Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Sahib Ram Mandan

On a Gerber's Conjecture

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 61 (1976), n.5, p. 411-419. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_61_5_411_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - On a Gerber's Conjecture. Nota di Sahib Ram Mandan, presentata ${ }^{(*)}$ dal Socio B. Segre.

[^0]In a letter [5] Gerber writes: " I conjecture the truth of the following statement which would be a fitting complement to the result [14] announced in youy letter of 25 th March.
"Let p be a prime in n-dimensional Euclidean space E_{n}, (A) and (B) simplexes with $x^{i}(x=a, b)$ as faces opposite their vertices $\mathrm{X}_{i}(\mathrm{X}=\mathrm{A}, \mathrm{B})$, and X_{i}^{\prime} orthogonal projections of X_{i} on p. If the perpendiculars from A_{i}^{\prime} to b^{i} concur (are associated), then those from B_{i}^{\prime} to a^{i} behave the same way '".

It leads to a PORISM as follows:
If $x_{1}^{i}(x=a, b ; i=0, \cdots, n)$ are the 2 sets of normals to a prime p in E_{n} from 2 general sets $\left(\mathrm{X}^{\prime}\right)$ of points $\mathrm{X}_{i}^{\prime}(\mathrm{X}=\mathrm{A}, \mathrm{B})$ on p and (X) a pair of simplexes with vertices X_{i} on x_{1}^{i} and faces x^{i} opposite X_{i} such that the $n+1$ normals to b^{i} from A_{i}^{\prime} concur or form an associated set with $(n-2)$-parameter family of $(n-2)$-flats meeting them, then it is true for every member of the $(n+\mathrm{I})$-parameter family $f(\mathrm{~B})$ of simplexes like (B), and the $n+\mathrm{I}$ normals from B_{i}^{\prime} to the faces a^{i} of any member of the $(n+\mathrm{I})$-parameter family $f(\mathrm{~A})$ of simplexes like (A) behave the same way. An associated set of lines are said to be in Schläfli position ([15], p. 248).

The purpose of this paper is then to prove the porism from which Gerber's Conjecture follows, and the existence in $\mathrm{E}_{n}(2<n)$ of (i) Orthological Sets (X^{\prime}) such that each join $\mathrm{A}_{i}^{\prime} \mathrm{A}_{j}^{\prime}$ is normal to the ($n-2$)-flat determined by $\mathrm{B}_{k}^{\prime}(k \neq i, j)$, and (ii) Skew Orthological Sets (X^{\prime}) such that the $n+\mathrm{I}$ pairs of corresponding ($n-1$)-simplexes formed of them are skew orthological ([4)]; [14]). The projective equivalent of the porism and its extension in n-dimensional projective spaces S_{n} for all values of n are also given besides an immediate deduction of a partly new result.

i. The Plane Porism Picture

The porism in E_{2} leads us to the following
THEOREM 1. In E_{2} if $x_{1}^{i}(x=a, b ; i=0, \mathrm{I}, 2)$ are the 2 triads of perpendiculars to a line p from 2 triads of points $\mathrm{X}_{i}^{\prime}(\mathrm{X}=\mathrm{A}, \mathrm{B})$ on p and (X) a pair of triangles with vertices X_{i} on x_{1}^{i} and sides x^{i} opposite X_{i} such
(*) Nella seduta del 13 novembre 1976.

that the 3 perpendiculars to b^{i} from A_{i}^{\prime} concur at a point G , then it is true for every member of the 3 -parameter family $f(\mathrm{~B})$ of triangles like (B), and the 3 perpendiculars from B_{i}^{\prime} to the sides a^{i} of any member of the 3-parameter family $f(\mathrm{~A})$ like (A) concur at a point G^{\prime} if and only if $\mathrm{A}_{0}^{\prime} \mathrm{A}_{1}^{\prime} / \mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime}=$ $=\mathrm{B}_{0}^{\prime} \mathrm{B}_{1}^{\prime} / \mathrm{B}_{1}^{\prime} \mathrm{B}_{2}^{\prime}$.

Proof. Fig. I shows that if the perpendiculars from A_{i}^{\prime} to b^{i} concur at G, we have

$$
\begin{aligned}
\mathrm{A}_{0}^{\prime} \mathrm{A}_{1}^{\prime} / \mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime} & =\sin \mathrm{A}_{0}^{\prime} \mathrm{GA}_{1}^{\prime} \cdot \sin \mathrm{GA}_{2}^{\prime} \mathrm{A}_{1}^{\prime} /\left(\sin \mathrm{A}_{1}^{\prime} \mathrm{GA}_{2}^{\prime} \cdot \sin \mathrm{GA}_{0}^{\prime} \mathrm{A}_{1}^{\prime}\right) \\
& =\sin \mathrm{B}_{0} \mathrm{~B}_{2} \mathrm{~B}_{1} \cdot \sin \mathrm{C} /\left(\sin \mathrm{B}_{2} \mathrm{~B}_{0} \mathrm{~B}_{1} \cdot \sin \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{C}\right) \\
& =\mathrm{B}_{0} \mathrm{~B}_{1} / \mathrm{B}_{1} \mathrm{C} \quad\left(\mathrm{C} \text { meet of } \mathrm{B}_{0} \mathrm{~B}_{1} \text { and } \mathrm{B}_{2} \mathrm{~B}_{2}^{\prime}\right) \\
& =\mathrm{B}_{0}^{\prime} \mathrm{B}_{1}^{\prime} / \mathrm{B}_{1}^{\prime} \mathrm{B}_{2}^{\prime}
\end{aligned}
$$

a result independent of (B), that is, it is true for all (B) with vertices B_{i} on b_{1}^{i} independent of one another, every vertex having an infinity of choices.

Now if the perpendiculars from $\mathrm{B}_{0}^{\prime}, \mathrm{B}_{2}^{\prime}$ to a^{0}, a^{2} meet at G^{\prime} and one from G^{\prime} to a^{1} meets p at B , by a similar agument we have $\mathrm{B}_{0}^{\prime} \mathrm{B} / \mathrm{BB}_{2}^{\prime}=$ $=\mathrm{A}_{0}^{\prime} \mathrm{A}_{1}^{\prime} / \mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime}$ that is then true if and only if $\mathrm{B}=\mathrm{B}_{1}^{\prime}$.

2. Orthological and Skew Orthological Sets (X^{\prime})

The porism in E_{3} leads us to the following
Theorem 2. In E_{3} if $x_{1}^{i}(x=a, b ; i=0, \mathrm{I}, 2,3)$ are the 2 tetrads of normals to a plane prom the vertices $\mathrm{X}_{i}^{\prime}(\mathrm{X}=\mathrm{A}, \mathrm{B})$ of 2 quadrangles (X^{\prime}) in p and (X) a pair of tetrahedra with vertices X_{i} on x_{1}^{i} and faces x^{i} opposite X_{i} such that the 4 normals to b^{i} from A_{1}^{\prime} (i) concur at a point G , or, (ii) lie in a regulus, then it is true for every member of the 4-parameter family $f(\mathrm{~B})$ of tetrahedra like (B), and the 4 normals from B_{i}^{\prime} to the faces a^{i} of any member of the 4-parameter family $f(\mathrm{~A})$ of tetrahedra like (A) (i) concur at a point G^{\prime}, or, (ii) lie in a regulus if and only if (X^{\prime}) are (i) orthological such that each side of one is perpendicular to the corresponding opposite side of the other as in fig. 2 (i), or, (ii) skew orthological such that each pair of their corresponding triangles are orthological unlike (i) as shown in fig. 2 (ii) where $L_{i}^{\prime} \neq \mathrm{A}_{i}^{\prime}$ is the point of concurrence of the perpendiculars from $\mathrm{A}_{j}^{\prime}, \mathrm{A}_{k}^{\prime}, \mathrm{A}_{m}^{\prime}$ to $\mathrm{B}_{k}^{\prime} \mathrm{B}_{m}^{\prime}, \mathrm{B}_{m}^{\prime} \mathrm{B}_{j}^{\prime}, \mathrm{B}_{j}^{\prime} \mathrm{B}_{k}^{\prime}(i, j, k, m=0, \mathrm{I}, 2,3)$.

Proof. It follows from that of the following Theorem 3 by putting $n=3$ there and noting that lines in a regulus are met by at least 3 lines of its complementary one, and there are no skew orthological triangles which may be orthological only.

Fig. 2.

The porism in $\mathrm{E}_{n}(2<n)$ leads us to the following
THEOREM 3. The porism in $\mathrm{E}_{n}(2<n)$ is true if and only if the given 2 sets of points (X^{\prime}) on the given prime p are (i) orthological, or, (ii) skew orthological.

Proof. Let $\mathrm{A}_{i}^{\prime \prime}$ be the foot of the normal from A_{i}^{\prime} to b^{i} and $\mathrm{A}_{i j}^{\prime}\left(\neq \mathrm{A}_{j i}^{\prime}\right)$ the meet of the normal from $\mathrm{A}_{i}^{\prime \prime}$ to b^{j} with p. Then the plane $\mathrm{A}_{i}^{\prime} \mathrm{A}_{i}^{\prime \prime} \mathrm{A}_{i j}^{\prime}$ and similarly $\mathrm{A}_{j}^{\prime} \mathrm{A}_{j}^{\prime \prime} \mathrm{A}_{j i}^{\prime}$ are perpendicular to the common $(n-2)$-flat $b_{n-2}^{i j}$ of the pair of faces b^{i}, b^{j} of the simplex (B) and therefore perpendicular to any prime through this flat, in particular to the prime $b^{i j}$ determined by the $n-I$ normals $b_{1}^{k}=\mathrm{B}_{k} \mathrm{~B}_{k}^{\prime}(k \neq i, j)$ from the vertices B_{k} of (B) to p and hence perpendicular to p. Consequently the 2 joins $\mathrm{A}_{i}^{\prime} \mathrm{A}_{i j}^{\prime}, \mathrm{A}_{j}^{\prime} \mathrm{A}_{j i}^{\prime}$ are both normal to $b^{i j}$ and therefore to its $(n-2)$-flat $\left(b_{n-2}^{i j}\right)^{\prime}$ in p determined by the $n-\mathrm{I}$ points B_{k}^{\prime} there. Now there arise 2 cases.
(i) If the $n+1$ normals from the points of the set $\left(\mathrm{A}^{\prime}\right)$ to the corresponding faces of (B) concur at a point G, the plane $G A_{i}^{\prime} A_{j}^{\prime}$ determined by 2 normals $\mathrm{GA}_{i}^{\prime} \mathrm{A}_{i}^{\prime \prime}, \mathrm{GA}_{j}^{\prime} \mathrm{A}_{j}^{\prime \prime}$ contains their parallels $\mathrm{A}_{j}^{\prime \prime} \mathrm{A}_{j i}^{\prime}, \mathrm{A}_{i}^{\prime \prime} \mathrm{A}_{i j}^{\prime}$ and meets p in a line where then colline the tetrad of points: $\mathrm{A}_{j i}^{\prime}, \mathrm{A}_{i}^{\prime}, \mathrm{A}_{j}^{\prime}, \mathrm{A}_{i j}^{\prime}$. Or, the join of any 2 points $\mathrm{A}_{i}^{\prime}, \mathrm{A}_{j}^{\prime}$ of $\left(\mathrm{A}^{\prime}\right)$ contains both $\mathrm{A}_{i j}^{\prime}, \mathrm{A}_{j i}^{\prime}$ and is then normal to the corresponding $(n-2)$-flat $\left(b_{n-2}^{i j}\right)^{\prime}$ of $\left(\mathrm{B}^{\prime}\right)$ such that the $n(n+\mathrm{I}) / 2$ joins $\mathrm{B}_{i}^{\prime} \mathrm{B}_{j}^{\prime}$ of (B^{\prime}) are normal respectively to the corresponding $(n-2)$-flats $\left(a_{n-2}^{i j}\right)^{\prime}$ of (A^{\prime}). Such a mutual relation between the 2 sets (X^{\prime}) makes them independent of (B). That is, the Theorem is true for every member of the family $f(\mathrm{~B})$ if it is so for one.

Again, when $\left(\mathrm{X}^{\prime}\right)$ are so related, $\mathrm{B}_{i}^{\prime} \mathrm{B}_{j}^{\prime}$ is normal to the prime $a^{i j}$ determined by the $n-\mathrm{I}$ normals $a_{1}^{k}=\mathrm{A}_{k} \mathrm{~A}_{k}^{\prime}$ to p and therefore perpendicular to the $(n-2)$-flat $a_{n-2}^{i j}$ of the simplex (A) common to its faces a^{i}, a^{j}
determined by its n-I vertices $\mathrm{A}_{k}(k \neq i, j)$ such that the normal from B_{i}^{\prime} to a^{i} and $\mathrm{B}_{i}^{\prime} \mathrm{B}_{j}^{\prime}$ determine a plane perpendicular to this flat and that then contains the normal from B_{j}^{\prime} to a^{j}, or the 2 normals meet. Thus all the $n+1$ normals from the points of (B^{\prime}) to the corresponding faces of any member (A) of the family $f(\mathrm{~A})$ of simplexes meet one another and hence concur as desired.
(ii) If the $n+1$ normals from the points of (A^{\prime}) to the corresponding faces of (B) form an associated set (lie in a regulus in E_{3} and concur in E_{2}), there exist a ($n-2$)-parameter family of ($n-2$)-flats meeting them and therefore a ($n-3$)-parameter family (unique line in E_{3}) of them parallel to each normal such that one parallel to $\mathrm{A}_{i}^{\prime} \mathrm{A}_{i}^{\prime \prime}$ meets all other n normals $\mathrm{A}_{j}^{\prime} \mathrm{A}_{j}^{\prime \prime}$, is parallel to the n joins $\mathrm{A}_{j}^{\prime \prime} \mathrm{A}_{j i}^{\prime}$ and therefore coprimal with the n planes $\mathrm{A}_{j}^{\prime} \mathrm{A}_{j}^{\prime \prime} \mathrm{A}_{j i}^{\prime}$, or, meets the n joins $\mathrm{A}_{j}^{\prime} \mathrm{A}_{j i}^{\prime}$ which then meet their ($n-3$)-parameter family of ($n-3$)-flats (unique point in E_{3}) in p and form an associated set by definition ([1], pp. 120-23 and [8] for $n=4,5$; [4]; [9]; [12]; [14]). That is, the n normals from the n vertices A_{j}^{\prime} of the (n - I)-simplex $\left(a^{i}\right)^{\prime}$ formed of the n points of (A^{\prime}) other than A_{i}^{\prime} to the corresponding $(n-2)$-flats $\left(b_{n-2}^{i j}\right)^{\prime}$ of the $(n-1)$-simplex $\left(b^{i}\right)^{\prime}$ formed of the n points B_{j}^{\prime} of (B^{\prime}) other than B_{i}^{\prime} form an associated set and thereforc makes these $2(n-1)$-simplexes skew orthological ([4]; [15]). Such a relation of the 2 sets $\left(\mathrm{X}^{\prime}\right)$ is obviously independent of (B), or the Theorem is true for every member of the family $f(\mathrm{~B})$ of simplexes if it is so for one.

Again, if $\mathrm{B}_{i}^{\prime \prime}$ is the foot of the normal from B_{i}^{\prime} to a^{i} and $\mathrm{B}_{i j}^{\prime}\left(\neq \mathrm{B}_{j i}^{\prime}\right)$ the meet of the normal form $\mathrm{B}_{i}^{\prime \prime}$ to a^{j} with p, we can prove that the 2 joins $\mathrm{B}_{i}^{\prime} \mathrm{B}_{i j}^{\prime}, \mathrm{B}_{j}^{\prime} \mathrm{B}_{j i}^{\prime}$ are both normal to the $(n-2)$-flat ($a_{n-2}^{i j}$) determined by the $n-\mathrm{I}$ points $\mathrm{A}_{k}(k \neq i, j)$ by interchanging the roles of A , a with B, b in the above argument. Consequently, by the mutual relation of (X^{\prime}), the n normals $\mathrm{B}_{j}^{\prime} \mathrm{B}_{j i}^{\prime}$ from the n vertices of $\left(b^{i}\right)^{\prime}$ to the corresponding ($n-2$)-flats $\left(a_{n-2}^{i j}\right)^{\prime}$ of $\left(a_{i}^{i}\right)^{\prime}$ form an associated set and are met by ($n-3$)-parameter family of ($n-3$)-flats. Hence there exists a ($n-3$)-parameter family of $(n-2)$-flats, parallel to $\mathrm{B}_{i}^{\prime} \mathrm{B}_{i}^{\prime \prime}$ and therefore to the n joins $\mathrm{B}_{j}^{\prime \prime} \mathrm{B}_{j i}^{\prime}$ or comprimal with the n planes $\mathrm{B}_{j}^{\prime} \mathrm{B}_{j}^{\prime \prime} \mathrm{B}_{j i}^{\prime}$, which then meet the n normals $\mathrm{B}_{j}^{\prime} \mathrm{B}_{j}^{\prime \prime}$ from B_{j}^{\prime} to a^{j}. Or, the $n+\mathrm{I}$ normals from the $n+\mathrm{I}$ points of $\left(\mathrm{B}^{\prime}\right)$ to the corresponding faces of any member of the family $f(\mathrm{~A})$ of simplexes form an associated set, as desired, by a Lemma, established in 1965 [II] and used later in [14], that runs as follows:

If through the $n+1$ vertices of a simplex S in $\mathrm{S}_{n} n+1$ lines are drawn such that there pass a (n-3)-parameter family of $(n-2)$-fats through each vertex to meet them, the lines then form an associated set.

Its proof given there holds good also in E_{n} even for a degenerate S whose vertices may lie in a prime which is one at infinity in the present case.

3. Projective Equivalent of Porism

A line x_{1}^{i} is said to be normal or perpendicular to a prime p in S_{n} if its meet P with a fixed prime a (said to be at infinity in E_{n}) is pole of p (or of common secondum of p, a) for a fixed quadric W (called an Absolute or a sphere at infinity) in a. Thus the projective equivalent of the porism and Theorems I-3 takes the shape of the following

Porism P. In S_{n} if $x_{1}^{i}(x=a, b ; i=0, \cdots, n)$ are 2 sets of joins of 2 general sets $\left(\mathrm{X}^{\prime}\right)$ of points $\mathrm{X}_{i}^{\prime}(\mathrm{X}=\mathrm{A}, \mathrm{B})$ on a prime p to its pole P for a quadric W (a pair of points $\mathrm{W}^{\prime \prime}, \mathrm{W}^{\prime \prime \prime}$ in S_{2} and a conic W in S_{3}) in a fixed prime a, (X) a pair of simplexes (triangles in S_{2} and tetrahedra in S_{3}) with vertices X_{i} on x_{1}^{i} and faces (sides in S_{2}) x^{i} opposite X_{i} and $\mathrm{X}_{i}^{\prime \prime}$ are poles of x^{i} in a for W such that the $n+1$ joins $\mathrm{A}_{i}^{\prime} \mathrm{B}_{i}^{\prime \prime}$ (i) concur at a point G , or, (ii) form an associated set (if $2<n$), it is true for every member of the $(n+1)$-parameter family $f(\mathrm{~B})$ of simplexes like (B), and the $n+\mathrm{I}$ joins $\mathrm{B}_{i}^{\prime} \mathrm{A}_{i}^{\prime \prime}$ behave the same way for every member of the $(n+\mathrm{I})$-parameter family $f(\mathrm{~A})$ of simplexes like (A) if and only if in S_{2} the 2 cross ratios $\left(\mathrm{X}_{0}^{\prime} \mathrm{X}_{1}^{\prime}, \mathrm{X}_{2}^{\prime} \mathrm{A}^{\prime}\right)$ on the line p are equal with A^{\prime} as the common point of the 2 lines $a=\mathrm{W}^{\prime \prime} \mathrm{W}^{\prime \prime}$ and p, and in $\mathrm{S}_{n}(2<n)\left(\mathrm{X}^{\prime}\right)$ are 'projectively' (i) orthological such the each join $\mathrm{A}_{i}^{\prime} \mathrm{A}_{j}^{\prime}$ is conjugate to $(n-2)$-flat $\left(b_{n-2}^{i j}\right)^{\prime}$ determined by the $n-\mathrm{I}$ points $\mathrm{B}_{k}^{\prime}(k \neq i, j)$ for W , or, (ii) skew orthological such that the $n+\mathrm{I}$ pairs of corresponding ($n-1$)-simplexes formed of (X^{\prime}) are projectively skew orthological [14] in the sense that the $n+1$ joins of vertices of one simplex in a pair to the poles for W of the corresponding faces of the other form an associated set.

Proof. It is left as an exercise.

4. An Extension of Porism

It is interesting to note that the Porism P is true even if the quadric W in a prime a is replaced by a hyperquadric in $\mathrm{S}_{n}\left(\mathrm{~W}^{\prime \prime}, \mathrm{W}^{\prime \prime \prime}\right.$ by a conic and conic W by a quadric) with certain noteworthy modifications in S_{2} only as enunciated in the following

Theorem i P. In S_{2} if P is the pole of a line p for a conic W , (X ') 2 triads of points $\mathrm{X}_{i}^{\prime}(\mathrm{X}=\mathrm{A}, \mathrm{B} ; i=0, \mathrm{I}, 2)$ on $p,(\mathrm{X})$ a pair of triangles with vertices X_{i} on the joins $x_{1}^{i}=\mathrm{PX}_{i}^{\prime}$ and $\left(\mathrm{X}^{\prime \prime}\right)$ their polar triangles for W such that the 3 joins $\mathrm{A}_{i}^{\prime} \mathrm{B}_{i}^{\prime \prime}$ concur at a point G , then it is true for any member of the 3-parameter family $f(\mathrm{~B})$ of triangles like (B), and the 3 joins $\mathrm{B}_{i}^{\prime} \mathrm{A}_{i}^{\prime \prime}$ concur at a point G^{\prime} for any member of the 3-parameter family $f(\mathrm{~A})$ of triangles like (A) if and only if there exist the quadrangutar set $\mathrm{Q}\left(\mathrm{A}_{0}^{\prime} \mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime}, \mathrm{B}_{0}^{\prime \prime \prime} \mathrm{B}_{1}^{\prime \prime \prime} \mathrm{B}_{2}^{\prime \prime \prime}\right)$ leading to $\mathrm{Q}\left(\mathrm{B}_{0}^{\prime} \mathrm{B}_{1}^{\prime} \mathrm{B}_{2}^{\prime}, \mathrm{A}_{0}^{\prime \prime \prime} \mathrm{A}_{1}^{\prime \prime \prime} \mathrm{A}_{2}^{\prime \prime}\right)$ where $\mathrm{X}_{i}^{\prime \prime \prime}$ are poles of PX_{i}^{\prime} for W .

Proof. $\mathrm{X}_{i}^{\prime \prime \prime}$ are obviously on p and on the sides $\mathrm{X}_{j}^{\prime \prime} \mathrm{X}_{k}^{\prime \prime}(j, k=0, \mathrm{I}, 2)$ of the triangles ($\mathrm{X}^{\prime \prime}$) as shown in fig. I P giving rise to $\mathrm{Q}\left(\mathrm{A}_{0}^{\prime} \mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime}, \mathrm{B}_{0}^{\prime \prime \prime} \mathrm{B}_{1}^{\prime \prime \prime} \mathrm{B}_{2}^{\prime \prime \prime}\right)$ on p by the quadrangle $\mathrm{GB}_{0}^{\prime \prime} \mathrm{B}_{1}^{\prime \prime} \mathrm{B}_{2}^{\prime \prime}$ ([3], p. 240). Again this quadrangular set is projective to the set of conjugates on p of the 6 points there for W ([I6], p. I 19) leading to another such set $\mathrm{Q}\left(\mathrm{A}_{0}^{\prime \prime \prime} \mathrm{A}_{1}^{\prime \prime \prime} \mathrm{A}_{2}^{\prime \prime \prime}, \mathrm{B}_{0}^{\prime} \mathrm{B}_{1}^{\prime} \mathrm{B}_{2}^{\prime}\right)$ on p and that is equivalent to $Q\left(B_{0}^{\prime} B_{1}^{\prime} B_{2}^{\prime}, A_{0}^{\prime \prime \prime} A_{1}^{\prime \prime \prime} A_{2}^{\prime \prime \prime}\right)$ in any Pappian plane ([3], p. 24I). Consequently $\mathrm{B}_{i}^{\prime} \mathrm{A}_{i}^{\prime \prime}$ must concur at a point G^{\prime} to form a quadrangle $\mathrm{G}^{\prime} \mathrm{A}_{0}^{\prime \prime} \mathrm{A}_{1}^{\prime \prime} \mathrm{A}_{2}^{\prime \prime}$ to give us the last quadrangular set.

5. An Immediate Deduction

Any 2 simplexes are said to be orthological or skew orthological according as the normals from the vertices of one to the corresponding faces of the other in a correspondence concur or form an associated set in $\mathrm{E}_{n-1}(2<n)$ such that an orthocentric or orthogonal simplex (whose altitudes concur at its orthocentre H) is always orthological to itself, or, an orthocentric group ([2], p. 320; [7]; [10]) or set formed of H and its vertices is always orthological to itself, and any set of $n+1$ general points is always skew orthological to itself. For the altitudes of a general simplex form an associated set ([4]; [8]; [12]). Thus the condition of the porism in Theorems 2-3 is automatically satisfied if $\left(\mathrm{A}^{\prime}\right)=\left(\mathrm{B}^{\prime}\right)$ and therefore $f(\mathrm{~A})=f(\mathrm{~B})$ leading to the following.

Theorem G (cf. [14]). If $x_{1}^{i}(i=0, \cdots, n)$ are normals to a prime p from the points X_{i}^{\prime} of a set (X^{\prime}) on p in $\mathrm{E}_{n}(2<n)$ and (X) any simplex with vertices X_{i} on x_{1}^{i} and faces x^{i} opposite X_{i}, the $n+\mathrm{I}$ normals from X_{i}^{\prime} to x^{i} form an associated set that reduces to a concurrent one if and only if $\left(\mathrm{X}^{\prime}\right)$ is orthocentric.

On identification of $\left(\mathrm{A}^{\prime}\right)$ with $\left(\mathrm{B}^{\prime}\right)$ and therefore of $f(\mathrm{~A})$ with $f(\mathrm{~B})$ in Theorem I we have the following well known.

Theorem O (cf. [6]). If $x_{1}^{i}(i=0,1,2)$ are perpendiculars to a line p from a triad of points X_{i}^{\prime} on p in E_{2} and (X) any triangle with vertices X_{i} on x_{1}^{i} and sides x^{i} opposite X_{i}, the 3 perpendiculars from X_{i}^{\prime} to x^{i} concur at a point o, called the orthopole ([2a], p. 287) of p for (X).

References

[I] H. F. Baker (1940) - Principles of Geometry, Vol. IV. (Cambridge).
[2] N. A. Court (1964) - Modern Pure Solid Geometry. (Chelsea).
[2 a] N. A. Court (1952) - College Geometry. (Barnes and Noble, N.Y.).
[3] H. S. M. Coxeter (1969) - Introduction to Geometry. (Wiley).
[4] L. Gerber (1975) - Associated and Perspective Simplexes, "Transac. Amer. Math. Soc.", 2OI, 43-55.
[5] L. Gerber (1975) - Personal letter dated April 22.
[6] S. R. Mandan (1946) - Extension of Orthopole and Ortholine, "J. Lahore Phil. Soc.», 8, 60-6I.
[7] S. R. MANDAN (1958) - Semi-orthocentric and Orthogonal Simplexes in 4-Space, «Supplement Bul. Cal. Math. Soc. y, 50, 21-29.
[8] S. R. Mandan (1958) - Altitudes of A General Simplex in 4-Space, "Supplement Bul. Cal. Math. Soc.», 50, 30-35.
[9] S. R. Mandan (1959) - Polarity for A Quadric in An n-space, "Rev. Fac. Scs. Uni, Istanbul», A 24, 21-40.
[10] S. R. Mandan (1962) - Altitudes of A Simplex in n-space, "J. Austral. Math. Soc.», 5, 403-24.
[II] S. R. Mandan (1965) - Pascal's Theorem in n-space, "J. Austral. Math. Soc.», 5, 40I-8.
[12] S. R. Mandan (1965) - Altitudes of A General n-simplex, "J. Austral. Math. Soc.", 5, 409-I 5 .
[13] S. R. Mandan (1965) - Concurrent Lines Related to 2 Plane Triangles, «J. Sc. and Engg. Res.», 9, 47-50.
[14] S. R. Mandan - Skew Orthological Perspective Simplexes (to appear).
[15] B. Segre (1961) - Lectures on Modern Geometry. (Roma).
[16] A. Seidenberg (1962) - Projective Geometry. (Nostrand).

[^0]: Riassunto. - Vengono stabiliti vari risultati inerenti ad una coppia di $(n+1)$-simplessi riferrti fra loro e situati in uno spazio euclideo o proiettivo ad n dimensioni.

