Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Rudy J. List

On the maximal subgroups of the Mathieu groups I: M_{24}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.4, p. 432-438.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_4_432_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - On the maximal subgroups of the Mathieu groups I : M_{24}. Nota di Rudy J. List, presentata ${ }^{(*)}$ dal Socio G. Zappa.

Abstract

RIASSUNTO. - I sottogruppi massimali del gruppo di Mathieu M_{24} furono determinati da Choi [3] nel 1967: egli raccolse una gran quantità di informazioni sul sistema di Steiner $\mathrm{S}(5,8,24)$. Qui si mostra che la quantità di informazioni sulla geometria di $\mathrm{S}(5,8,24)$ necessaria per determinare i sottogruppi massimali di M_{24} è molto minore di quella raccolta in [3].

I. InTRODUCTION AND NOTATION

In [4], [5] Choi determined the maximal subgroups of $M=M_{24}$ through an intricate analysis of the geometry of the Steiner system $S=S(5,8,24)$; M is the automorphism group of S [14]. The character table of M was first determined by Frobenius [9], and a copy of it can be found there or in [3]. In what follows elements of M with cycle types $2^{8} I^{8}, 2^{12}, 3^{6} I^{6}, 3^{8}$ are referred to as $2_{1}, 2_{2}, 3_{1}, 3_{2}$ respectively, $\mathrm{H} \backslash \mathrm{K}$ denotes an extension of H by $\mathrm{K}, \mathrm{H} \mathbb{K}$ denotes a split extension of H by $\mathrm{K}, \mathrm{C}_{k}$ denotes a cyclic group of order k, and $\mathrm{C}_{m}^{n} \simeq \mathrm{C}_{m} \backslash \mathrm{C}_{n}$. Notation which is not explained follows [13]. We also make use of the fact that primitive groups of degree less than or equal to 20 have been determined [II] and that the fixed point set of a 2_{1} is an $\dot{8}$ [I2].

As an M-module $\mathrm{V}=\mathrm{V}_{24}$ (2) has an invariant subspace \mathscr{C} of dimension 12. The nonzero elements of \mathscr{C} consist of (i) 759 vectors with 8 nonzero coordinates, (ii) 2576 vectors with 12 nonzero coordinates, (iii) 759 vectors with 16 nonzero coordinates, and (iv) the vector with 24 nonzero coordinates. The nonzero elements of \mathscr{C} correspond to subsets of $\Omega=\{\mathrm{I}, \cdots, 24\}$ in the following way: If the $i^{\text {th }}, j^{\text {th }}, \cdots, k^{\text {th }}$ coordinates of $v \in \mathscr{C}$ are the nonzero coordinates of v, then v corresponds to $\{i, j, \cdots, k\} \subseteq \Omega$. The subsets of Ω corresponding to the elements (i) are the blocks of a Steiner system S on Ω. A subset of Ω corresponding to an element of (i), (ii), or (iii) is called an $\dot{8}, \dot{i} 2$, or a i 6 respectively. The preceding observations were first made by Carmichael.

Define the length of a vector v in V to be the number of nonzero coordinates of v. If \bar{x} is a nonidentity element of the M -module V / \mathscr{C}, it is easy to see that the minimal length of a vector in \bar{x} is $\mathrm{I}, 2,3$, or 4 . and that if the minimal length of a vector in \bar{x} is $\mathrm{I}, 2$, or $3, \bar{x}$ contains a unique vector minimal length, while if the minimal length is $4, \bar{x}$ contains precisely six vectors of length 4 . Furthermore, if the minimal length of vectors in \bar{x} is 4 , the union of the sets corresponding to any two distinct vectors of minimal length is an $\dot{8}$. It follows easily that any intransitive subgroup of M is contained in a conjugate of one of the following: (i) $\mathrm{M}_{(\Delta(i))}$, where $\Delta(i)=$

[^0]$=\{\mathrm{I}, \cdots, i\}, i \leq 4$, or (ii) $\mathrm{M}_{(\mathrm{E})}$, where E is $\dot{8}, \dot{\mathrm{I} 2}$ or the fixed point set of a 3 . These observations and this method of determining the intransitive subgroups of M are due to Conway [6].

Using standard methods it is also easy to show that the only proper subgroups of M primitive on Ω are conjugates of PSL_{2} (23). For example, it is not difficult to show, using Sylow's theorem, that a proper subgroup H of M acting primitively on Ω has the same order as the order of PSL_{2} (23), and then an argument entirely similar to that used to prove Satz 6.15 [10] shows that H is isomorphic to PSL_{2} (23). That M contains such an H is proved in [14] and follows from the facts: The linear transformations $\alpha: x \rightarrow x+\mathrm{I}$, and $\beta: x \rightarrow-x^{-1}, x \in \mathrm{~F}_{23}$, generate $\mathrm{PSL}_{2}(23) ; \alpha$ and β fix a Steiner system S constructed on the points of the projective line with 24 points. That all such H are conjugate in M is clear, for: Elements of order 23 and II are selfcentralizing in M. Hence the groups

$$
\mathrm{H}_{x \cdot y, z}=\left\langle x, y, z: x^{23}=y^{11}=z^{2},\langle x, y\rangle \simeq \mathrm{C}_{23}^{11},\langle y, z\rangle \simeq \mathrm{C}_{11}^{2}\right\rangle
$$

form a single conjugate class in M by Sylow's theorem. By the classification of the subgroups of $\mathrm{PSL}_{2}(q)$ [8], C_{23}^{11} is a maximal subgroup of PSL_{2} (23), so $\mathrm{H}_{x, y, z} \simeq \mathrm{PSL}_{2}$ (23).

To complete a determination of the maximal subgroups of M, it is necessary only to determine the subgroups imprimitive on Ω. With the method developed by Conway and outlined above it is possible to obtain some information about the imprimitive subgroups of M [6]. Here using methods alternative to those used by Choi and Conway a determination of the imprimitive subgroups of M is given.

II.

In this section we exhibit four subgroups $G_{1}, G_{2}, G_{3}, G_{4}$ of M which act imprimitively on Ω with block lengths $4,8,12,3$ and orders $2^{10} \cdot 3^{3} \cdot 5$, $2^{10} \cdot 3^{2} \cdot 7,2^{7} \cdot 3^{3} \cdot 5 \cdot \mathrm{II}$, and $2^{3} \cdot 3 \cdot 7$ respectively.
(I) Let E be an $\dot{8}$. Then $\mathrm{M}_{[\mathrm{E}]} \simeq \mathrm{W}$, an elementary abelian group of order 16 acting regularly on $\Omega-\mathrm{E}$, and $\mathrm{M}_{(\mathrm{E})} \simeq \mathrm{W} \mathrm{GL}_{4}(2)$ [12]. Hence a Sylow 2-subgroup of M is isomorphic to a Sylow 2-subgroup of GL_{5} (2). Examination shows that a Sylow 2-subgroup of M contains precisely two elementary abelian groups of order 64 . One of these has 6 orbits of length 4 on Ω, and the other has 3 orbits of length 8 . Thus if H is any elementary abelian group of order 6_{4} in M, H is M -characteristic in any Sylow 2-subgroup containing it. It follows that two elements of H are conjugate in M if and only if they are conjugate in $N_{M}(H)$.

Now suppose that H is an elementary abelian subgroup of M of order 64 with 6 orbits $\Delta_{1}, \cdots, \Delta_{6}$ of length 4 . Then $\mathrm{M}_{\left(\Delta_{i}\right)} \simeq \mathrm{M}_{(\Delta(4))}$, because M is 4-transitive, and $\mathrm{M}_{\left(\Delta_{i}\right)} \subseteq \mathrm{N}=\mathrm{N}_{\mathrm{M}}(\mathrm{H})$. Also, because M is 5-transitive, $\mathrm{M}_{\left(\Delta_{i}\right)}$ is transitive on $\Omega-\Delta_{i}$. Hence N is an imprimitive group of block length 4 . Now $\left|\mathrm{M}_{[\Delta(4)]}\right|=2^{6} \cdot 3 \cdot 5$, so $\left|\mathrm{M}_{(\Delta)(4)}\right|=2^{9} \cdot 3^{2} \cdot 5$. Since $\mathrm{M}_{\left(\Delta_{i}\right)}$ is the stabilizer of a
block in N represented on the blocks $\Delta_{1}, \cdots, \Delta_{6}$, it follows that $|N|=2^{10} .3^{3} .5$. It is easy to show that there are no characters corresponding to induced characters of possible proper subgroups of M containing N properly. Hence N is a maximal subgroup of M. Denote N by G_{1}, G_{1} was first determined by Todd [12].

Remark. It is routine to show that H contains 45 elements of type $\mathbf{2}_{1}$ and 18 of type 2_{2}. Since G_{1} is transitive on 2_{2}-involutions, it follows that if x is 2_{2} in H , then $\left|\mathrm{C}_{\mathrm{G}_{1}}(x)\right|=2^{9} \cdot 3 \cdot 5=\left|\mathrm{C}_{\mathrm{M}}(x)\right|$, i.e., the centralizer of an element of type 2_{2} is a subgroup of a conjugate of G_{1}.
(2) M is transitive on the set of $\dot{8}$'s, because they are blocks of a Steiner system S. Given an $\dot{8} \mathrm{E}$ it is not hard to show that there are precisely $30 \dot{8}$'s disjoint from E and that $\mathrm{M}_{(\mathrm{E})}$ acts transitively on this set of 30 objects. Hence M is transitive on the 3795 ordered triples of mutually disjoint $\dot{8}$'s. If H is the stabilizer of some such ordered triple ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) , $|\mathrm{H}|=2^{10} \cdot 3^{2} \cdot 7$. It follows that H must be transitive on Ω. Again using the characters of M it is not difficult to show that H is maximal in M. Denote H by G_{2}.

Remark. Let K be the kernel of imprimitivity of H . As K is a subgroup of $M_{(E)}$, where E is some $\dot{8}$, it follows that $K \simeq V\left(W \backslash P_{2}(7)\right)$, where V and W are both elementary abelian of order 8 . Take $P \subseteq K$, with $P \simeq \mathrm{PSL}_{2}(7)$. It is obvious, then, that $3^{2}| | N_{H}(P) \mid$. Hence $3\left|\left|C_{H}(P)\right|\right.$. But if σ is an element of type $3_{2},\left|\mathrm{C}_{\mathrm{M}}(\sigma)\right|=3 \cdot\left|\mathrm{PSL}_{2}(7)\right|$. Hence $\mathrm{C}_{\mathrm{M}}(\sigma) \subseteq \mathrm{H}$. Then since $\left[H: C_{M}(\sigma)\right]=2^{7}$, and since the centralizer in M of elements of order 7 has order 2.3.7, it follows (by applying Sylow's theorem to H forthe prime 7) that $\mathrm{N}_{\mathrm{M}}(|\sigma|) \subseteq \mathrm{H}$.
(3) There are $2^{4} .7 .23 \mathrm{i} 2$'s in \mathscr{C}, so if F is a I 2 , the stabilizer $\mathrm{M}_{(\mathrm{F})}$ of F must have order at least $2^{6} \cdot 3^{3} \cdot 5$.I I and must be isomorphic to a subgroup of S_{12}. the subgroups of S_{12} are known, and it follows that $M_{(F)}$ must be isomorphic to M_{12}, the Mathieu group of degree 12 , and that M is transitive on the set of i2's. It is obvious that M is transitive on the 1288 unordered pairs of disjoint $\dot{1} 2$'s, so that $\mathrm{M}_{(\mathrm{F})}$ is contained in an overgroup $\overline{\mathrm{M}}_{(\mathrm{F})}$ with index 2 . It follows that $\overline{\mathrm{M}}_{(\mathrm{F})}$ is maximal. Moreover $\overline{\mathrm{M}}_{(\mathrm{F})}$ is isomorphic to Aut $\left(\mathrm{M}_{12}\right)$ [14]. Denote $\overline{\mathrm{M}}_{(\mathrm{F})}$ by G_{3}.
(4) In [5] generators are exhibited (denoted here by m and n) of a subgroup of M satisfying the relations $m^{2}=n^{3}=(m n)^{7}$. Further m is 2_{2}, and n is 3_{2}. It is straightforward to verify that $\langle m, n\rangle$ satisfies the relations required in order that $\langle m, n\rangle$ be isomorphic to $\mathrm{PSL}_{2}(7)$ [7]. Since m and n act semi-regularly on Ω, it follows immediately that $\langle m, n\rangle$ is imprimitive on Ω with blocks of length 3. Computing from the character table of M we find that there are 7 solutions of the equation $x \cdot y=z$, where x and y are 2_{2} and 3_{2} respectively, and z is a fixed element of order 7. It follows that any subgroup $\left\langle x, y: x\right.$ is $2_{2}, y$ is $3_{2}, x \cdot y$ has order 7\rangle of M is conjugate to $\langle m, n\rangle$.

Obviously $\langle m, n\rangle$ cannot be contained in a conjugate of $\mathrm{G}_{i}, i=\mathrm{I}, 2,3$. Anticipating section III, it follows that $\{m, n\rangle$ is maximal in M. Denote $\langle m, n\rangle$ by G_{4}. The existence of G_{4} is first noticed in [5].

III.

In this section we show that an imprimitive subgroup of M is contained in a conjugate of one of $\mathrm{G}_{i}, i=\mathrm{I}, \cdots, 4$.
(1) a) Let H be an imprimitive subgroup of M with blocks of length 8, and suppose that the kernel of imprimitivity K is transitive on each block. Then the blocks are 8 's, and H is contained in a conjugate of G_{2}.
b) Let H be an imprimitive subgroup of M of block length 12 . Then the blocks are $\dot{\mathrm{I} 2}$'s and H is contained in a conjugate of G_{3}.
c) Let H be a non-solvable imprimitive subgroup of M of block lenght 4 . Then H is contained in a conjugate of G_{1} or G_{3}.

Proof. a) Since K has orbits of length $8, \mathrm{~K} \subseteq \mathrm{M}_{(\mathrm{E})}$ for some $\dot{8} \mathrm{E}$. Thus the blocks are $\dot{8}$'s, and H is contained in a conjugate of G_{2}.
b) In this case H has just two blocks, and so it is obvious that the kernel of imprimitivity must be transitive on each block. The rest of the proof is similar to the proof of a).
c) Let K be the kernel of imprimitivity. If H is non-solvable, then H / K is non-solvable, because K must be solvable. Since S_{5} is the only nonsolvable subgroup of S_{6} with a subgroup of index 24 , it follows that either $K \neq I$ or $K=I$ and $H=S_{5}$. If $H=S_{5}$, then an $A_{5} \subseteq H$ must have orbits of length I 2 , so $\mathrm{H} \subseteq \mathrm{G}_{3}$.

Suppose that $\mathrm{K} \neq \mathrm{I}$, and let $\mathrm{N} \subseteq \mathrm{K}$ be a minimal normal subgroup of H . Clearly N is elementary abelian 2-group. If the orbits of N have length 2, it follows that either (i) $\mathrm{N}=\langle\sigma\rangle$, where σ is 2_{2}, or (ii) nonidentity elements of N are 2_{1}, and distinct nonidentity elements of N have disjoint fixed point sets (since M contains just two types of involutions). In case (i) $H \subseteq C_{M}(\sigma) \subseteq G$, where G is a conjugate of G_{1}. In case (ii) H must permute the fixed point sets of the nonidentity elements of N among themselves. Since the fixed point set of a 2_{1} is an $\dot{8}, H$ is contained in a conjugate of G_{2}. But then, since H is nonsolvable, the image of imprimitivity on orbits of N is a transitive nonsolvable group of degree 8 , so $7\|\mathrm{H}\|$. This contradicts the assumption that H can be represented as an imprimitive group of block length 4 , since the image of imprimitivity over blocks of length 4 must be a subgroup of S_{6}. Therefore case (ii) is impossible.

Suppose that the orbits of N have length 4 , and denote them by Γ_{i}, $i=1, \cdots, 6$. We want to show that these are the blocks of imprimitivity of a conjugate of G_{1} (introduced in section II). This will follow if we show that $\Gamma_{i} \cup \Gamma_{j}$ is an $\dot{8}$ for any pair of distinct integers i and j, $1 \leq i<j \leq 6$, for the following reasons: Given Γ_{1} and $\alpha \in \Omega-\Gamma_{1}$ there is a unique $\dot{8} b$ incident with $\Gamma_{1} \cup\{\alpha\}$ by the definition of $S(5,8,24)$, so that $b-\Gamma_{1}$ is a uniquely determined Γ_{j}. By 4-transitivity of M on Ω we may assume that Γ_{1} is Δ_{1} in the discussion of section $I I$ where G_{1} is introduced. Since nonsolvable groups of degree 6 are 2-transitive, it suffices to show that $\Gamma_{1} \cup \Gamma_{j}$ is an $\dot{8}$ for some Γ_{j}.

Assume that $\Gamma_{1} \cup \Gamma_{j}$ is not an $\dot{8}$ for $2 \leq j \leq 6$. Let b be an $\dot{8}$ incident with the elements of Γ_{1} and let m denote $\max \left\{\left|b \cap \Gamma_{j}\right|, 2 \leq j \leq 6\right\}$. There are three cases to consider, viz., $m=1,2$, or 3 .

Case $m=3$; We may assume that $\left|b \cap \Gamma_{2}\right|=3$ by 2-transitivity of H on the orbits of N. But then by the transitivity of N on $\Gamma_{2}, \sigma\left(b \cap \Gamma_{2}\right) \neq b \cap \Gamma_{2}$ for some $\sigma \in \mathrm{N}$. Hence $\sigma(b) \neq b$, while $|\sigma(b) \cap b| \geq 6$. This contradicts the fact that 5 points of Ω determine a unique $\dot{8}$. Hence case $m=3$ is impossible.

Case $m=2$: Assume that $\left|b \cap \Gamma_{k}\right|=2$, while $\left|b \cap \Gamma_{j}\right|=\mathrm{I}$, some $j \neq k$. Again it is easy to see (because of the transitivity of N on Γ_{k} and Γ_{j}) that there must be two distinct $\dot{8}$'s which intersect in at least 5 points of Ω. Hence if $\left|b \cap \Gamma_{k}\right|=2$, then $\left|b \cap \Gamma_{j}\right|=2$, for some uniquely determined $j \neq k$. But then since H must preserve intersection properties of the Steiner system, and since $\mathrm{H}_{\left(\Gamma_{1}\right)}$ acts transitively on $\Sigma=\left\{\Gamma_{2}, \cdots, \Gamma_{6}\right\}$, this just means that this representation of $\mathrm{H}_{\left(\Gamma_{1}\right)}$ must be imprimitive of block length 2. But this is impossible, because $|\Sigma|=5$, and $2+5$. Hence case $m=2$ is impossible.

Case $m=\mathrm{I}$: In this case $b=\Gamma_{1} \cup\{\alpha, \beta, \gamma, \delta\}$ where $\alpha, \beta, \gamma, \delta$ lie in pairwise distinct orbits of N disjoint from Γ_{1}. Suppose these are $\Gamma_{2}, \cdots, \Gamma_{5}$. By transitivity of N on each Γ_{i}, it follows that each element of each Γ_{i}, $2 \leq i \leq 5$, is in some $\dot{8}$ containing Γ_{1}. Given $x \in \Gamma_{6}$, there is a unique $\dot{8} c$ incident with $\Gamma_{1} \cup\{x\}$. Since $m=1, c \cap \Gamma_{j} \notin \varnothing$, some $j, 2 \leq j \leq 5$. But then there are again two distinct $\dot{8}$'s incident with a common 5 -subset of Ω. Hence case $m=\mathrm{I}$ is impossible.

Thus $\Gamma_{i} \cup \Gamma_{j}$ is an $\dot{8}, \mathrm{r} \leq i<j \leq 6$, and so H is a subgroup of a conjugate of G_{1}.

Remark. It is easy to show, using the fact that involutions of M are 2_{1} or 2_{2}, that a nontrivial elementary abelian 2-group of M with no orbit of length 4 or greater has order 2 or 4 .
(2) Let H be a nonsolvable imprimitive subgroup of M of block length 3 with kernel of imprimitivity K .
a) If $\mathrm{K} \neq \mathrm{I}, \mathrm{H} \subseteq \mathrm{N}_{\mathrm{M}}(|\sigma|)$, where σ is 3_{2}.
b) If $\mathrm{K}=\mathrm{I}, \mathrm{H}$ is contained in a conjugate of G_{4}.

Proof. a) Let $\mathrm{N} \subseteq \mathrm{K}$ be a minimal normal subgroup of H . Then N must be elementary abelian of order 3 , since subgroups of order 9 of M have an orbit length 9 (this can be most easily seen by using the fact that M contains elements of order 3 only of types 3_{1} or 3_{2}).
b) H must have a faithful transitive representation of degree 8. The only nonsolvable groups of degree 8 which have a subgroup of index 24 are $\mathrm{PSL}_{2}(7), \mathrm{PGL}_{2}(7)$, and $\mathrm{A}_{3}(2)$, the affine group of dimension 3 over F_{2}. ($\left.A_{3}(2) \simeq V_{3}(2) \mathrm{GL}_{3}(2)\right)$.
H^{-}cannot be isomorphic to $\mathrm{PGL}_{2}(7)$, because M contains two classes of elements of order 7 , while $\mathrm{PGL}_{2}(7)$ contains only one.

Suppose that H is isomorphic to $\mathrm{A}_{3}(2)$. Then $\mathrm{V}_{3}(2)$ must have orbits of length 4 or 8 on Ω, and these must be blocks for a system of imprimitivity in either case. This is the situation of III (I) a) or c). It is easy to show though, that $\mathrm{A}_{3}(2)$ cannot have such representation in any case.

Hence H is isomorphic to $\mathrm{PSL}_{2}(7) . \quad\left|\mathrm{H}_{[x]}\right|=7$, where $x \in \Omega$, and so involutions and elements of order 3 in H are 2_{2} and 3_{2} respectively. Thus H is contained in a conjugate of G_{4}.
(3) If H is an imprimitive nonsolvable subgroup of M of block length 6 , then H is contained in a conjugate of G_{1} or G_{3}.

Proof. Let K be the kernel of imprimitivity of H . Then K is nonsolvable. Let $\mathrm{N} \subseteq \mathrm{K}$, and suppose that N is a minimal normal subgroup of H . Then N must be simple; either $N \simeq A_{5}$ or $N \simeq A_{6}$. Suppose first that $N \simeq A_{6}$. No involution of M is centralized by a group of order 3^{2}. Since \mid Aut $(N) \mid=$ $=4 .\left|\mathrm{A}_{8}\right|$, if $3||\mathrm{H} / \mathrm{N}|$, then 3$|\left|\mathrm{C}_{\mathrm{M}}(\mathrm{N})\right|$, so that an involution is N would be centralized by a group of order 3^{2}. Therefore either $|\mathrm{H}|=4 .\left|\mathrm{A}_{6}\right|$ or $|\mathrm{H}|=8 \cdot\left|\mathrm{~A}_{6}\right|$. In either case H / N must be represented imprimitively on the set of orbits of N , so that H may be represented as an imprimitive group of block length 12 . Hence H is contained in a conjugate of G_{3}.

Now suppose that N is isomorphic to A_{5}. If H acts imprimitively on the orbits of N , it may be represented as an imprimitive group of block length 12 . Thus we assume that H / N acts primitively on the orbits of N , so either $\mathrm{H} / \mathrm{N} \simeq$ $\simeq A_{4}$ or $H / N \simeq S_{4}$. Since Aut $\left(A_{5}\right) \simeq S_{5}$ and A_{4} has no subgroup of index 2 , either $H \simeq N \times B$ or $H \simeq(N \times B) \backslash C_{2}$, where $B \simeq A_{4}$. The elements of order 2 in B are 2_{2}, because they commute with an element of order 5 . Hence a 4 -group in B has orbits of length 4 on Ω and is normal in H. Therefore H is contained in a conjugate of G_{1}.
(4) If H is a nonsolvable imprimitive subgroup of M of block length 2, then H is contained in one of $\mathrm{G}_{i}, i=1,2,3$.

Proof. Let K be the kernel of imprimitivity of H . If $\mathrm{K} \neq \mathrm{I}$, either $|\mathrm{K}|=2$, whence $\mathrm{H} \subseteq \mathrm{C}_{\mathrm{M}}(\sigma)$, where σ is 2_{2}, and H is contained in a conjugate of G_{1}; or $|K|=4$ and H is a subgroup of a conjugate of G_{2} as in III (I) c). Thus we may assume that $\mathrm{K}=\mathrm{I}$. If the representation of H on the set of blocks is imprimitive, H may be represented on Ω as an imprimitive group of block length $4,8, \mathrm{I} 2$, or 6 . As H is nonsolvable, it is easy to see that either III (I) a) , b) , c) or III (3) implies. Thus we may assume that H is primitive on the set of blocks. The only primitive group of degree 12 which has a subgroup of index 24 is PGL_{2} (II) [II]. If H is isomorphic to PGL_{2} (II), a PSL_{2} (II) in H must have two orbits of length I 2, so H is a subgroup of a conjugate of G_{3}.
(5) No solvable group is a maximal subgroup of M .

Proof. Suppose that H is a solvable maximal subgroup of M. No maximal intransitive subgroup is solvable. Thus H must be imprimitive, since 24 is not a prime power. A minimal normal subgroup N is elementary abelian,
and the orbits of N are blocks of imprimitivity. Hence N is either a 2 -group or a 3 -group. If N is a 3 -group, $\mathrm{N}=\langle\sigma\rangle$, where σ is 3_{2}. In this case H is contained in a conjugate of G_{2}.

If N is a 2 -group, N has orbits of length either (i) 2 , (ii) 4 , or (iii) 8.
(i) If N has I 2 orbits of length 2 , either $\mathrm{N}=\langle\sigma\rangle$, where σ is 2_{2}, or N is a 4-group, nonidentity elements of N are 2_{1}, and distinct nonidentity elements have disjoint fixed point sets. As in the proof of III (I) c) H must be contained in a conjugate of G_{1} or G_{2}.
(ii) If N has orbits of length 4 , the image of imprimitivity must be imprimitive on the set of 6 blocks, because primitive groups of degree 6 are nonsolvable. But then H can be represented as an imprimitive group of block length 8 in which the kernel of imprimitivity is transitive on each block, or as imprimitive group of block length 12 . Thus III (I) a) or III (I) b) applies.
(iii) III (I) a) applies.

References

[I] W. Burnside (1955) - Theory of groups of finite order, Second edition, (reprinted: Dover Publications, New York).
[2] R. D. Carmichael (1937) - Introduction to the theory of groups of finite order, Ginn, Boston, Mass.
[3] C. CHOI (1967) - The maximal subgroups of M_{24}, Ph. D. thesis, University of Michigan.
[4] C. CHOI (1972) - On subgroups of M_{24}. I. Stabilizers of subsets, «Trans. Amer. Math. Soc. \#, 167, 1-27.
[5] C. CHOI (1972) - On subgroups of M_{24}. II. The maximal subgroups of M_{24}, "Trans. Amer. Math. Soc.» 167, 29-47.
[6] J. H. Conway (197I) - Three lectures on exceptional simple groups, Finite Simple Groups, ed., M. B. Powell and G. Higman, Academic Press, $215-247$.
[7] H. Coxeter and W. Moser (1964) - Generators and relations for discrete groups, "Ergeb. Math.» I4 (2) edit. Berlin: Springer.
[8] L. E. Dickson (1958) - Linear Groups with an exposition of the Galois field theory (reprinted: Dover Publications, New York).
[9] G. Frobenius (1904) - Über die Charaktere der mehrfach transitiven Gruppen, Berliner, Ber., 558-57I.
[10] B, HUPPERT (1967) - Endliche Gruppen I, Springer-Verlag.
[II] C. C. Sims (1970) - Computational methods in the study of permutation groups, Computational Problems in Abstract Algebra, ed., J. Leech, Pergamon Press, 169-183.
[12] J. A. TODD (1966) - A representation of the Mathieu group M_{24} as a collineation group, «Annali di Mat.», ser. IV $7 I$.
[13] H. Wielandt (1964) - Finite Permutation Groups, Academic Press.
[14] E. WITT (1938) - Die 5-fach transitiven Gruppen von Mathieu, "Abhandl. Math. Seminar Hamburg. Univ. $》, ~ 12, ~ 256-264 . ~$
[15] E. Witt (1938) - Über Steinersche Systeme, "Abhandl. Math. Seminar Hamburg. Univ. », 12, 265-275.

[^0]: (*) Nella seduta del 16 aprile 1977.

