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Calcolo delle probabilità. —  On the theory of weak convergence. 
Nota di W il l ia m  A m a d io , presentata^ dal Corrisp. G. Z a p p a .

RIASSUNTO. — In questa Nota viene sviluppata la teoria della convergenza debole per 
le misure di probabilità definite su un’algebra di Boole. A tal fine viene usata una ben nota 
teoria della rappresentazione per una cr-algebra di Boole B per costruire una corrispondenza 
biunivoca tra una classe #" di funzioni da R  in B e una classe di funzioni a valori reali.

Si usa poi questa corrispondenza per definire j /dp . ove f e  F e p. è una misura definita su B.
B

Infine vengono generalizzati al caso delle misura definite su un’algebra di Boole un teo
rema di Alexandrov sulla convergenza debole e il teorema di Prohorov.

i . I n tr o d u c tio n

In this paper, we develop the theory of weak convergence for probability 
measures defined on a Boolean algebra. The development of probability 
theory within the framework of a Boolean algebra has been suggested by 
Halmos (1944), Kolmogorov (1948) and Segal (1954), and the most extensive 
effort in this area has been Kappos (1969). It is our purpose here to generalize 
and extend the results of Sikorski (1949 b) on Boolean integration theory 
to the point where a definition of weak convergence can be formulated and 
to prove several important results on weak convergence in a Boolean algebra. 
In doing so, we shall also show that the expectation of a random variable, 
as defined in Kappos (1969), may be obtained using our integration procedure.

To be specific, Section 2 utilizes a well known representation theorem 
for a Boolean, cr-algebra, B, to produce a one to one correspondence between 
a class, #', of functions /  : R -> B and a class, of real valued point func
tions. The class #" contains, as a subclass, the a-homomorphisms of the 
Borei sets into B which were used in Sikorski (1949 b). The section concludes 
with an application of this correspondence to the mathematical theory of 
quantum mechanics.

Section 3‘ defines j'fdyi  f o r / e # '  and (x a contably additive measure
B

defined on B. As was mentioned, this construction is a generalization of 
Sikorski (1949 b). At this point, we are also able to obtain the expectation 
of a random variable as defined in Kappos (1969).

In Section 4, we consider L, a lattice contained in the Boolean cr-algebra, 
B. We begin by defining L-continuity for functions belonging to and (*)

(*) Nella seduta delP8 maggio 1976.
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proving that continuity is preserved by the one to one correspondence of 
Section 2. We then show that several of the topological concepts which were 
generalized to a closure algebra in Sikorski (1949 a) are preserved by the 
representation of Section 2 and conclude the paper by generalizing a theorem 
of Alexandrov (1943) on weak convergence and Prohorov’s Theorem to mea
sures defined on a Boolean algebra.

2. The classes J ^ and

In Sikorski (1949 b), the author gives a definition of the Lebesgue integral 
in a Boolean cr-algebra, B. The two results which are necessary for this con
struction are the following:

I (Loomis (1947) and Sikorski (1948)). Let B a Boolean cr-algebra, 
then there exists a quotient a-algebra X/I (of a point set y) and a cr-isomor- 
phism S such that S maps B into X/I.

II (Sikorski (1949 c)). For each o,-homomorphism of the Borei sets 
of the real line into B, there exists an X-measurable function F defined on y 
such that / (A )  = S " lo F"1(A) for every Borei set A.

If [JL is a countably additive measure on B, then |*/dfji is defined for

every /  above by j /d p i  =  J  F d^-S -1 where F corresponds to /  in II. 
b x

If we are to develop an integration theory which is broad enough to be 
consistent with the definition of expectation given in Kappos (1969) and to 
yield a theory of weak convergenge, then we must generalize the above 
result to the class of functions JP =  { / :  R-> B s.t./(oc) f as a f  , V f  (oc) =

a
A /( « )  =  0 and A / ( ß )  =  f ( oc)}- The class &  clearly contains the
a ß>a

(i-homomorphisms of the Borei sets into B as a subclass.

THEOREM 2.1. Given f e  define F : y~> R by F (x) =  inf {a s.t. 
x e  So/(a)}, then F“1 (— 00 , a] =  So /(a) fo r  every aS  R.

Proof. If x e  S ° /(a ) , then F (x) <  a by definition and we have S® /(a)Ç  
ç  F -1 (— 00 , a].

If F_1 (— 00 , a], then F (x) <  oc, i.e. inf {ß s.t. j e S o / ( ß ) }  < a .
If inf {ß s.t. x e  S of (ß)} <  a, then S ° /(ß ) for some ß <  a which implies
that x e  S©/(a) by property 1 of JL If inf {ß s.t. x e  So/(ß )}  =  a ,  then

S °fi (ß) for ß >  a. Therefore, x e  Q  S©/(ß) =  S ° /(a )  by property 4 of
3>a

JF. So, S o /(a ) E F“1 (•— 00 , a]. This completes the proof.
Let =  {F : y  R s.t. F “ 1 (— 00 , a] e S (B)}, then given F e it 

is easily shown that / :  R -> B defined by /  (a) =  S ^ o F ”1 (— oo , a] G
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We continue by showing that the mapping defined in Theorem 2.1 is a 
one to one correspondence between IF and F 1 and that it is equal to the map
ping defined in the paragraph following Theorem 2.1.

Lemma 2.1. Suppose f  e F  corresponds to F G F ! by Theorem 2.1, and 
F (x) =  ß fo r  some x e  x, then x  e S ° /(ß ) .

Proof. If ß =  F (x) — inf {a s.t. x e  S o f  (a)}, then, by the monotonicity

of So/, we have x e  P )S o /(a )  =  S l  A / ( a ) V  Therefore, S ° /(ß )  by 
property 4 of F . ß<a ' ß<a '

THEOREM 2.2. / .  corresponding to F (x) =  inf. {a s.t. x  G Sc/  (a)} is a 
one to one mapping from F  into F ’.

Proof. Suppose f x corresponds to F1 and / 2 corresponds to F2 with f 1 f z f 2) 

then for some a , So/j (a) / S o / 2 (a). So, for example, there exists ^ e X / I  
such that x e  S /  (a) but x  ^ S ° /2 (a) which implies that Fx (x) =  inf {ß s.t. 
x  z S f x (ß)} <  a but, by Lemma 2.1, F2 (x) >  a. Therefore, F1 f=- F2, and 
the proof is complete.

Given F G F * , define / ( a )  =  S~1oF~1 (— 00 , a]. We know that f e  F i 
and, by Theorem 2.1, /  corresponds to F (x) =  inf {a s.t. x e  So/(a)} =  inf 
{a s.t. x e  S o S ^ o F “1 (■— 00 , a]} =  inf {a s.t. x e  F-1 (— 00 , a] — F (x). So, 
the mapping of Theorem 2.1 is onto F '  and we have shown that it is a one to 
one correspondence.

Given f e  F , define F (x) =  inf {a s.t. x e  So/(a)}. We know that F G F ’ 
and, by the remark following Theorem 2.1, F corresponds to / ( a )  ■= 
— S”1oF_1(— 00 , a]. So, S 0 / (a) =  F-1 (— 00 , a]. But by Theorem 2.1, 
S ° /(a )  = ' F“1 (■— 00 , a]. So, / = /  and the mapping of the paragraph follo
wing Theorem 2.1 is onto F  and is, therefore, a one to one correspondence. 
The above remarks also make it clear that the two correspondences are the 
same, and so, from here on, we will write/  <-» F if and only iff  and F correspond 
under the mappings discussed above.

An important result in the mathematical theory of quantum mechanics 
is that to every self adjoint operator, T, on a Hilbert space there corresponds 
a spectral measure A -^E  (A) defined on the Borei sets of the real line such 
that E ((— 00 , a]) — E (a) where (E  (a)} =  the resolution of the identity 
associated with T. (Jauch (1968)). The usual proof of this theorem is difficult 
(Akhiezer and Glazman (1963)), but we shall show that the result is an easy 
consequence of the one to one correspondence established above.

It is clear that if we consider, for a <  ß , E (a) V E (ß) =  E (ß) and 
E (a)A E  (ß) =  E (a), then L =  (E (a)} is a distributive lattice. So, there 
exists a ^-isomorphism S mapping <j(L), the Boolean cr-algebra generated by 
L into X/I, a quotient a-algebra of a point set x* g (L) will contain only ortho
gonal projections because any family of commuting projections which contains 
L and is closed under countable unions and intersections is a Boolean cr-al- 
gebra (Jauch (1968)) and therefore contains a (L).
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Consider /  : {(— 00 , a]} a (L) defined by /(■— 00 , a] =  /  (a) =  E (a). 
Since E (a) <  E (ß) for a <  ß , / ( a )  t  • Since there exists M e  R such that 
E (a) = . I for a > M  , y / ( a )  =  e (the identity element of <7 (L)). Since there

a
exists m e  R such that E (a) =  o for a <  m , A /( a )  =  0 . Finally, since

a
s — lim E (ß) — E (a ), A /  (ß) =  / ( a ) .  So, f e  F y and by Theorem 2.1, there

ß->a+ ß>a
exists F : x -> R such that E (a) =  /  (a) =  S~1oF~1 (•— 00 , a). We know that 
F-1 (— 00 , a] e S (er (L)) for every a. Therefore, since X is a cr-algebra, 
F-1 (A) e S (or (L)) for any Borei set A, and we may consider S“1 ° F-1 as a 
mapping of the Borei sets of the real line into a (L).

Now, S"1o F_1(— 0 0 ,0 0 )  =  I since S is a cr-isomorphism, and if 
n A;* =  0 ,  then F“1 (Aÿ) fl F (Aj) =  0

=» S -1 o F -1 (Aj)  <  [S-1 o F-i (A,)]c

=> S-1 ° F-1 (AA J_ S-1 © F (Aj). So, if Aj f i  A j =  0  for i ^ j ,  then
( 00 \  00 co

( J  A i ) =  v  S -1 o F -1 (Ai) =  S  S -1° F -1 (Ai) since S-1 o F"1 (At-) 1
i~1 / 1

S -1 o F“1 (A^). Therefore, S_1oF_1 is the required spectral measure defined on 
all Borei sets.

3. The Integral

As is pointed out in the introduction to Sikorski (1949 b)), the difficulty 
in the generalization of the theory of the integral to the case of a Boolean 
algebra lies in the necessity of replacing the notion of real point function. 
The definition of random variable on a Boolean algebra given in Kappos 
O969) presents a solution to this problem, and, as we shall see, the class IF 
contains the inverse images of these random variables.

I f  / e  F  and [x is a countably additive measure defined on B, define

F dfjioS“1 where /<-> F. From here on, we will drop the sub-
B x
scripts B and x-

We shall now explore the consequences of our results in terms of Kappos 
(1969), Here the basic framework is a probability algebra, (B , p), where 
B is a Boolean ^-algebra and p is a strictly positive probability measure. 
A simple random variable, X, is one which is defined on a collection of elements

n
{ai e B s.t. i  == I , 2 ,• • *, n} with V =  e and ai[\d j = 0  for i ^  j .

i=i
Such 9. collection is called an experiement. The function is then defined by 
X (a{) =  oil f e  R and the expectation of X is defined by

n
E (X) = 2  «</(«<>•

i—1
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If we define X "1 (oc) = V a%, then clearly
X(«/)<a

e , if <za <  a

i i v

IV

\ i V Cl 2 > if a2 <  a <  a3

IV

«1, if oq <  a <  a2

IV

0 - if a <  oq.

So X-1 is a simple function belonging to 3?  and

/ n l i  i —1 \  n

X - ' d p ^  anti V a k — V aA =2> <^ (*< ) =  E(X).
i = l  \ k = l  k—1 /

One can show that if X is a random variable defined on a countable 
experiement (X is called an elementary r.v.), then, if X posseses an expec
tation oo ~

E (X )defg Ki/ W  =  J X -  dp.

Finally in Kappos (1969), any r.v. X is said to possess an expectation if 
and only if there exists a sequence X< of elementary random variables posses
sing expectation such that X ^ X .  E (X) is then defined to be lim E (X*).

<
Since there is no underlying experiement to work with when one con

siders a non elementary random variable, X, the definition of X-1 (a) must 
be adjusted to

00
X-1 (a) =  A (0 — limi sup x r 1 (oc +  I /«))

n=* 1 

00

=  A (o -— lim inf XF1 (a +  i/n))
n=l

where X /s  belong to the sequence mentioned above. Kappos (1969) points 
out that X”1 (a) is monotone, increasing continuous from the right with 
X“1 (— 00) =  0  and X”1 (-f- °°) =  e. Therefore, X-1 belongs to ^  A t this 
point, one can see that the generalization of Sikorski (1949 b) to the class &  
was critical.

Since X”1 belongs to we know that there exists F e such that 
X“1*-»^. Also, there exist F ^ e J5”' such that F ^ ^ X * “1. So, X“1 (a) —
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=  S“1°F~1(— 00 , a] and X$ 1 (a) — S 1oF^~1(— 00 , a] which implies, by 
the definition of X“1,

00

(*) F"1 (— 00 > a] =  P) lini sup F ^ 1 (— 00 , a +  I /^] =
n = 1 i 

00

=  P) lim inf FF1 (— 00 , a +  I \n\.
n —1

Suppose F (x) =  ß, then x e  F“1 (—  00, ß]. Bu (*), for every n, there exists 
l n such that x e  FF1 (— 00 , ß +  i\n \ for i >  l n .

Clearly, x  $ F-1 (— 00 , ß ■— i/n] which implies by (*),
00

x  $ Q  lim sup FF1 (—  00 , ß ■— I /n +  1 \k\
k —1 i

=> there exists a k such that x  $ lim sup FF1 (— 00 , ß — i \n +  1 \k\ 

=» for i >  some l k , x  $ FF1 (■— 00 , ß •— \ jn  +  1lk]

=» F (x) >  ß —  i In +  I fk >  ß — I /n.

So for i >  m ax ( ln , I*) , ß — i \n  <  F % (x) <  ß +  i \n  for every n 

=> F^ (x) -> F (V), for ali x e y .

Now, if X is an elementary r.v. with F X, then it can be shown that
I X I“1 <-» I F |. So, since X* — X , E (| Xn — X ;. |) <  e for n , k >  N (s)

(Kappos (1969)) which implies | Fn — Fk | d ^ o S - K  e for n , k >  N (e).

Since Fi~->F, we have [ | F*— F | d ^ o S -1->o

=> lim
i

F id ^ o S -1 F d ^ o S “1

=» lim E (Xj) =  J X -!d / 

=» E (X) =  j* X- 1 d/.

4. Weak Convergence.

We are now in a position to reap the rewards of our labors in the prece
ding sections. Let L be any 8-lattice contained in the Boolean cr-albegra. 
(A 8-lattice is one which is closed under countable meets).

Definition 4.1. f e t F  is called L — continuous if and only i f / (a) g L 
and A / ( a — i / / ) cg L  for every a.

n
Recalling that the class &  contains the inverse images of random varia

bles, X, defined on B, we see that the above definiton. requires that 
X”1/ — 00 , a] G L and X”1 [a , 00) g  L, for every a.
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It can be shown that the mapping preserves continuity and bound
edness (Olmsted (1942) p. 171), and so, we make the following definition.

DEFINITION 4.2. If p Xi p  are probability measures defined on B, then we

will say pi~~>p (p i converges weakly to p) if and only if /  dp ^  f  dp for 
every bounded, L-continuous f e  F .

Clearly, J  

j F d * o  S-t

belonging to F * . And since every S (L) continuous function defined on ^ 
belongs to we have p%—-^ p  if and only if p i^ S '1 p o S ”1.

One consequence of the preceding equivalence is the following:

T h e o re m  4.1. p % --^ p  i f  and only i f

(1) lim ^ , (B) =  p  (B);
i

(2) p (ac) <  lim ini p i (ah) fo r  every a e L;
i

(3) P (d) "> lim sup Pi (a) fo r  every a e  L.
i

Proof. p i p  iff p t oS-1 J L * /o S - 1. 

iff. (I) p p S -1 (S (B)) -s - /o S " ' (S (B);

(2) p  ° S-1 (CS (a)) <  lim inf p i ° S“1 (CS («)) for every a e  L
i

(3) (S (a)) >  lim sup ^ S - 1 (S (<2)) for every a e  L. Alexan- 
drov (1943)).

iff (1) lim p i (B) ■= p  (B)

(2) p (ac) <  Ximi’m ip i(a c) for every a e  L

(3) P (a) >  linn sup P% (d) f°r every a e  L.

In preparation for the statement of Prohorov’s Theorem, we will endow 
B with certain structures familiar from topology.

D e f i n i t i o n  4.3. A lattice L is said to be normal if and only if a> 
be  L , a A b =  0 , implies that there exists c  ̂d e  L such that a <~cc , b < d e 
and cc A dc =  0 .

So, suppose that L is a normal 8-lattice with identity such that there 
exists ^ 6  L , i =  I , 2 ,• • • with a — A aik for every L and some sub- 
sequence then since the basis is countable, any meet of elements belonging 
to L m ay be considered as a countable meet and therefore belongs to L since 
L is a 8-lattice. So, if we define {S (a) s.t. a e  L} to be the closed sets of X/I,  
then we have a topology on X/I.

f d p i ~ + J f d p  for every bounded, L-continuous f e F  iff 

F dp o S“1 for every bounded, S (L) continuous function
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Let S (a) , S (b) be closed, then a , be  L. So, there exists c , d e  L such 
that a <  cc , b <. dG and cc A de =  0  which implies that S (a) £  CS (V), 
S (£) £  CS (d) and CS (c )n C S  (J?) =  0 . Therefore, X /I is a normal space.

If a e  L, then <2 =  A <2̂  for some subsequence ih which implies that 
S (a) — A S (^V). So, {S (a^)} is a countable basis for closed sets. Therefore, 
X /I is second countable which implies that X jl is metrizable.

If we assume that A an ^  0  for ane L and an+1 <  a, then S 0
n n

for S (aw) closed, S (^n+i) ^  S (^n). Therefore X/I is a complete metric space. 
Now, let A be a family of measures on B.

Definition 4.4. A is relatively compact if and only if there exists a sub
sequence p i  of A such that p % p  (J> need not be in A).

DEFINITION 4.5. a e  B is said to be compact if and only if for every class 
of open elements a°a(aae L) such that a <  V acat there exists a finite subclass

n a
a \ , • • •, a?n such that a <  V a\ •

i= l

Lem m a 4.1. a is compact in  B i f  and only i f  S (a) is compact in  X/I.  

Proof‘ Straightforward.

D e f i n i t i o n  4.6. A family of probability measures A is tight if and only 
if for every s >  0, there exists compact a& such that p  (ae) >  1 — s for every 
P e A.

T h e o re m  4.2. Let L be as above so that S (B) =  X /I is a complete metric 
space. A  fa m ily  of probability measures, A, on B is relatively compact i f  and  
only i f  A is tight.

Proof. A  is relatively compact if and only if A0S“1 is relatively compact.

I iff AoS“1 is tight since S ( B ) = X / I  is a complete metric space (Va- 
radarajan (1965)).

iff for every s >  o, there exists compact S (as) such th a tpo  S“1 (S (as)) >  
>  I — s for every A °S-1£ A0S“1.

iff p  (ae) >  I — £ for every p e  A;

iff A is tight.

B ib l io g r a p h y

Akhiezer N. I. and GLAZMAN I. M. (1963) -  Theory o f Linear Operators in Hilbert Space, 
Frederick Unger Publishing Co.

AlexAndrov A. D. (1940) -  Additive Set Functions in Abstract Spaces, «Mat. Sb. », 8, 307- 
348; (1941) -  9> 563-628; (1943) -  13, 169-238.

Halmos P. R. (1944) -  The Foundations of Probability, «Amer. Math. Monthly», 31, 497- 
510.



WILLIAM Amadio, On the theory o f weak convergence 2 4 Î

JAUCH J.M . (1968) -  Foundations o f Quantum Mechanics. Addison-Wesley Publishing Co. 
KAPPOS D. A. (1969) -  Probability Algebras and Stochastic Spaces. Academic Press. 
KOLMOGOROV A. N. (1948) -  Algebres de Boole métriques completes, VI. « Zjazd Materna- 

tykow Polskich », 1948. Appendix to «Ann. Soc. Pol. Math. », 20, 21-30.
LOOMIS L. H. (1947) -  On the representation of a -complete Boolean algebras, « Bull. Am.

Math. Soc. », 53, 757-76o.
Olmsted J.M . H. (1942) -  Lebesgue Theory on a Boolean Algebra, «Trans. Am. Math. 

Soc.», 5J, 164-193.
SEGAL I. E. (1954) -  Abstract probability spaces and a theorem of Kolmogorov, «Amer. J.

Math.», 76, 721-732.
SlKORSKl R. (1949) -  Closure Algebras, « Fund. Math. », 36, 165-206.
SlKORSKl R. (1949) -  The Integral in a Boolean Algebra, «Coll. Math.», 2, 20-26. 
SlKORSKl R. (1949) -  On the inducing of homomorphisms by mappings, «Fund. Math. », 36, 

7-22.
V arad a ra jan  V. S. (1965) -  Measures on Topological Spaces, «Amer. Math. Soc. Trans

lations», 48, 161-228.

16. — RENDICONTI 1976, voi. LXI, fase. 3-4.


