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Geometrie finite. —On polarities of symmetric semi partial geo-
metrzes. Nota di INGRID DEBROEY e JosEPpH A. THaAs, presentata
dal Socio B. SEGRE.

RIASSUNTO. — Dopo aver data la definizione delle geometrie semiparziali, ed in par-
ticolare di quelle simmetriche, si danno esempi di geometrie semiparziali che non sono geo-

metrie parziali. Si studiano poi le polarita nelle geometrie semiparziali simmetriche e dj
esse si forniscono esempi.

I. INTRODUCTION

A semi partial geometry is a finite incidence structure S = (P, B, I)
for which the following properties are satisfied:

(i) any point is incident with 2 4 1 (# = 1) lines and two distinct
points are incident with at most one line;

(ii) any line is incident with s + 1 (s > 1) points and two distinct
lines are incident with at most one point;

(iii) if two points are not collinear, then there are « (x > 0) points
collinear with both;

(iv) if a point # and a line L are not incident, then there are o or # (# > 1)
points x; and respectively o or ¢ lines L; such that »I L;Ix;IL.

For any point x and any line L which are not incident, we define {x,L)
to be the number of points incident with L. and collinear with x.

It is clear that # <min (% + 1,5 -+ 1). If =15+ 1, any two points
are collinear, and S is a 2-design. For the remainder of this paper we suppose
that this is not the case, and so # < min (# + 1, 5).

' If |P|=v2 and |B| =24, then 6 =v (% + 1)/(s + 1), where
v=14+@w+1DsQ +uls—zt4+ 1)) [4]

Now we consider the graph G whose vertices are the points of S and
where two distinct vertices are adjacent if and only if the corresponding
points are collinear. The adjacency matrix of this graph is denoted by
A If wedefine D=(@w(@—1)+s—1—aP +4((®+1)s—oa), then A
has eigenvalues ¢y = (# + 1)s,¢6,= (u(t—1) +s—1—a + yD)/2 and
¢o=(u(—1)+s—1—oa—|D)/2, with resp. multiplicities mo =1,

my=(— (u+1) s — (v —1) (@ (¢t — 1)+ s —1—&)[2)+ (v —1)YD/2)/yD

and

my = ((+1) s+ (v —1) ( (¢t — 1)+ s — 1 —&)/2)+ (v —1)yD/2)[YD[4].

(*) Nella seduta del 14 maggio 1977.
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We also remark that D always is a square, except for the case v = s = ¢ =
= o =1 where D = 5 (and then S is a pentagon) [4].

The semi partial geometry S = (P, B, I) is called symmetric if . = s = #,
ie. if o=6b=1+4+m+ 1% +2—t+ 1)e). In this case we have

D=@mt—1—a+4@mrn+i1)—« , cg=nmt+1i),
g =@t—1—a+ D)2 , a=@m—1—a— D)z , me=1,
m=(—@m+10)n—((—1) @nt—1—a)2) + (@—1) yD/2)/{D

and
my=(n(n+ 1)+ (v—1) (@t —1—a)2) + (—1) yD/2)/{yD .

Symmetric partial geometries are studied in [8] (a partial geometry is a
semi partial geometry for which (# 4 1)¢ = o).

2. EXAMPLES OF SYMMETRIC SEMI PARTIAL GEOMETRIES WHICH ARE NOT
PARTIAL GEOMETRIES

2.1. Let G be a graph with valency » (> 1), girth 5, and the minimal
number 1 + 7% of vertices [1]. Then necessarily e {2,3,7,57} [1]. If
v =2 ,G is isomorphic to the pentagon; if » = 3,G is isomorphic to the
Petersen graph [1]; if » = 7, G is isomorphic to the graph of Hoffman and
Singleton [7]; for #» == 57 it is not known whether or not such a graph exists [1].

Now we define P to be the set of vertices of G, and B to be the set
{C.llxe P}, with C, = {ye P||y ~=x}. If1 is the natural incidence relation,
then S=(P,B,I) is a semi partial geometry with parameters #=s=¢=7—1
and « = ( — 1)% In particular, if » = 2, S is isomorphic to the pentagon;
if » = 3,5 is isomorphic to the Desargues configuration [4].

2.2. Define P to be the set of lines of PG (4, ¢), B to be the set of planes
of PG (4,¢), and I to be the inclusion relation.

Then S = (P, B, I) is a semi partial geometry with parameters » = s =
=¢"+¢,t=¢+1 and a= (g + 1)° [4].

3. POLARITIES

3.1. THEOREM. Let w be a polarity of the symmetric semi partial geometry
S = (P, B, ) with parameters n , t and a. If 3 is the number of absolute poinis
of m, then

S=n+1+sVmt+2nt1 —at+ D)2+l +20+1 —a— D)2,
with sy = my (mod 2) and s, = m, (mod 2). |

Proof. Suppose P = {x,,---,x,} and B={L,,---,L,} with 27 =1L;
(¢=1,-+-.2). Then the incidence matrix Q of S = (P, B, I) is symmetric.
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Remark that # + 1 is an eigenvalue of Q and that Q*=A 4+ (»+1)1,,
where I, is the identity matrix of order ». From this it follows that the eigen-
values of QQ are given by

ndt1 , Yowtent+1—a+4D)2 , —Vut+z2n+1—a+ D)2,
V(m‘—l—zn—}—l—oc——]/ﬁ)/z

and

—V(m‘—l—zn 4+ 1 —oc——Vﬁ)/z

with resp. multiplicities 1, 51,5253 and s3, where s} + sf=m, and
53 + 53 =m,. As the number of absolute points of = is equal to trQ,
we have

d=n+1+(1—sHlmt+2n+1—a+ VD)2 +
—f—(sé—sg)l/(m‘—l—zn—l—I—-a——}/ﬁ)/z

which proves the theorem.

Remarks. 1f we define 3, to be the number of non-absolute points x for
which (x,x") =¢ then we get in an analogous way that

8= (#* (2 + 1)Jt) + (551 VA, + By YD/t 12) + (512 /A, — B, yD/# 2) ,
5+ 8= (2 +#) (n + DJf) + (s VA + By YDJ# 12) + (522 /Ay — B, YDz }2)
and
38— 3= (— (#* —2) (n+1)J) + (501 VAs + B; YD/t Y2) + (532 VA, — B, YD/t 12),
with
spn=my (mod 2) (Z =1,2,3),8=my (mod 2)(¢=1,2,3),
Av=md— 3 4 2u3t —30m 2 + 200t —20* — 2 %> 4 +

+ 372t + 30t nt— ot n 4 ant —an + nt —o® + o,
By =w*#—wn?r—20mt + an —unt a2, .
A=A 4+ 2B —Aan +u® 202t —af —2af + 12
B,=B,+2nf—2at 2,

A=A —2nB+aanl® +n? +4nt—20%t—a2 +2at + 22

and

By=B,—2n®+2a+ 2.

3.2. THEOREM. Letn be a polarity of the symmetric semi partial geometry
S= (P, B, 1) with parameters n ,t and a. If the number 3 of absolute points
of ® is different from o, then S > mn -1 if t is even and 8 = n + 1 — nft if
¢ is odd. Moreover, if for any line L€ B 3 (L) denotes the number of absolute
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points incident with L, then for amy mon-absolute line L (LT, L) = o implies
S(LYy=o0, and (L', L) =1¢ implies 8 (L) <t and 3 (L) =t (mod 2).

Proof. Let L be a non-absolute line such that {x,L)= o, with x = L.
Suppose there exists an absolute point y incident with L. Then x and y are
incident with »”, a contradiction.

Let L be a non-absolute line such that (x,L)=1¢ with x = L". Denote
by x;,-++,x,and L;,- -+, L, the points and lines of S defined by x IL; I x; IL.
It is clear that the mapping o:{x;, -, % —>{x, - -, %4 ,2; > ¥;, where
y; IL and y, Ix7, is a permutation of order 2 whose fixed points are precisely
the absolute points of = incident with L. And consequently & (L) <<# and
8 (L) =¢ (mod 2).

Now we consider the case where # is even. Suppose 8 > 0 and let x be
an absolute point of =. Any line M different from L = 2" and incident with
x is non-absolute. Moreover (M", M) =1¢, and so 8 (M)=¢ (mod 2)=o
(mod 2). So 3 (M) >1 implies §(M)>2 and thus 8 >#» 4 1.

Now we consider the case where # is odd. Suppose 8 > o and let x be
a non-absolute point for which (x,L)=¢ with L =" (if M is an absolute
line and x IM , x 2MT, then (x,L)=¢ where L =4™). For any line M; (¢ =
=1,--+,¢) incident with x and concurrent with L, we have § (M;) = 1 if M,
is an absolute line, and 8(M;) = ¢ (mod 2) (and so 8§(M;) = 1) if M; is a non-
absolute line. So the number of absolute points of = collinear with x is at
least #. Now, let ¥ be an absolute point of = and let M = »". Then any point
x #y and incident with M is non-absolute and (x,%™) =# So x is collinear
with at least # — 1 absolute points different from y. Since each absolute point
different from y i$ collinear with at most # non-absolute points of M, we get

3=>2n(@—H)+1=n+1—nlt.

COROLLARY 1. Let © be a polarity of the symmetric semi partial geometry
S=(@®,B,D ‘with parameters n ¢t and «. If 0 <3 <%, then t=38=1,
and so S is a symmetric partial quadrangle (3] (a partial quadrangle is a semi
partial geometry for whick t = 1).

Proof. Leto <8 <¢. Iftiseven,thend>#xn -+ 1andsoz=2n |1, a
contradiction (see 1). Hence #is odd. From the proof of the preceding theorem
there follows that 8 > ¢ and consequently 8 =# So each absolute point
different from the absolute point ¥, is collinear with the » non-absolute points
of M = 3"." Hence # =1 or ¢ = (since ¢~ -+ 1). Now we suppose that
¢t =n. From [4] follows that S is a (symmetric) net or the pentagon. It is
easy to show that for the pentagon 8¢ {o, 2} (see 4).

Moreover, if S is a net and 8 > o, then 8 ># + 1 [8] and so # = » + 1,
a contradiction. We conclude that S is a symmetric partial quadrangle.

COROLLARY 2. 8§ <ut/(n -+ £).



610 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LXII — maggio 1977

Proof. On each absolute line there is exactly one absolute point, and
on each non-absolute line there are at most # absolute points, so § < (3 4
+ (v —8) #)/(» + 1), which proves that 3 < o#/(s + ).

Remark that if S= (P,B,I) is a symmetric generalized quadrangle,
equality holds [8] (a generalized quadrangle is a partial geometry for which
t=1).

3.3. THEOREM. Let &t be a polarity of the symmetric semi partial geometry
S= (P, B,) with parameters n ,t and «. If the number of absolute points
of ™ is denoted by 3, then

5 < 2 (1 +V(m‘+2n + 1 —at Vﬁ)/z) .
Cnt 1Vttt 1—a+ YD)z
Proof. Let x,,---, x5 be the absolute points of =, let

P={x,+,x} and let B={L,,---,L,}, where 27 =L;(=1,---,0).

Then the corresponding symmetric incidence matrix Q of S is of the
form

Is U
Q - I:UaT V] ’ with IS = [81,]]1<1,<6

1<j<8
the identity matrix of order 3

U = [ui]’]lsigs , V= [vij]lsi,gv—s and V=V"'.

1<j<v—-8 1<j<v-8

sxaf o as (G E)
:‘J v

Now we put

£, 2, %, with < 2,<-- - <2, are the eigenvalues of Q and if yy, s,
with w,<<u,, are the eigenvalues of R = [d;]i<; j<2, then a result of Sims
(page 144 of [6]) gives us N < py <y <2, As

—l/(m‘—i—zn—!—l—oc—I—Vﬁ)/z and A =#n-41,

there follows that

— Vot t2nt1—a D)<y <m<n-+I.

Now we determine the eigenvalues y, and p, of R. We see immediately
that djy +-dpy=dy +dpe=7+1,dy=1 and (¥—3)dy = d.

There results that dyy = 1,dy, = % ,d,, = 8%/(v — ) and dypy=%n-+1—
— (n/(w— 3)).

Consequently, the eigenvalues of R are p;=1— /(v —3)) and
o=z + 1.
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So we have

—-V(m‘ +2n 41 —a+ |D)2 < 1 — (3n/(v— 3)).
Finally we obtain
5 —_v@ LVt 420 4+ 1 —a + D)2
~n—i— 1 —l—l’/(m‘—}—zn + 11—« +Vﬁ)/2

COROLLARY: _
8<min( ot v(I—[—V(m‘—l—2n+1——oc~i~]/D)/2)>
o et mt1+Vnt+2n+1—o+ D)2

4. EXAMPLES

(For examples and particular cases of polarities of symmetric partiaf
geometries see [8]).

4.1.  Define P={x,x,25, %4, 25}, B={{x, 0}, {#z:, x5}, {#5, 7},
{x4, %5}, {x5,x}} and I the natural incidence relation. Then S = (P, B, I)
is a symmetric semi partial geometry with parameters z =¢=a =1 (re-
mark that S is isomorphic to the pentagon).

Now, let (po and ¢, be the mappmgs from P onto B defined by {0 =

= {#;, x4} , 230 = {x,, xs} = {7, x]} 230 = {ry, 1} , 25° = {7, %3},
and af' = {x;, x4 , 23 = {xz,xa} y 2l ={x1, %} , 23t = {7y, %5}, x5 =
= {x4, %;}. The mapping ¢, (resp. ¢,) induces a polarity =, (resp. ©;) onto S.
It is easy to see that up to an automorphism 7, and =, are the only polarities
of S. For my we have § = o, and for =, there holds 8§ =2 (== 4 1).

4.2. Define P={wu,x,2,%,y, % ,%,2,2,%} , B={u,x,x},
{91, e e, mp, {0, 20,0) , {28, {a, ), (6,8, 9%,
{¥s,%5,2} , {22, 52,4}, {x,¥,2}}, and I the natural incidence relation. Then
S = (P, B, I)is a symmetric semi partial geometry with parameters » = ¢ = 2
and « = 4 (5 is the Desargues configuration). Now, let ¢, ¢, and ¢; be
the mappings from P onto B defined by «®* ={x,»,2} , 2§ = {2, 55, 2} ,
X = {yl ’lex} ’ J’fz {ZZ:xZ:y} ) yg;: {xl,Zl,_’J/} ’ 3f: {x2 >.y2)2} ’
22:{7‘1;3’]72} <P {x]:xzyu} ’ y —{Jﬁ,}/zyu} ’ 2° —{3’],32,%},
by ucpo_{yl:zlyx} cp():{u’xlsxé} xl _{y Zz:x} ) xwo—{x’y,z} ’

Y = {3, 52,2}, J’ ={u,s,5r , y¥0={x,a,9} , P ={m,n,y ,
cpo___{u yliyz} , 25 _{xl ' N :3} and by u%:{%uyl :yz}:y;‘d:{%;xuxz} s
:V {u,zl,zz} ’ xl {yl,xl,z} ’ xz —{y1721’x} ’ Z;pl:{x2>y2,z}y
zq;l = {y2,22,x} ’ x¢1:{22:x2 ,}/} ’ ztpl:{xlrgl’y} ’ yq’l:{x’g’y}' The
mapping ¢ (resp. ¢q, ¢;) induces a polarity = (resp. 7y, ;) onto S. It is easy
to see that up to an automorphism =, w, and m, are the only polarities of S.
For m and m, there holds 8 = o and for =, there holds & = 4 (from 3. there
follows that § =0 or 3 <3 < 3).

41. — RENDICONTI 1977, vol. LXII, fasc. 5.
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4.3. Let S=(P,B,I) be the symmetric semi partial geometry with
parameters 7z = ¢ = 6 , « = 36 (see 2.1). From 3. there follows that 7 < § <
<20 or 3 =o0. If xe P, then there is exactly one element L€ B for which
(x,L)=o0. Then by defining ™ to be L, we obtain a polarity of S for
which § =o.

4.4. Define P to be the set of lines of PG (4, ¢), B to be the set of planes
of PG (4,¢), and I to be the inclusion relation. Then S=(P,B,I) is a
symmetric semi partial geometry with parameters n=¢% 4+ ¢ ,¢t=¢g + 1
and a = (¢ 4 1)* [4]. If = is a polarity of PG (4, ¢), then = induces a polarity
mo Of S, and conversely. It is clear that the absolute points of &, are the totally
isotropic lines with respect to =. So the number of absolute points is given by

(q}/;—k 1) (g% Vg;—l- 1) if = is a unitary polarity and by ¢%+¢*+¢+1 if = is
an orthogonal polarity [5].
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