ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

H.L. CHOW

On Ideals In (m+1)-semigroups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **61** (1976), n.5, p. 318–322.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_5_318_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Algebra. — On Ideals In (m + 1)-semigroups. Nota di H. L. Chow, presentata ^(*) dal Socio G. ZAPPA.

RIASSUNTO. — L'Autore, ricollegandosi alle ricerche di F.M. Sioson, studia gli ideali minimali e massimali in un (m + 1)-semigruppo.

I. INTRODUCTION

An (m + 1)-semigroup is an algebraic system with one (m + 1)-ary operation from $S \times \cdots \times S$ to S such that the associative law

$$(x_1 \cdots x_{m+1}) x_{m+2} \cdots x_{2m+1} = x_1 (x_2 \cdots x_{m+2}) \cdots x_{2m+1} = \cdots$$
$$= x_1 \cdots x_m (x_{m+1} \cdots x_{2m+1})$$

holds for $x_1, \dots, x_{2m+1} \in S$. Trivially, S is an ordinary semigroup if m = I. A non-empty subset I of S is called an (i + I)-*ideal* if $S^i IS^{m-i} \subset I$, i = 0, I, \dots, m . By convention, $S^0 IS^m = IS^m$ and $S^m IS^0 = S^m I$. The subset I is said to be an *ideal* of S if it is an (i + I)-ideal for each $i = 0, I, \dots, m$. In [3], Sioson studied the ideals in (m + I)-semigroups and obtained various results which are extensions of those in ordinary semigroups. The present paper may be regarded as a sequel to [3].

In what follows S will denote an (m + 1)-semigroup, and we shall investigate minimal ideals and maximal (proper) ideals in S. We introduce in § 2 then the notion of a para-ideal in S, which is a 1-ideal and (m + 1)-ideal; we show that if S has a minimal 1-ideal or a minimal (m + 1)-ideal, S must have a minimal para-ideal which turns out to be a minimal ideal and also a minimal (i + 1)-ideal for $i = 1, \dots, m - 1$. In § 3, maximal ideals are considered, extending some results in [1] and [2].

2. MINIMAL IDEALS

DEFINITION. A subset I of is termed a *para-ideal* of S if I is both a 1-ideal and (m + 1)-ideal, i.e. $IS^m \subset I$ and $S^m I \subset I$.

It is clear that any two para-ideals must intersect; hence S can have at most one minimal para-ideal which is clearly the intersection of all para-ideals of S.

(*) Nella seduta del 13 novembre 1976.

2.1. THEOREM. Suppose S has a minimal 1-ideal R.

(i) If R_1 is a minimal 1-ideal of S and $R_1 \cap R \neq \varphi$, then $R_1 = R$.

(ii) $\mathbf{R} = aa_2 \cdots a_m \mathbf{R}$ for $a \in \mathbf{R}$, $a_2, \cdots, a_m \in \mathbf{S}$.

(iii) S has a minimal para-ideal P which is the union of all minimal 1-ideals of S.

Proof. (i) Since $R_1 \cap R$ is a 1-ideal contained in R_1 and R, we have $R_1 = R_1 \cap R = R$.

(ii) Clearly $aa_2 \cdots a_m R \subset R$. Since $(aa_2 \cdots a_m R) S^m = aa_2 \cdots a_m (RS^m) \subset aa_2 \cdots a_m R$, i.e. $aa_2 \cdots a_m R$ is a 1-ideal of S, it follows that $aa_2 \cdots a_m R = R$.

(iii) For any para-ideal I of S, $RI^m \subset R$. Moreover, RI^m is a 1-ideal of S since $(RI^m) S^m = RI^{m-1} (IS^m) \subset RI^{m-1} I = RI^m$; hence $RI^m = R$. That $I \supset RI^m = R$ implies that the minimal para-ideal P of S exists, with $P \supset R$.

Now take $a_1 \cdots a_m \in S$; then $a_1 \cdots a_m R$ is a 1-ideal. Suppose $a_1 \cdots a_m R$ is not minimal, i.e. there is a 1-ideal R^* properly contained in $a_1 \cdots a_m R$. Let $A = R \cap \{x \in S : a_1 \cdots a_m x \in R^*\}$, and it is not difficult to check that A is a 1-ideal properly contained in R. This contradiction therefore shows that $a_1 \cdots a_m R$ is a minimal 1-ideal of S. Consequently $S^m R$ is the union of all minimal 1-ideals of S, whence $S^m R \subset P$. On the other hand, since $S^m R$ is a para-ideal of S, we get $S^m R \supset P$, and the result now follows.

It can be shown, in a similar manner, that the preceding theorem also holds, if 1-ideals are replaced by (m + 1)-ideals.

DEFINITION. The (m + 1)-semigroup S is called an (m + 1)-group provided that, if a and any m of the symbols x_1, \dots, x_{m+1} are specified as elements of S, the equation $x_1 \dots x_{m+1} = a$ has at least one solution in S for the remaining symbol.

2.2. THEOREM. Let R be a minimal 1-ideal of S and L a minimal (m + 1)-ideal of S. Then $R \cap L$ is an (m + 1)-group.

Proof. First we note that $\mathbb{R} \cap L \neq \varphi$ since it contains $\mathbb{RS}^{m-1}L$. Take $a_1, \dots, a_m \in \mathbb{R} \cap L$ and we see that $a_1 \dots a_m (\mathbb{R} \cap L) \subset \mathbb{R} \cap L$. Suppose $a_1 \dots a_m (\mathbb{R} \cap L) \neq \mathbb{R} \cap L$. Let \mathscr{L} denote the set of all minimal 1-ideals of S; we then have $\bigcup {\mathbb{R} \cap L^* : L^* \in \mathscr{L}} \neq \bigcup {a_1 \dots a_m (\mathbb{R} \cap L^*) : L^* \in \mathscr{L}}$, giving $\mathbb{R} \neq a_1 \dots a_m \mathbb{R}$, a contradiction. Thus $\mathbb{R} \cap L = a_1 \dots a_m (\mathbb{R} \cap L)$ and, similarly, $\mathbb{R} \cap L = (\mathbb{R} \cap L) a_1 \dots a_m$. This together with Theorem 5.8 of [3] implies that $\mathbb{R} \cap L$ is an (m + 1)-group.

We may have more than one minimal 1-ideal and minimal (m + 1)-ideal in S; but, as the next result shows, we can have at most one minimal (i + 1)-ideal for $i = 1, \dots, m - 1$ and at most one minimal ideal in S.

2.3. LEMMA. For each $i = 1, \dots, m-1$, any two (i + 1)-ideals in S intersect. Hence, any two ideals of S intersect.

Proof. Let I, J be (i + 1)-ideals for some $i = 1, \dots, m - 1$. Then $S^{i}(IS^{m-1} J) S^{m-i} \subset S^{i}(IS^{m}) S^{m-i} = S^{i} I (S^{m+1}) S^{m-i-1} \subset S^{i} ISS^{m-i-1} = S^{i} IS^{m-i} \subset I$, and, similarly, $S^{i}(IS^{m-1} J) S^{m-i} \subset J$. So $I \cap J \neq \varphi$, completing the proof.

2.4. THEOREM. If S has a minimal 1-ideal or a minimal (m + 1)-ideal, then the minimal ideal and minimal (i+1)-ideals for $i = 1, \dots, m - 1$, all exist and are equal to each other.

Proof. Let I be an (i + 1)-ideal for some $i = 1, \dots, m - 1$, i.e. $S^i IS^{m-i} \subset I$. Observe that $S^i IS^{m-i}$ is a para-ideal since

$$(\mathbf{S}^{i} \mathbf{I} \mathbf{S}^{m-i}) \mathbf{S}^{m} = \mathbf{S}^{i} \mathbf{I} \mathbf{S}^{m-i-1} (\mathbf{S}^{m+1}) \subset \mathbf{S}^{i} \mathbf{I} \mathbf{S}^{m-i-1} \mathbf{S} = \mathbf{S}^{i} \mathbf{I} \mathbf{S}^{m-i}$$

and similarly S^m ($S^i IS^{m-i}$) $\subset S^i IS^{m-i}$. By virtue of Theorem 2.2 or the remark after it, S has a minimal para-ideal P. Therefore $P \subset S^i IS^{m-i} \subset I$; as a consequence, the minimal (i + 1)-ideal K_{i+1} which is the intersection of all (i + 1)ideals in S must exist and $K_{i+1} \supset P$. On the other hand, since

$$P^{m+1} = P, \quad \text{we have} \quad S^i PS^{m-i} = S^i (P^{m+1}) S^{m-i} = S^i (P^{m-i} P P^i) S^{m-i}$$
$$= (S^i P^{m-i} P) P^i S^{m-i} \subset P P^i S^{m-i} \subset P,$$

i.e. P is an (i + 1)-ideal, whence $P \supset K_{i+1}$. Accordingly $P = K_{i+1}$.

Now let J be an ideal; then J is a para-ideal and so contains P. Hence the minimal ideal K of S exists and $K \supset P$. But P is obviously an ideal since it is an (i + 1)-ideal for $i = 0, 1, \dots, m$; hence P = K. The proof is completed.

Remark. It was shown in [3, Theorem 5.25] that, if S is a *compact* topological semigroup, then the minimal 1-ideals and minimal (m + 1)-ideals of S must exist. In view of Theorem 2.4, we deduce that the minimal ideal and minimal (i + 1)-ideals for $i = 1, \dots, m - 1$ also exist and are all equal. (Furthermore, they are closed). Thus, Theorem 5.25 of [3] can be improved.

DEFINITION. An (m+1)-semigroup S is said to be *commutative* if for any $x_1, \dots, x_{m+1} \in S$ and each permutation f of $1, \dots, m+1$, we have $x_1 \cdots x_{m+1} = x_{f(1)} \cdots x_{f(m+1)}$.

It is trivial that an (i + 1)-ideal for some $i = 0, 1, \dots, m$ is an ideal, when S is commutative.

2.5. THEOREM. Suppose the minimal ideal K of S exists. If S is commutative, then K is an (m + 1)-group.

Proof. Take $x \in K$; then $K^m x \subset K$. It is evident that $K^m x$ is an ideal of S so that $K^m x \supset K$. Hence $K^m x = K$ and therefore $xK^m = K$. That K is an (m + 1)-group follows from Theorem 5.8 of [3].

3. MAXIMAL IDEALS

A maximal ideal M of S is a proper ideal, not properly contained in any proper ideals of S; we can characterize M by considering the quotient (m + 1)-semigroup S/M. Just like the ordinary semigroup case, the quotient S/M is defined as the (m + 1)-semigroup which consists of the set S M together with zero element o (i.e. $(S/M)^i \circ (S/M)^{m-i} = \{0\}$ for $i = 0, 1, \dots, m$); see [3, p. 166].

3.1. THEOREM. An ideal M of S is maximal if and only if S|M contains no proper ideals except $\{0\}$.

Proof. The result follows from the observation that any ideal in S containing M corresponds with an ideal in S/M.

Suppose $a \in S \setminus S^{m+1}$; then $S \setminus \{a\}$ is obviously a maximal ideal of S. Following Grillet [1], we call such maximal ideals *trivial*.

3.2. THEOREM. Let M be a maximal ideal of S. Then M is not trivial if and only if M is a prime ideal, i.e. for ideals I_1, \dots, I_{m+1} of S, $I_1 \dots I_{m+1} \subset M$ implies $I_j \subset M$ for some $j = 1, \dots, m+1$.

Proof. We model on the proof of [2, Theorem 1] to obtain the result. First assume the maximal ideal M is prime. If M is trivial, i.e. $M = S \setminus \{a\}$ for some $a \in S \setminus S^{m+1}$, then $M \supset S^{m+1}$, implying that $M \supset S$ which is contradictory. Conversely, let M be a nontrivial maximal ideal. Let $A = S \setminus M$; then $S^{m+1} \supset A$ (for, if there exists $b \in A \setminus S^{m+1}$, then $S \setminus \{b\}$ is a maximal ideal containing M, so that $M = S \setminus \{b\}$, a contadiction). Therefore $A \subset S^{m+1} = (M \cup A)^{m+1} \subset M \cup A^{m+1}$, whence $A \subset A^{m+1}$. Now supposer M is not prime, i.e. there are ideals I_1, \dots, I_{m+1} with $I_1 \cdots I_{m+1} \subset M$ but $J_j \not\subset M$ for all $j = 1, \dots, m+1$. It follows that $J_j \cup M = S \supset A$, giving $J_j \supset A$. So $A \subset A^{m+1} \subset I_1 \cdots I_{m+1} \subset M$, a contradiction, and the theorem is proved.

The next result is obvious.

3.3. COROLLARY. Every maximal ideal is prime if and only if $S = S^{m+1}$

Assume that S has maximal ideals and denote by M^* the intersection of all maximal ideals in S. Evidently $M^* \subset S^{m+1}$. On the other hand, M^* is non-empty as the theorem below shows.

3.4. THEOREM. Let $\{M_{\alpha} : \alpha \in \Lambda\}$ be the family of all maximal ideals in S. Let $A_{\alpha} = S \setminus M_{\alpha}$ and $M^* = \bigcap M_{\alpha}$. Then

- (i) $A_{\alpha} \cap A_{\beta} = \varphi$ for $\alpha \neq \beta$.
- (ii) $S = (\bigcup A_{\alpha}) \cup M^*$.
- $(iii) \quad A_{\alpha} \subset \, M_{\gamma} \quad \textit{for} \quad \gamma \neq \alpha \; .$
- (iv) If I is an ideal of S and $I \cap A_{\alpha} \neq \phi$, then $I \supset A_{\alpha}$.
- (v) For $\alpha \neq \beta$, $A_{\alpha} A_{\beta} S^{m-1} \subset M^*$.

Proof. We obtain the result by applying a similar argument to that given in [2, Theorem 2].

Finally, we examine maximal (i + 1)-ideals for i = 0, $1, \dots, m$, and let M_{i+1}^* denote the intersection of all maximal (i + 1)-ideals in S. Then (i)-(iv) of the previous theorem are still true for maximal (i + 1)-ideals, while M_{i+1}^* may be empty. However, we shall see that $M_{i+1}^* \neq \varphi$ if $S \neq S^{m+1}$, as a direct consequence of the following theorem.

3.5. THEOREM. $S^i (S \setminus S^{m+1}) S^{m-i} \subset M^*_{i+1} \subset S^{m+1}, i = 0, 1, \dots, m$.

Proof. The result is trivial if $S = S^{m+1}$. Now let $S \neq S^{m+1}$; then $M_{i+1}^* \subset S^{m+1}$, since $S \setminus \{a\}$ is a maximal (i + 1)-ideal for each $a \in S \setminus S^{m+1}$. To prove the other inclusion, take $x_1, \dots, x_m \in S$ and $x \in S \setminus S^{m+1}$; clearly $x_1 \dots x_i x x_{i+1} \dots \dots x_m \in S \setminus \{a\}$ for any $a \in S \setminus S^{m+1}$. Now take any maximal (i + 1)-ideal $M \neq S \setminus \{a\}$ for $a \in S \setminus S^{m+1}$. Then $x \in M$ (for, if $x \notin M$, we would have $M \subset S \setminus \{x\}$, implying that $M = S \setminus \{x\}$ which is contradictory). It follows that $x_1 \dots x_i x x_{i+1} \dots x_m \in S^i MS^{m-i} \subset M$. Thus $S^i (S \setminus S^{m+1}) S^{m-i} \subset M_{i+1}^*$ as required.

References

- P. A. GRILLET (1969) Intersections of maximal ideals in semigroups, «Amer. Math. Monthly», 76, 503-509.
- [2] S. SCHWARZ (1969) Prime ideals and maximal ideals in semigroups, «Czech. Math. J.», 19 (94), 72-79.
- [3] F.M. SIOSON (1965) Ideals in (m + 1)-semigroups, «Ann. Mat. Pura, Appl.», 68, 161-200.