Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Tanjiro Okubo

A Remark on the Tangent Bundle $T\left(M_{n}\right)$ with g^{M} over a Symmetric Riemann Manifold M_{n}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.5, p. 588-594.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_5_588_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria differenziale. - A Remark on the Tangent Bundle $\mathrm{T}\left(\mathrm{M}_{n}\right)$ with g^{M} over a Symmetric Riemann Manifold M_{n}. Nota di Tanjiro Okubo, presentata (*) dal Socio B. Segre.

RIASSUNTO. - Designato con $T\left(M_{n}\right)$ il fascio tangente di una varietà riemanniana M_{n} dotato della metrica g^{M} di Sasaki-Muto, si dimostra che, dal fatto che M_{n} sia simmetrica nel senso di E. Cartan, non segue in generale la simmetria di $T\left(M_{n}\right)$.

Introduction

Some years ago K . Yano and the present author developed the tensor calculus on the tangent bundle $\mathrm{T}\left(\mathrm{M}_{n}\right)$ over a Riemannian manifold M_{n} by endowing the so-called Sasaki-Muto metric $g^{\mathrm{M}},[6]$, and the paper was followed by a trial of giving the geometrical significance to those functions, vector and tensor fields explicitly by establishing the structural equations along the two complementary distributions defined at each point of $T\left(M_{n}\right)$, [4]. In both papers we showed that there does not exist in $\mathrm{T}\left(\mathrm{M}_{n}\right)$ a space of non-vanishing constant curvature, and this implies specifically that $\mathrm{T}\left(\mathrm{M}_{n}\right)$ over a Riemannian manifold M_{n} of non-vanishing constant curvature cannot be a space of constant curvature. Then the question arises, when the base manifold M_{n} is symmetric in the sense of E. Cartan, if $T\left(M_{n}\right)$ must also be symmetric.

Since the curvature tensor of the Riemann connection ∇^{M} with respect to the metric g^{M} have the sixteen components in each $\pi^{-1}\left\{\mathrm{U}\left(x^{i}\right)\right\}, \mathrm{U}\left(x^{i}\right)$ being the local coordinate neighbourhood of M_{n} (see § I), the actual computation of taking the covariant differentiation of them with respect to ∇^{M} which actually has the eight components $\Gamma_{\gamma \beta}^{\alpha}$ is tremendously cumbersome and is almost impossible. In this paper we present the following theorem on this matter, without making this tedious work, which states:

Theorem i. Let M_{n} be any Riemann manifold which is symmetric in the sense of E. Cartan. Then its tangent bundle $T\left(\mathrm{M}_{n}\right)$ with g^{M} is in general not symmetric.
\S I is a brief introduction of the structure of a tangent bundle with g^{M}, and in $\S 2$ we prove the theorem by using the results on symmetric space due to A. Lichnerowicz [1] and K. Nomizu [2].
(*) Nella seduta dell' 1 dicembre 1976.

§ i. Tangent bundle $\mathrm{T}\left(\mathrm{M}_{n}\right)$ over a Riemannian manifold M_{n} WITH THE METRIC g^{M}

Let M_{n} be a Riemann manifold covered by a system of coordinate neighbourhoods $\left\{U ;\left(x^{i}\right)\right\}^{(1)}$ and let ∇ be its Riemannian connection. Then ∇ is given by

$$
\begin{aligned}
2 g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right) & =\mathrm{X} g(\mathrm{Y}, \mathrm{Z})+\mathrm{Y} g(\mathrm{X}, \mathrm{Z})-\mathrm{Z} g(\mathrm{X}, \mathrm{Y})+g([\mathrm{X}, \mathrm{Y}], \mathrm{Z})+ \\
& +g([\mathrm{Z}, \mathrm{X}], \mathrm{Y})+g(\mathrm{X},[\mathrm{Z}, \mathrm{Y}])
\end{aligned}
$$

where g is the Riemann metric of M and X, Y and Z are arbitrary vector fields on M. It has in $\left\{\mathrm{U} ;\left(x^{i}\right)\right\}$ the local expression

$$
\left\{\begin{array}{l}
h \\
j
\end{array}\right\}=\frac{1}{2} g^{h k}\left(\partial_{j} g_{k i}+\partial_{i} g_{j k}-\partial_{k} g_{j i}\right),
$$

which is the Christoffel symbol, where $g_{j i}$ are the components of g in $\left\{\mathrm{U} ;\left(x^{i}\right)\right\}$ and $\partial_{j}=\partial / \partial x^{j}$.

Let $\mathrm{T}\left(\mathrm{M}_{n}\right)$ be tangent bundle over M_{n}. Denoting by π the projection $\mathrm{T}\left(\mathrm{M}_{n}\right) \rightarrow \mathrm{M}_{n}$, we introduce at each point $x^{\mathrm{A}}\left(x^{i}, y^{i}\right)$ of $\pi^{-1}(\mathrm{U})$, the two complementary distributions spanned by $\delta_{\alpha}=\left(\delta_{i}, \delta_{n+1}\right)$:

$$
\begin{equation*}
\delta_{i}=\partial_{i}-\Gamma_{i}^{j} \partial_{n+1} \quad, \quad \delta_{n+i}=\partial_{n+i}=\partial / \partial y^{i} \tag{I}
\end{equation*}
$$

where $y^{i}=x^{n+i}$ are the components of a tangent vector defined at each point $\pi\left(x^{\mathrm{A}}\right)$ of the base manifold and $\Gamma_{i}{ }^{j}=\left.|j|\right|_{i} ^{j} y^{l}$. We call δ_{A} the adapted frame at x^{A} in $\mathrm{T}\left(\mathrm{M}_{n}\right)$ and it has the components $\Lambda_{0}{ }^{\mathrm{A}}=\left(\Lambda_{i}^{\mathrm{A}}, \Lambda_{n+i}{ }^{\mathrm{A}}\right)$;

$$
\Lambda_{i}^{\mathrm{A}}=\left(\delta_{i}^{h},-\Gamma_{i}^{h}\right) \quad, \quad \Lambda_{n+i}^{\mathrm{A}}=\left(0, \delta_{n+i}^{h}\right)
$$

with respect to the natural base $\partial_{\mathrm{A}}=\left(\partial_{i}, \partial_{n+1}\right)$ in $\pi^{-1}(\mathrm{U})$ and δ_{i} is right invariant by the action of any element of the structure group o (n) of $T(M)$, [3] The coframe δx^{B} dual to the adapted frame given by $\left(\delta x^{B}, \delta_{A}\right) \delta_{B}^{A}$ has the expression

$$
\delta x^{\beta}=\Lambda_{\mathrm{A}}^{\beta} \mathrm{d} x^{\mathrm{B}}
$$

in $\pi^{-1}(U)$, where

$$
\begin{aligned}
\Lambda_{\alpha}{ }^{\mathrm{A}} \Lambda_{\mathrm{A}}^{\beta} & =\delta_{a}^{\beta} & , & \Lambda_{\alpha}{ }^{\mathrm{A}} \Lambda_{\mathrm{B}}^{\alpha}=\delta_{\mathrm{B}}{ }^{\mathrm{A}} \\
\Lambda_{\mathrm{A}}^{i} & =\left(\delta_{h}^{i}, 0\right) & , & \Lambda^{n+i}{ }_{\mathrm{A}}=\left(\Gamma_{h}^{i}, \delta_{h}^{i}\right)
\end{aligned}
$$

(1) We make the following convention for the indices:

The capital Roman letters A, B, C,\cdots and the small greek letters $\alpha, \beta, \gamma, \delta, \varepsilon, \cdots$ run over the range $1,2, \cdots, n, n+1, \cdots, 2 n$, and the small Roman letters a, b, c, d, e, h, i, j, k, \cdots over the range $\mathrm{I}, 2, \cdots, n$.

From this we see that δx^{B} is composed of two parts

$$
\delta x^{i}=\mathrm{d} x^{i} \quad, \quad \delta x^{n+i}=\mathrm{d} y^{i}+\Gamma_{j}^{i} \mathrm{~d} x^{j} .
$$

δ_{i} and $\delta_{\boldsymbol{i}}$ are called the basis of the horizontal and vertical vectors at x^{A} in $\mathrm{T}\left(\mathrm{M}_{n}\right)$ respectively, and δx^{i} and δx^{n+i} are called the basis of the horizontal and vertical one-forms at x^{A} in $\mathrm{T}\left(\mathrm{M}_{n}\right)$ respectively. The non-holonomic object of these two distributions is given by

$$
\Omega_{\beta \alpha}{ }^{\gamma}=-\Omega_{\alpha \beta}^{\gamma}=\Lambda_{\mathrm{A}}^{\gamma}\left(\delta_{\beta} \Lambda_{\alpha}^{\mathrm{A}}-\delta_{\alpha} \Lambda_{\beta}^{\mathrm{A}}\right)
$$

and for the various range of indices α, β and $\gamma, \Omega_{\beta \alpha}{ }^{\gamma}$ are found to be

$$
\begin{aligned}
& \Omega_{j i}^{n+h}=-\Omega_{j i}^{n+h}=-\mathrm{K}_{j i l}^{h} y^{l}, \\
& \Omega_{n+j i}{ }^{h}=-\Omega_{i n+j}^{h}=-\Gamma_{i j}^{h}
\end{aligned}
$$

all other Ω 's are zero, where $\mathrm{K}_{j i l}{ }^{h}$ are the components in $\left\{\mathrm{U} ;\left(x^{i}\right)\right\}$ of the curvature tensor K of ∇ given by

$$
\mathrm{K}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\nabla_{\mathrm{X}} \nabla_{\mathrm{Y}} \mathrm{Z}-\nabla_{\mathrm{Y}} \nabla_{\mathrm{X}} \mathrm{Z}-\nabla_{[\mathrm{X}, \mathrm{Y}]} \mathrm{Z} .
$$

We introduce in $\mathrm{T}\left(\mathrm{M}_{n}\right)$ the so-called Muto-Sasaki Riemann metric g^{M} defined by [6]

$$
\mathrm{d} \bar{s}^{2}=g_{j i} \mathrm{~d} x^{j} \mathrm{~d} x^{i}+g_{j i} \delta y^{i} \delta y^{i},
$$

and with g^{M} we endow $\mathrm{T}\left(\mathrm{M}_{n}\right)$ with the unique Riemann connection ∇^{M} given by

$$
\begin{gathered}
2 g^{\mathrm{M}}\left(\nabla^{\mathrm{M}} \mathbf{x} \mathbf{Y}, \mathbf{Z}\right)=\mathbf{X} g^{\mathrm{M}}(\mathbf{Y}, \mathbf{Z})+\mathbf{Y} g^{\mathrm{M}}(\mathbf{Z}, \mathbf{X})-\mathbf{Z} g(\mathbf{X}, \mathbf{Y}) \\
\quad+g^{\mathrm{M}}([\mathbf{X}, \mathbf{Y}], \mathbf{Z})+g^{\mathrm{M}}([\mathbf{Z}, \mathbf{X}], \mathbf{Y})+g^{\mathrm{M}}(\mathbf{X},[\mathbf{Z}, \mathbf{Y}])
\end{gathered}
$$

with respect to the natural base ∂_{A}, where \mathbf{X}, \mathbf{Y} and \mathbf{Z} are arbitrary vector fields in $\mathrm{T}\left(\mathrm{M}_{n}\right)$. Its components with respect to the adapted frame are given by

$$
\Gamma_{\gamma \beta}^{\alpha}=\frac{1}{2} g^{\alpha \varepsilon}\left(\delta_{\gamma} g_{\beta \varepsilon}+\delta_{\beta} g_{\varepsilon \alpha}-\delta_{\varepsilon} g_{\alpha \beta}\right)+\frac{1}{2}\left(\Omega_{\delta \beta}^{\alpha}+\Omega_{\gamma \beta}^{\alpha}+\Omega^{\alpha}{ }_{\beta \gamma}\right)
$$

where

$$
\Omega^{\alpha}{ }_{\gamma \beta}=g^{\alpha \delta} g_{\beta \varepsilon} \Omega_{\delta \gamma}{ }^{\varepsilon},
$$

and $g_{\alpha \beta}$ are the components of g^{M}, that is,

$$
\left(g_{\alpha \beta}\right)=\left[\begin{array}{cc}
g_{j i} & 0 \\
0 & g_{j i}
\end{array}\right]
$$

and $g_{\alpha \beta} g^{\beta \gamma}=\delta_{\beta}^{\gamma}$. For the various ranges of the indices, it turns out to be

$$
\begin{aligned}
& ' \Gamma_{j,}^{h}=\left\{\begin{array}{c}
h \\
\mid j \\
i
\end{array} \left\lvert\,, \quad{ }^{\prime} \Gamma_{j i}^{n+h}=-\frac{1}{2} \mathrm{~K}_{j i l}{ }^{h} y^{l}\right.,{ }^{l} \Gamma_{n+j i}^{h}=-\frac{1}{2} \mathrm{~K}_{j l i}{ }^{h} y^{l}, \Gamma_{n+j i}^{n+h}=0,\right. \\
& ' \Gamma_{\boldsymbol{j} i}^{h}=0 \quad, \quad ' \Gamma_{j i}=\left\{\begin{array}{c}
h \\
j_{i}
\end{array}\right\} \quad, \quad ' \Gamma_{j i}^{h}=0 \quad, \quad \Gamma_{\boldsymbol{j} \boldsymbol{i}}^{\boldsymbol{h}}=0 .
\end{aligned}
$$

The curvature tensor K^{M} of ∇^{M} is defined in the adapted frame by, [4],

$$
\nabla_{\mathbf{U}}{ }^{\mathrm{M}} \nabla_{\mathbf{v}}{ }^{\mathrm{M}} \mathbf{W}-\nabla_{\mathbf{v}}{ }^{\mathrm{M}} \nabla^{\mathrm{M}} \mathbf{U} \mathbf{W}-\nabla^{\mathrm{M}} \nabla_{\mathbf{U}}^{\mathrm{M}} \mathbf{V}-\nabla_{\mathbf{V}}^{\mathrm{M}} \mathbf{U}-\Omega(\mathbf{U}, \mathbf{V})^{\mathbf{w}}=\mathrm{K}^{\mathrm{M}}(\mathbf{U}, \mathbf{V}) \mathbf{W}
$$

where \mathbf{U}, \mathbf{V} and \mathbf{W} are arbitrary vector fields in $T\left(M_{n}\right)$ and $\nabla_{\mathbf{U}} \mathbf{U} \mathbf{V}$ has in $\pi^{-1}(\mathrm{U})$ the local expression

$$
\begin{equation*}
\nabla_{\mathrm{U}}^{\mathrm{M}} \mathrm{~V}=\mathrm{U}^{\alpha}\left(\delta_{a} \mathrm{~V}^{\beta}+\Gamma_{\alpha \gamma}^{\beta} \mathrm{V}^{\gamma}\right) \delta_{\beta} \tag{2}
\end{equation*}
$$

The components $\stackrel{\mathrm{K}}{ }_{\mathrm{M}}^{\delta \gamma \beta}$ of K^{M} are given by

$$
\begin{aligned}
& { }^{\prime} \mathrm{K}_{k j i}{ }^{h}=\mathrm{K}_{k j i}{ }^{h}+\frac{1}{4}\left(\mathrm{~K}_{d c k}{ }^{h} \mathrm{~K}_{j i b}{ }^{d}-\mathrm{K}_{d e j}{ }^{h} \mathrm{~K}_{k i b}{ }^{d}-2 \mathrm{~K}_{f c i}{ }^{h} \mathrm{~K}_{k j b}{ }^{f}\right) y^{b} y^{e}, \\
& ' \mathrm{~K}_{n+k j i}{ }^{h}=\frac{1}{2}\left(\nabla_{j} \mathrm{~K}_{k a i}{ }^{h}\right) y^{a}, \\
& ' \mathrm{~K}_{k n+j i}{ }^{h}=-\frac{1}{2}\left(\nabla_{k} \mathrm{~K}_{j 0 i}{ }^{h}\right) y^{a}, \\
& ' \mathrm{~K}_{k j n+i}^{h}=-\frac{1}{2}\left(\nabla_{k} \mathrm{~K}_{i a j}^{h}-\nabla_{j} \mathrm{~K}_{i a k}{ }^{h}\right) y^{a} \text {, } \\
& { }^{\prime} \mathrm{K}_{n+k}{ }_{n+j i}{ }^{h}=\mathrm{K}_{k j i}{ }^{h}+\frac{1}{4}\left(\mathrm{~K}_{k c a}{ }^{h} \mathrm{~K}_{j b i}{ }^{a}-\mathrm{K}_{j c a}{ }^{h} \mathrm{~K}_{k b i}{ }^{a}\right) y^{c} y^{b} \text {, } \\
& { }^{\prime} \mathrm{K}_{k n+j n+i}^{h}=\frac{1}{2} \mathrm{~K}_{k i j}{ }^{h}-\frac{1}{4} \mathrm{~K}_{j c a}{ }^{j} \mathrm{~K}_{k b i}{ }^{a} y^{c} y^{b}, \\
& ' \mathrm{~K}_{n+k n+j n+i}^{h}=\frac{1}{2} \mathrm{~K}_{i j k}{ }^{h}-\frac{1}{4} \mathrm{~K}_{j c a}{ }^{h} y^{c} y^{b} \text {, } \\
& ' \mathrm{~K}_{k i j}{ }^{n+h}=\mathrm{o} \quad, \quad \overrightarrow{\mathrm{~K}}_{n+k j i}{ }^{n+h}=\frac{1}{2}\left(\nabla_{i} \mathrm{~K}_{k j a}{ }^{h}\right) y^{a} \text {, } \\
& ' \mathrm{~K}_{n+k}{ }_{j i}^{n+h}=-\frac{1}{2} \mathrm{~K}_{j i k}{ }^{h}-\frac{1}{4} \mathrm{~K}_{j a c}{ }^{h} \mathrm{~K}_{k b i}{ }^{a} y^{c} y^{b}, \\
& { }^{\prime} \mathrm{K}_{k n+j i}^{n+h}=\frac{1}{2} \mathrm{~K}_{k j i}^{h}+\frac{1}{4} \mathrm{~K}_{k a c}{ }^{h} \mathrm{~K}_{j b i}{ }^{a} y^{c} y^{b} \text {, } \\
& { }^{\prime} \mathrm{K}_{k j n+i}{ }^{n+h}=\mathrm{K}_{k j i}{ }^{h}+\frac{1}{4}\left(\mathrm{~K}_{k a c}{ }^{h} \mathrm{~K}_{i b j}{ }^{a}-\mathrm{K}_{j a c}{ }^{h} \mathrm{~K}_{i b k}{ }^{a}\right) y^{b} \text {, } \\
& { }^{\prime} \mathrm{K}_{n+k n+j}{ }_{i}^{n+h}=\mathrm{o}, \mathrm{~K}_{n+k j n+i}{ }^{n+h}=\mathrm{o}, \mathrm{~K}_{k n+j n+i}^{n+h}=\mathrm{o}, \mathrm{~K}_{n+k n+j n+i}^{n+h}=\mathrm{o} .
\end{aligned}
$$

Then the components $\mathrm{K}^{\mathrm{M}}{ }_{\gamma \beta}=\mathrm{K}^{\mathrm{M}}{ }_{\delta \gamma \beta}{ }^{\delta}$ of the Ricci curvature tensor are found to be

$$
\begin{aligned}
& ' \mathrm{~K}_{j i}=\mathrm{K}_{j i}-\frac{1}{4}\left(\mathrm{~K}_{j c}^{a}{ }^{d} \mathrm{~K}_{a i b d}+2 \mathrm{~K}_{i c}^{a} \mathrm{~K}_{a j b d}+\mathrm{K}_{j a c}{ }^{d} \mathrm{~K}^{a}{ }_{i b d}\right) y^{c} y^{b}, \\
& \prime \mathrm{~K}_{n+j i}=-\frac{1}{2}\left(\nabla_{j} \mathrm{~K}_{a i}-\nabla_{a} \mathrm{~K}_{j i}\right) y^{a}, \\
& { }^{\prime} \mathrm{K}_{j n+i}=-\frac{1}{2}\left(\nabla_{i} \mathrm{~K}_{a j}-\nabla_{a} \mathrm{~K}_{i j}\right) y^{a}, \\
& { }^{\prime} \mathrm{K}_{n+j n+i}=\frac{1}{4} \mathrm{~K}^{c a}{ }_{c y} \mathrm{~K}_{c a b i} y^{c} y^{b},
\end{aligned}
$$

from which we find that the scalar curvature $\left[\mathrm{K}^{\mathrm{M}}\right]=g^{\beta \alpha} \mathrm{K}_{\beta \alpha}^{\mathrm{M}}$ takes the form

$$
\begin{equation*}
\overline{\mathrm{K}}=\mathrm{K}-\frac{1}{4} \mathrm{~K}^{e a}{ }_{e}^{d} \mathrm{~K}_{e a b d} y^{b} y^{b} \tag{3}
\end{equation*}
$$

where $\mathrm{K}_{j i}$ and K are the components in $\left\{\mathrm{U} ;\left(x^{i}\right)\right\}$ of the Ricci curvature and the scalar curvature of ∇ in M_{n}.

§ 2. Proof of the theorem

Let us suppose that $T\left(M_{n}\right)$ is symmetric in the sense of E. Cartan, that is,

$$
\nabla_{\varepsilon}^{\mathrm{M}} \stackrel{\rightharpoonup}{\mathrm{~K}}_{\delta \gamma \beta}{ }^{\alpha}=0
$$

Since ∇^{M} is Riemannian, we have

$$
\nabla_{\varepsilon}^{\mathrm{M}} \stackrel{\rightharpoonup}{\mathrm{~K}}_{\gamma \beta}=\mathrm{o}
$$

and hence

$$
\begin{equation*}
\nabla_{\boldsymbol{\varepsilon}}^{\mathrm{M}} \tilde{\mathrm{~K}}=\delta_{\varepsilon} \tilde{\mathrm{K}}=0 \tag{4}
\end{equation*}
$$

If we take $n+j$ for ε and use (3), we have

$$
\begin{equation*}
\mathrm{K}^{e a}{ }_{c}{ }^{d} \mathrm{~K}_{e a b d} y^{c}=\mathrm{o} \tag{5}
\end{equation*}
$$

in virtue of the second of the operators defined by (I) and of the fact that the components $\mathrm{K}_{k j i}^{h}$ of the curvature tensor of ∇ on M_{n} and the scalar curvature K do not depend upon the y 's Applying again δ_{n+j} to (5), we have

$$
\begin{equation*}
\mathrm{K}^{e a}{ }_{c}^{d} \mathrm{~K}_{\text {eabe }}=0, \tag{6}
\end{equation*}
$$

and multiplying $g^{c b} g^{e d}$, we have

$$
\begin{equation*}
\mathrm{K}^{k h j i} \mathrm{~K}_{k h j i}=\mathrm{o} . \tag{7}
\end{equation*}
$$

Because of (6), the scalar curvature K of $\mathrm{T}\left(\mathrm{M}_{n}\right)$ given in (3) takes the form

$$
\tilde{\mathrm{K}}=\mathrm{K}
$$

and on taking i for ε in (4), we have $\partial_{i} K=0$, that is,

$$
\begin{equation*}
\mathrm{K}=a \quad(a: \text { const. }) . \tag{8}
\end{equation*}
$$

(7) and (8) are the necessary conditions for a M_{n} so that the tangent bundle $\mathrm{T}\left(\mathrm{M}_{n}\right)$ with g^{M} may be a symmetric space.

We now assume that the base manifold M_{n} is symmetric in the sense of E. Cartan with respect to ∇ too, that is,

$$
\begin{equation*}
\nabla_{l} \mathrm{~K}_{k j i}^{h}=\mathrm{o} . \tag{9}
\end{equation*}
$$

Then we have as above

$$
\begin{equation*}
\nabla_{l} \mathrm{~K}_{j i}=\mathrm{o} \tag{ıо}
\end{equation*}
$$

and the equations

$$
\mathrm{H}_{k j i p q}{ }^{h}=\mathrm{K}_{k j s}{ }^{h} \mathrm{~K}_{i p q}{ }^{s}-\mathrm{K}_{k j i}{ }^{s} \mathrm{~K}_{s p q}{ }^{h}-\mathrm{K}_{k j p}{ }^{s} \mathrm{~K}_{i s q}{ }^{h}-\mathrm{K}_{k j q}{ }^{s} \mathrm{~K}_{i p s}{ }^{h}=0
$$

as the integrability condition of (9). Since we do not impose any topological condition on M_{n}, we suppose that M_{n} is compact and orientable. For this case A. Lichnerowicz [1] proved that if M_{n} satisfies the conditions (IO) and (II), it must be symmetric in the sense of E. Cartan and for this case one gets

$$
\begin{equation*}
\mathrm{K}^{k j i \hbar} \mathrm{~K}_{k j i h}=\mathrm{C} \quad \text { (C: const.) }{ }^{(2)} \tag{12}
\end{equation*}
$$

Generalizing this theorem, K. Namizu [2] proved that, if an irreducible Riemann manifold M_{n} (not necessarily compact and orientable) admits a transitive group of motions whose linear isotropy group at any point contains the homogeneous holonomy group at that point, the manifold M_{n} is symmetric and (I2) holds ${ }^{(3)}$. On the other hand, we cannot expect that the constant C in (I2) is always zero for any symmetric space. For example, let $\mathrm{M}_{n}, n \geq 2$, be a non-flat Riemannian manifold of constant curvature, i.e.

$$
\mathrm{K}_{k j i h}=k\left(g_{k h} g_{j i}-g_{k i} g_{j h}\right), \quad(k=\mathrm{const}, \neq 0) ;
$$

the

$$
\mathrm{K}^{k j i \hbar} \mathrm{~K}_{k j i h}=2 k^{2} n(n-\mathrm{I})=\text { const } \neq \mathrm{o} .
$$

But, in order that $T\left(\mathrm{M}_{n}\right)$ may be symmetric, we found in (7) that the constant C in (12) should vanish all the time, which we cannot expect for all the symmetric spaces M_{n} 's, that is, the tangent bundle $\mathrm{T}\left(\mathrm{M}_{n}\right)$ with g^{M} over a symmetric Riemann manifold M_{n} has not necessarily to be a symmetric space.
Q.E.D.

Let us suppose that the base manifold M_{n} is non-flat Kaehlerian with the complex dimension $n=2 m$ and that M_{n} can be isometrically imbedded in an ($n+1$)-dimensional flat Kaehler space K_{n+1} as an invariant hypersurface in the sense that the complex structure F of K_{n+1} keeps the tangent plane of the imbedded Kaehler manifold invariant at each point and the almost complex f of the hypersurface induced from F coincides with the complex structure of M_{n}. Then it has been proved by the present author [3] that, the condition for M_{n} to be the case, its curvature tensor of ∇ should satisfy

$$
\begin{equation*}
\mathrm{K}^{k j i \hbar} \mathrm{~K}_{k j i h}=\mathrm{K}^{2}, \tag{13}
\end{equation*}
$$

$$
\mathrm{K}<0
$$

(2) See also, K. Yano [5], p. 223.
(3) See, K. Yano [5], p. 224.
where $\mathrm{K}_{k j i}{ }^{h}$ are the components of the curvature tensor in the form of real representation. Thus, taking account of (7), we can state

Theorem 2. If M_{n} is a Kaehlerian manifold and $\mathrm{T}\left(\mathrm{M}_{n}\right)$ with g^{M} is a symmetric space, then M_{n} cannot be isometrically imbedded in a flat Kaehler space K_{n+1} as an invariant hypersurface unless it is locally flat.

References

[1] A. Lichnerowicz (1950) - Courbure, nombres de Betti et espaces symmetriques, "Proc. Intern. Congress of Math. ", 2, 216-223.
[2] K. Nomizu (1957) - On infinitesimal holonomy and isotropy groups, "Nagoya Journ. of Math.», II, III-II4.
[3] T. Okubo (1962) - On local imbedding of Kaehlerian manifold $\mathrm{K}^{2 n}$ in $\mathrm{H}^{2 n+2}$, "Yokohama Math. Journal», IO, 25-42.
[4] T. OKUbo (1975) - Structure consideration of $\mathrm{T}\left(\mathrm{M}_{n}\right)$ with gM^{M} over a Riemann manifold M_{n}, «Annali di Math.», ro8, 258-279.
[5] K. Yano (1955) - The theory of Lie derivatives and its application, Amsterdam.
[6] K. Yano and T. OkUbo (1970) - On tangent bundles with Sasakian metrics of Finslerian and Riemannian manifolds, "Annali di Mat.», 97, 137-162.

