Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Jacob T.B.jun. Beard Unitary perfect polynomials over GF (q)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 62 (1977), n.4, p. 417-422.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1977_8_62_4_417_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - Unitary perfect polynomials over GF $(g)^{(*)}$. Nota di Jacob T. B. Beard, Jr., presentata (**) dal Socio B. Segre.

Riassunto. - Se $\mathrm{A}(x), \mathrm{B}(x) \in \mathrm{GF}[q, x]$ sono due polinomi monici, diciamo che $\mathrm{B}(x)$ è un divisore unitario di $\mathrm{A}(x)$ per esprimere che risulta $(\mathrm{B}(x), \mathrm{A}(x) / \mathrm{B}(x))=\mathrm{r}$; e che $\mathrm{A}(x)$ è unitariamente perfetto su GF (q) se la somma $\sigma^{*}(\mathrm{~A}(x))$ dei divisori unitari distinti di $\mathrm{A}(x)$ uguaglia $\mathrm{A}(x)$. In questa Nota vengono caratterizzati i polinomi unitariamente perfetti su GF (p) che sono riducibili in GF [p, x]; ed assegnati quei ${ }_{17}$ fra essi relativi al caso $p=2$ che sono della forma $x^{n} f(x)$ con $n \geq 0,(x, f(x))=1$ e grado $f(x) \leq 15$; qualche altro risultato è anche ottenuto per $p=3,5$.

I. INTRODUCTION AND NOTATION

For a monic polynomial $\mathrm{A}(x) \in \mathrm{GF}[q, x]$, the monic divisor $\mathrm{B}(x)$ $\in \mathrm{GF}[q, x]$ of $\mathrm{A}(x)$ is called a unitary divisor if and only if $(\mathbf{B}(x), \mathrm{A}(x) \mid$ $\mathrm{B}(x))=\mathrm{I}$. As a natural complement to the concept of perfect polynomials introduced in [I], we say that the monic polynomial $\mathrm{A}(x) \in \mathrm{GF}[q, x]$ is unitary perfect over $\mathrm{GF}(q)$ if and only if the sum $\sigma^{*}(\mathrm{~A}(x))$ of the unitary divisors of $\mathrm{A}(x)$ equals $\mathrm{A}(x)$. The principal result of this note is a characterization of all unitary perfect polynomials over GF (p) which split in GF $[p, x]$.

Monic polynomials over $\mathrm{GF}(q)$ are denoted A, B, C, \cdots, while prime (monic irreducible) polynomials over $\mathrm{GF}(\mathrm{q})$ are denoted $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ For brevity, we write $A \rightarrow B$ whenever $\sigma^{*}(A)=B$. It is clear that $\operatorname{deg} A=$ $\operatorname{deg} \sigma^{*}(\mathrm{~A})$ and that σ^{*} is multiplicative on its domain. Hence whenever $\mathrm{A} \in \mathrm{GF}[q, x]$ has the canonical decomposition $\mathrm{A}=\prod_{\boldsymbol{R}_{i=1}^{n}}^{n} \mathrm{P}_{i}^{\alpha(i)}$ as the product of powers of distinct primes $\mathrm{P}_{i} \in \mathrm{GF}[q, x]$ with $\alpha(i)>0$, then

$$
\mathrm{A}=\prod_{i=1}^{n} \mathrm{P}_{i}^{\alpha(i)} \rightarrow \prod_{i=1}^{n} \sigma^{*}\left(\mathrm{P}_{i}^{\alpha(i)}\right)=\prod_{i=1}^{n}\left(\mathrm{P}_{i}^{\alpha(i)}+\mathrm{I}\right)
$$

This fact is used extensively and without further reference. Though trivial, the following result will be appealed to frequently.

Lemma. The polynomial A is unitary perfect over GF (q) if and only if for each prime polynomial $\mathrm{P} \in \mathrm{GF}[q, x], m=n$ whenever $\mathrm{P}^{m} \| \mathrm{A}$ and $\mathrm{P}^{n} \| \sigma^{*}(\mathrm{~A})$.
fere, $\mathrm{P}^{k} \| \mathrm{B}$ is equivalent to $\mathrm{P}^{k} \mid \mathrm{B}$ and $\mathrm{P}^{k+1} \nmid \mathrm{~B}$.

[^0]
2. UNITARY PERFECT SPLITTING POLYNOMIALS

From Theorem I, we will deduce that whenever the polynomial A is unitary perfect over GF (p) and splits in GF $[p, x]$, then $\mathrm{A}=\prod_{i=0}^{p-1}(x-i)^{\alpha(i)}$ where $\alpha(i)>0$ for $0 \leq i<p$. The analogous statement for $\mathrm{A} \in \mathrm{GF}[q, x]$ does not hold, by a later example. This is among the reasons we have thus far obtained only a partial characterization for unitary perfect polynomials which split in GF $[q, x]$. After showing each $\alpha(i)>0$, we first assume $\alpha(i)=k$ for $\circ \leq i<p$ and determine all integers k such that the polynomial $\mathrm{A}=\prod_{i=0}^{p-1}(x-i)^{k}$ is unitary perfect over $\mathrm{GF}(p)$. Recall that each positive integer k can be uniquely represented to the base p as $k=\sum_{j=0}^{n} k(j) p^{j}$ where $0 \leq k(j)<p$ for $0 \leq j \leq n$.

THEOREM I. If the polynomial $\mathrm{A}=\prod_{i=1}^{n} \mathrm{P}_{i}^{\alpha(i)}$ is unitary perfect over $\mathrm{GF}(q)$, the primes P_{i} are distinct, $\alpha(i)>0$, and $\alpha(\mathrm{I}) \operatorname{deg} \mathrm{P}_{1} \leq \cdots \leq \alpha(n) \operatorname{deg} \mathrm{P}_{n}$, then for some integer $k \geq \mathrm{I}, \alpha$ (1) deg $\mathrm{P}_{1}=\alpha$ (i) $\operatorname{deg} \mathrm{P}_{i}$ for each i satisfying $1 \leq i \leq k p$.

Proof. If A is unitary perfect, then the admissible summands of $\sigma^{*}(\mathrm{~A})$ - A having maximum degree are monic and their leading coefficients sum to zero.

Corollary. If the polynomial A is unitary perfect over GF (p) and splits in $\mathrm{GF}[p, x]$, then $\prod_{i=0}^{p-1}(x-i) \mid \mathrm{A}$.

ThEOREM 2. The polynomial $\mathrm{A}=\prod_{a \in \mathrm{GF}(q)}(x-a)^{p^{n}}$ is unitary perfect over GF (q) for each $n \geq 0$.

Proof. For each $a \in \mathrm{GF}$ (q),

$$
(x-a)^{p^{n}} \rightarrow(x-a)^{p^{n}}+1=(x-a+1)^{p^{n}},
$$

so that

$$
\mathrm{A}=\prod_{a \in \mathrm{GF}(q)}(x-a)^{p^{n}} \rightarrow \prod_{a \in \mathrm{GF}(q)}(x-a+1)^{p^{n}}=\mathrm{A}
$$

From the proof of Theorem 2, it is easy to construct polynomials which are unitary perfect over GF (q) but which are not divisible by $\prod_{a \in \operatorname{GF}(q)}(x-a)$. For example, let $q=p^{d}, d>1$, and choose any fixed $a \in \mathrm{GF}(q)$ such that $a \notin \mathrm{GF}(p)$. For any $n \geq 0$ and any $i \in \mathrm{GF}(p),(x-a-i)^{p^{n}} \rightarrow(x-a-$ $-i+1)^{p^{n}}$, so that $\mathrm{A}=\prod_{i=0}^{p-1}(x-a-i)^{p^{n}} \rightarrow \prod_{i=0}^{p-1}(x-a-i+1)^{p^{n}}=\mathrm{A}$. Moreover, no linear polynomial in GF $[p, x]$ divides A. Continuing toward our characterization, we have

Theorem 3. Let $q=2^{d}, d>\mathrm{I}$. The polynomial $\mathrm{A}=\prod_{a \in \mathrm{G}(q)}(x-a)^{\mathrm{N} 2^{n}}$ is unitary perfect over $\mathrm{GF}(q)$ whenever $\mathrm{N} \mid(q-1), \mathrm{N} \neq \mathrm{I}$, and $n \geq 0$.

Proof. For each fixed $a \in \operatorname{GF}(q)$, we have

$$
\begin{aligned}
\left(x-a^{\mathrm{N} 2^{n}}\right) \rightarrow(x-a)^{\mathrm{N} 2^{n}} & +\mathrm{I}=(x-a)^{\mathrm{N} 2^{n}}-\mathrm{I}=\left[(x-a)^{\mathrm{N}}-\mathrm{I}\right]^{2^{n}}= \\
& =\prod_{b \in \mathrm{H}}(x-a-b)^{2^{n}}
\end{aligned}
$$

where H is the unique (multiplicative) subgroup of $\mathrm{GF}(q)^{*}$ of order N. Hence ($x-a$) is contributed to $\sigma^{*}(\mathrm{~A})$ only in the case $b \in \mathrm{H}$ and, in this case, is contributed by

$$
(x-a+b)^{\mathbf{N} 2^{n}} \rightarrow(x-a)^{2^{n}} \prod_{c \in \mathbf{H}-\{b\}}(x-a+b-c)^{2^{n}}
$$

Since there are N such elements $b \in \mathrm{H}$, then $(x-a)^{\mathrm{N} 2^{n}} \| \sigma^{*}(\mathrm{~A})$ and we are done by the Lemma.

Theorem 4. Let $q=p^{d}, p>2$. If $\frac{q-\mathrm{I}}{\mathrm{N}} \equiv \mathrm{o}(\bmod 2)$, the polynomial $\mathrm{A}=\prod_{a \in \mathrm{GF}(q)}(x-a)^{\mathrm{N} p^{n}}$ is unitary perfect over $\mathrm{GF}(q)$ for each $n \geq 0$.

Proof. Consider

$$
x^{\mathrm{N} p^{n}} \rightarrow x^{\mathrm{N} p^{n}}+\mathrm{I}=\left(x^{\mathrm{N}}+1\right)^{p^{n}}
$$

Since N divides $q-\mathrm{I}$ an even number of times, $\left(x^{\mathrm{N}}+\mathrm{I}\right) \mid\left(x^{q-1}-\mathrm{I}\right)$. Thus $x^{\mathrm{N}}+\mathrm{I}$ splits in GF $[q, x]$ as the product of distinct linear factors, say

$$
x^{\mathrm{N}}+\mathrm{I}=\prod_{i=1}^{\mathrm{N}}\left(x-d_{i}\right)
$$

It follows that for each fixed $a \in \operatorname{GF}(q)$,
so that

$$
(x-a)^{\mathbf{N}}+\mathrm{I}=\prod_{i=1}^{\mathrm{N}}\left(x-a-d_{i}\right)
$$

$$
(x-a)^{\mathrm{N} p^{n}} \rightarrow\left[(x-a)^{\mathrm{N}}+\mathrm{I}\right]^{p^{n}}=\prod_{i=1}^{\mathrm{N}}\left(x-a-d_{i}\right)^{p^{n}}
$$

For each $j, \mathrm{I} \leq j \leq \mathrm{N}$, there exists a unique $b \in \mathrm{GF}(q)$ such that $a=b+d_{j}$, and

$$
(x-b)^{\mathbb{N} p^{n}} \rightarrow(x-a)^{p^{n}} \prod_{i \neq j}\left(x-b-d_{i}\right)^{p^{n}} .
$$

Thus $(x-a)^{\mathbb{N} p^{*}} \| \sigma^{*}(\mathrm{~A})$ and we are done by the Lemma.
We now show that the sufficient conditions on N in Theorem 2 - Theorem 4 are necessary.

Theorem 5. Let $q=p^{d}, p>2$. If $(\mathrm{N}, p)=1, \frac{q-1}{\mathrm{~N}}$ 三 $1(\bmod 2)$, and $n \geq 0$, then the polynomial $\mathrm{A}=\prod_{a \in \mathrm{GF}(q)}(x-a)^{\mathrm{N}^{n}}$ is not unitary perfect over GF (q).

Proof. We consider

$$
x^{\mathrm{N} p^{n}} \rightarrow\left(x^{\mathrm{N}}+\mathrm{I}\right)^{p^{n}}
$$

Since $\frac{q-\mathrm{I}}{\mathrm{N}} \neq 0(\bmod 2)$, then (by ordinary long division) $\left(x^{\mathrm{N}}+\mathrm{I}\right) \psi\left(x^{q-1}-\mathrm{I}\right)$. Moreover, $x^{\mathrm{N}}+\mathrm{I}$ has no repeated roots in GF (q) as $(\mathrm{N}, p)=\mathrm{I}$. Thus $x^{\mathrm{N}}+\mathrm{I}$ does not split in GF $[q, x]$. By the Lemma, the polynomial A is not unitary perfect.

The preceding results immediately yield
Theorem. 6. The polynomial $\mathrm{A}=\prod_{a \in \mathrm{GF}(q)}(x-a)^{\mathrm{N} p^{n}}$ is unitary perfect over GF (q) if and only if $n \geq 0$ and either $p=2$ and $\mathrm{N} \mid(q-1)$ or else $p>2$ and $\frac{q-\mathrm{I}}{\mathrm{N}} \equiv \mathrm{o}(\bmod 2)$.

This partial characterization of splitting unitary perfect polynomials over GF (q) is strengthened considerably over GF (p), as in

THEOREM 7. The polynomial $\mathrm{A}=\prod_{i \geq 0}^{p-1}(x-i)^{k}$ is unitary perfect over GF (p) if and only if $k=\mathrm{N} p^{n}$ where $n \geq 0$ and either $p=2$ and $\mathrm{N}=\mathrm{I}$ or else $p>2$ and $\frac{p-1}{\mathrm{~N}} \equiv 0(\bmod 2)$.

Proof. There remains only to prove the necessity in the case $k>p$. Assume k is not of the admitted form, and let $k=\sum_{j=0}^{m} k(j) p^{j}$ where $0 \leq k(j)<p$ for $0 \leq j<m$ and $0<k(m)<p$. Consider

$$
x^{k} \rightarrow x^{k(m) p^{m}+\cdots+k(1) p+k(0)}+\mathrm{I}=x^{k}+\mathrm{I} .
$$

As before, it suffices to show that the polynomial $x^{k}+\mathrm{I}$ does not split in GF $[p, x]$. If $k(0) \neq 0$, this is easily seen since $x^{k}+\mathrm{I} \notin \mathrm{GF}\left[p, x^{p}\right]$ and $k>p$. If $k(0)=0$, then

$$
x^{k}+\mathrm{I}=\left(x^{k(m) n)^{m-l}}+\cdots+k(l)+1\right)^{p^{l}}=\mathrm{B}^{p^{l}}
$$

where l is the least positive integer j such that $k(j) \neq 0$. Note that $l<m$, otherwise we are done by previous arguments. Then $\mathrm{B} \notin \mathrm{GF}\left[p, x^{p}\right]$ and $\operatorname{deg} \mathrm{B}>p$. Hence B does not split in GF $[p, x]$, neither does $x^{k}+\mathrm{I}$, and we are done.

The unitary perfect polynomials over GF (p) which split in GF $[p, x]$ are fully characterized in our concluding result.

Theorem 8. The polynomial $\mathrm{A}=\prod_{i=0}^{p-1}(x-i)^{\alpha(i)}$ is unitary perfect over GF (p) if and only if the following conditions are satisfied:
i) $\alpha(0)=\alpha(j)$ for $0 \leq j<p$,
ii) $\alpha(0)=N p^{n}$ where $n \geq 0$ and either $p=2$ and $\mathrm{N}=1$ or $p>2$ and $(p-1) / \mathrm{N} \equiv 0(\bmod 2)$.

Proof. By earlier arguments, each α (i) must be of the admissible form given in Theorem 7. Thus there remains only to establish $\alpha(0)=\alpha(j)$ for $0 \leq j<p$, which is immediate from Theorem I .

3. Unitary perfect non-splitting polynomials

Most of the unitary perfect polynomials given in this section were obtained on an IBM 360/155 using (unpublished) complete factorization tables previously obtained by Beard and Karen I. West for all monic polynomials $f(x)$ with $(x, f(x))=1$ over GF (p) of degree m satisfying

$$
\begin{aligned}
p=2, & 2 \leq m \leq 15 \\
3, & 2 \leq m \leq 9 \\
5, & 2 \leq m \leq 6
\end{aligned}
$$

For $n \geq 0$ there are no non-splitting unitary perfect polynomials over GF (3) or GF (5) of the form $x^{n} f(x)$ where $f(x)$ satisfies the above conditions. The Table at the end includes the complete factorization of all non-splitting unitary perfect polynomials over GF (2) of the form $x^{n} f(x)$ where $n \geq 0,(x, f(x))=\mathrm{I}$, and $\operatorname{deg} f(x) \leq 15$. The remaining examples in that Table have been constructed by two students, Alice T. Bullock and Mickie S. Harbin. We note that of the 28 listed polynomials $x^{n} f(x)$ over GF (2), 22 of the factors $f(x)$ are reciprocal polynomials. Ongoing attempts to find non-splitting unitary perfect polynomials over GF (5) are fruitless thus far.

We are reminded that Canaday [2] considered the II non-splitting perfect polynomials over GF (2) as likely to be all such, and of the open question as to whether $x \mid \mathrm{A}$ whenever A is perfect over $\mathrm{GF}(p)$. It is easily verified that $x(x-\mathrm{I}) \mid \mathrm{A}$ whenever A is unitary perfect over GF (2).

Non-Splitting Unitary Perfect Polynomials Over GF (p)

degree	Complete Factorization
7	$x^{3}(\mathrm{I}+x)^{2}\left(\mathrm{I}+x+x^{2}\right), x^{2}(\mathrm{I}+x)^{3}\left(1+x+x^{2}\right)$
10	$x^{3}(\mathrm{I}+x)^{3}\left(\mathrm{I}+x+x^{2}\right)^{2}$
13	$x^{5}(\mathrm{I}+x)^{4}\left(\mathrm{I}+x+x^{2}+x^{3}+x^{4}\right), x^{4}(\mathrm{I}+x)^{5}\left(\mathrm{I}+x^{3}+x^{4}\right)$
14	$x^{6}(\mathrm{I}+x)^{4}\left(\mathrm{I}+x+x^{2}\right)^{2}, x^{4}(\mathrm{I}+x)^{6}\left(\mathrm{I}+x+x^{2}\right)^{2}$
16	$x^{3}(1+x)^{3}\left(1+x+x^{2}\right)^{3}\left(1+x+x^{4}\right)$
17.	$x^{7}(\mathrm{1}+x)^{4}\left(\mathrm{1}+x+x^{3}\right)\left(\mathrm{1}+x^{2}+x^{3}\right), x^{4}(\mathrm{1}+x)^{7}\left(\mathrm{1}+x+x^{3}\right)\left(\mathrm{1}+x^{2}+x^{3}\right)$
18	$x^{5}(1+x)^{5}\left(1+x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)$
19	$\begin{aligned} & x^{6}(1+x)^{5}\left(1+x+x^{2}\right)^{2}\left(1+x^{3}+x^{4}\right), x^{5}(1+x)^{6}\left(1+x+x^{2}\right)^{2}\left(1+x+x^{2}+\right. \\ &\left.+x^{3}+x^{4}\right) \end{aligned}$
20	$x^{6}(\mathrm{I}+x)^{6}\left(\mathrm{I}+x+x^{2}\right)^{4}, x^{6}(\mathrm{I}+x)^{4}\left(\mathrm{r}+x+x^{2}\right)^{3}\left(\mathrm{I}+x+x^{4}\right)$
22	$x^{7}(\mathrm{I}+x)^{5}\left(\mathrm{I}+x+x^{3}\right)\left(\mathrm{1}+x^{2}+x^{3}\right)\left(\mathrm{I}+x^{3}+x^{4}\right)$
23	$x^{9}(\mathrm{I}+x)^{4}\left(\mathrm{I}+x+x^{2}\right)^{2}\left(\mathrm{I}+x^{3}+x^{6}\right)$
26	$\dot{x}^{10}(1+x)^{8}\left(1+x+x^{2}+x^{3}+x^{4}\right)^{2}$
28	$x^{12}(\mathrm{I}+x)^{8}\left(\mathrm{I}+x+x^{2}\right)^{4}$
34	$x^{14}(1+x)^{8}\left(1+x+x^{3}\right)^{2}\left(1+x^{2}+x^{8}\right)^{2}$
37	$\begin{array}{r} x^{11}(1+x)^{8}\left(1+x+x^{2}+x^{3}+x^{4}\right)^{2}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+\right. \\ \left.+x^{8}+x^{9}+x^{10}\right) \end{array}$

p degree Complete Factorization
$2 \quad 41 \quad x^{13}(\mathrm{I}+x)^{8}\left(1+x+x^{2}\right)^{4}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+\right.$
$52 \quad x^{20}(\mathrm{I}+x)^{16}\left(\mathrm{I}+x+x^{2}+x^{3}+x^{4}\right)^{4}$
$56 \quad x^{24}(1+x)^{16}\left(1+x+x^{2}\right)^{8}$
$58 \quad x^{18}(\mathrm{I}+x)^{8}\left(\mathrm{I}+x+x^{2}\right)^{6}\left(\mathrm{I}+x+x^{4}\right)^{2}\left(1+x^{3}+x^{6}\right)^{2}$
$74 \quad x^{22}(\mathrm{I}+x)^{16}\left(\mathrm{I}+x+x^{2}+x^{3}+x^{4}\right)^{4}\left(\mathrm{I}+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+\right.$
$78 \quad x^{30}(\mathrm{I}+x)^{16}\left(\mathrm{I}+x+x^{2}\right)^{4}\left(\mathrm{I}+x+x^{4}\right)^{2}\left(\mathrm{I}+x^{3}+x^{4}\right)^{2}\left(\mathrm{I}+x+x^{2}+x^{3}+x^{4}\right)^{2}$
$82 \quad x^{26}(1+x)^{16}\left(1+x+x^{2}\right)^{8}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+\right.$
$312 \quad x^{2}(1+x)^{2}(2+x)^{2}\left(1+x^{2}\right)\left(2+x+x^{2}\right)\left(2+2 x+x^{2}\right)$
$25 x^{8}(1+x)^{2}(2+x)^{3}\left(1+x^{2}\right)\left(2+2 x+x^{2}\right)\left(2+x^{2}+x^{4}\right)\left(2+2 x^{2}+x^{4}\right)$
$36 \quad x^{6}(1+x)^{6}(2+x)^{6}\left(1+x^{2}\right)^{3}\left(2+x+x^{2}\right)^{3}\left(2+2 x+x^{2}\right)^{3}$

References

[I] J. T. B. Beard, Jr., J. R. OConnell, Jr. and K. I. West - Perfect polynomials over GF (q), «Rend. Acc. Naz. Lincei».
[2] E. F. Canaday (1941) - The sum of the divisors of a polynomial, "Duke Math. J.》, 7, 721-737.

[^0]: ${ }^{\text {* }}$) This research was partially supported by an Organized Research Grant from the University of Texas at Arlington.
 ${ }^{(* *)}$ Nella seduta del 16 aprile 1977.

