(b")

Concerning the applicability ranges of the various magnetoaerodynamic 
approximate theories in the flutter analysis of cylindrical shells of finite length, 
the conclusions drawn in the classical case in [10-13] deserve well to be 
continued in the present case, too.
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