Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Andrea Schiaffino

A compactness method for a class of semi-linear Volterra integro-differential equations in Banach spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 61 (1976), n.3-4, p. 222-228.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_61_3-4_222_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni funzionali. - A compactness method for a class of semi-linear Volterra integro-differential equations in Banach spaces ${ }^{* *}$. Nota (*) di Andrea Schiaffino presentata dal Socio G. Scorza Dragoni.

Riassunto. - In questa Nota sono indicati teoremi di esistenza per soluzioni di una equazione integrodifferenziale di Volterra in uno spazio di Banach.

Introduction

Let B a complex Banach space and - A the infinitesimal generator of the analytical semigroup $\left\{e^{-t \mathrm{~A}} ; t \geq 0\right\}$; let $\mathrm{D}(\mathrm{A})$ denote the domain of A endowed by the graph topology. In this paper we shall study the existence of a solution to the Volterra integrodifferential equation:

$$
\begin{equation*}
u(0)=x, \frac{\mathrm{~d} u}{\mathrm{~d} t}+\mathrm{A} u+\int_{0}^{t} \mathrm{C}(t-s) \mathrm{G}(u(s)) \mathrm{d} s=g(t) \tag{PBI}
\end{equation*}
$$

where $\mathrm{C}(t)$ is a family of bounded linear operators, G is a nonlinear operator in B and $g(t)$ is a given continuous function.

The " mild " form of (PB I) is the following:

$$
\begin{equation*}
u(t)=f(t)-\int_{0}^{t} \mathrm{~d} s \int_{s}^{t} e^{-(t-\tau) \mathrm{A}} \mathrm{C}(\tau-s) \mathrm{G}(u(s)) \mathrm{d} \tau \tag{2}
\end{equation*}
$$

where $f(t)=e^{-t \mathrm{~A}} x+\int_{0}^{t} e^{-(t-\tau) \mathrm{A}} g(\tau) \mathrm{d} \tau$.
This kind of problems is the subject of several papers; a large bibliography on the most recent results can be found in [3] and [4].

In this paper we use a compactness method to prove local existence in the case in which G is continuous from a suitable Banach space between D (A) and B into B. In order that a solution to (PB 2) be " strong ", that is be a solution to (PB_{I}), it suffices to add a Hölder-type hypothesis.

Finally we give some applications to a class of partial Volterra problems.
Many thanks to prof. V. Barbu of Leyden University for the useful conversations we had on the same subject.
(*) This paper has been partially supported by C.N.R. (National Commitee for Research) by means of G.N.A.F.A.
(**) Pervenuta all'Accademia il 22 settembre 1976.

§ i. A preliminary result

Let X be another Banach space, such that $\mathrm{D}(\mathrm{A}) \subset \mathrm{X} \subset \mathrm{B}$ in algebraic and topological sense. We denote by $L(B, X)$ and $L(B)$ the space of all bounded linear operators from B into X and B respectively. Moreover, we denote by $|\cdot|_{B},|\cdot|_{X},|\cdot|_{L(B, X)},|\cdot|_{L(X)}$ the norms in $B, X, L(B, X)$ and L (B) respectively.

In this section we shall prove the following preliminary result:
Theorem I. Let us suppose
i) for every $t>0$ the operator $e^{-t \mathrm{~A}}$ is completely continuous from B into X;
ii) the map $t \rightarrow \mathrm{C}(t)$ belongs to $\mathrm{C}^{0}(\mathrm{O}, \mathrm{T} ; \mathrm{L}(\mathrm{B}))$;
iii) the map $t \rightarrow\left|e^{-t \mathrm{~A}}\right|_{\mathrm{L}(\mathrm{B}, \mathrm{X})}$ is summable on $\left.] \mathrm{o}, \mathrm{T}\right]$.

Then the linear operator

$$
(\mathscr{A} b)(t)=\int_{0}^{t} \mathrm{~d} s \int_{s}^{t} e^{-(t-\tau) \mathrm{A}} \mathrm{C}(\tau-s) b(s) \mathrm{d} \tau
$$

maps $\mathrm{C}^{0}(\mathrm{o}, \mathrm{T} ; \mathrm{B})$ into $\mathrm{C}^{0}(\mathrm{o}, \mathrm{T} ; \mathrm{X})$ and is completely continuous.
Proof. If $o<h<T$ we may consider the operator

$$
\left(\mathscr{A}_{h} b\right)(t)=\left\{\begin{array}{ccc}
0 & 0 \leq t \leq h \\
\int_{0}^{t-h} \mathrm{~d} s \int_{s}^{t-h} e^{-(t-\tau) \mathrm{A}} \mathrm{C}(\tau-s) b(s) \mathrm{d} \tau & h \leq t \leq \mathrm{T}
\end{array}\right.
$$

Set $M=\max \left\{|\mathrm{C}(t)|_{\mathrm{L}(\mathrm{B})} ; 0 \leq t \leq \mathrm{T}\right\}$ and denote by S_{T} the unit ball of C^{0} (o, T ; B) ; we will prove that \mathscr{A}_{h} maps $\mathrm{C}^{0}(\mathrm{o}, \mathrm{T} ; \mathrm{B})$ into $\mathrm{C}^{0}(\mathrm{o}, \mathrm{T} ; \mathrm{X})$ compactly by means of Ascoli's theorem; first we shall prove that $\mathscr{A}_{h} \mathrm{~S}_{\mathrm{T}}$ is an equicontinuous subset of $\mathrm{C}^{0}(\mathrm{O}, \mathrm{T} ; \mathrm{X})$.

Given $\varepsilon>0$ choose $\sigma>0$ such that
(I)

$$
\begin{cases}h \leq t_{1}<t_{2} \leq \mathrm{T}, & t_{2}-t_{1}<\sigma \Rightarrow\left|e^{-t_{2} \mathrm{~A}}-e^{-t_{1} \mathrm{~A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})}<\varepsilon \\ 0 \leq t_{1}<t_{2} \leq \mathrm{T}, & t_{2}-t_{1}<\sigma \Rightarrow \int_{i_{1}}^{t_{2}}\left|e^{-i \mathrm{~A}}\right|_{L(\mathrm{~B}, \mathrm{X})} \mathrm{d} t<\varepsilon\end{cases}
$$

Let us consider t_{1} and t_{2} such that $o \leq t_{1}<t_{2} \leq \mathrm{T}, t_{2}-t_{1}<\sigma$ and $b(t) \in \mathrm{S}_{\mathrm{T}}$.

If $t_{2} \leq h$ we have $\left(\mathscr{A}_{h} b\right)\left(t_{2}\right)-\left(\mathscr{A}_{h} b\right)\left(t_{1}\right)=0$.

If $t_{1} \leq h<t_{2}$ we have $\left(\mathscr{A}_{h} b\right)\left(t_{2}\right)-\left(\mathscr{A}_{h} b\right)\left(t_{1}\right)=\left(\mathscr{A}_{h} b\right)\left(t_{2}\right)$; therefore:

$$
\begin{aligned}
& \left|\left(\mathscr{A}_{h} b\right)\left(t_{2}\right)-\left(\mathscr{A}_{h} b\right)\left(t_{1}\right)\right| \mathrm{x} \leq \mathrm{M} \int_{0}^{t_{2}-h} \mathrm{~d} s \int_{s}^{t_{2}-h}\left|e^{-\left(t_{2}-\tau\right) \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} \mathrm{d} \tau= \\
& =\mathrm{M} \int_{0}^{t_{2}-h} \mathrm{~d} s \int_{h}^{t_{2}-s}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} \mathrm{d} \tau \leq \mathrm{TM} \int_{t_{1}}^{t_{2}}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} \mathrm{d} \tau<\mathrm{MT} \varepsilon .
\end{aligned}
$$

If $h<t_{1}$ we have:

$$
\begin{aligned}
& \left(\mathscr{A}_{h} b\right)\left(t_{2}\right)-\left(\mathscr{A}_{h} b\right)\left(t_{1}\right)=\int_{0}^{t_{1}-h} \mathrm{~d} s \int_{s}^{t_{1}-h}\left[e^{-\left(t_{2}-\tau\right) \mathrm{A}}-e^{-\left(t_{1}-\tau\right) \mathrm{A}}\right] \mathrm{C}(\tau-s) b(s) \mathrm{d} s+ \\
& \quad+\int_{0}^{t_{1}-h} \mathrm{~d} s \int_{t_{1}-h}^{t_{2}-h} e^{-\left(t_{2}-\tau\right) \mathrm{A}} \mathrm{C}(\tau-s) b(s) \mathrm{d} s+\int_{t_{1}-h}^{t_{2}-h} e^{-\left(t_{2}-\tau\right) \mathrm{A}} \mathrm{C}(\tau-s) b(s) \mathrm{d} s ;
\end{aligned}
$$

therefore

$$
\begin{gathered}
\left|\left(\mathscr{A}_{h} b\right)\left(t_{2}\right)-\left(\mathscr{A}_{h} b\right)\left(t_{1}\right)\right|_{\mathrm{x}} \leq \frac{\mathrm{MT}^{2} \varepsilon}{2}+\mathrm{M}(\mathrm{~T}+\sigma) \int_{h}^{h+\sigma}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} \mathrm{d} t \leq \\
\leq\left[\frac{\mathrm{MT}^{2}}{2}+\mathrm{M}(\mathrm{~T}+\sigma)\right] \varepsilon
\end{gathered}
$$

it follows that $\mathscr{A}_{h} \mathrm{~S}$ is equicontinuous.
To construct a compact subset D_{h} of X such that $\left(\mathscr{A}_{h} b\right)(t) \in \mathrm{D}_{h}$ when $b \in \mathrm{~S}_{\mathrm{T}}$ and $o \leq t \leq \mathrm{T}$ let us first prove that the set

$$
\Gamma_{h}=\bigcup_{h \leq t \leq \mathrm{T}} e^{-t \mathrm{~A}} \mathrm{~S}_{\mathrm{B}}
$$

(here S_{B} is the unit ball in B) is a precompact subset of X .
In fact let $\left\{x_{n}\right\} \subset \Gamma_{n}$; we have $x_{n}=e^{-t_{n} \mathrm{~A}} b_{n}\left(h \leq t_{n} \leq \mathrm{T}\right.$ and $\left.b_{n} \in \mathrm{~S}_{\mathrm{B}}\right)$ and we may suppose $t_{n} \rightarrow t \geq h$ and $e^{-t \mathrm{~A}} b_{n} \rightarrow x$; therefore $x_{n} \rightarrow x$.

Let K_{h} be the closed convex hull of Γ_{h}; let us observe that K_{h} is balanced.
Finally we can choose $\mathrm{D}_{h}=\frac{\mathrm{MT}^{2}}{2} \mathrm{~K}_{h}$; in fact $\left(\mathscr{A}_{h} b\right)(t)=0 \in \mathrm{D}_{h}$ if $t \leq h$; in the case $t>h$ we have $\mathrm{C}(\tau-s) b(s) \in \mathrm{MS}_{\mathrm{B}}$ and $e^{-(t-s) \mathrm{A}} \mathrm{C}(\tau-s)$ $b(s) \in \mathrm{M} \mathrm{\Gamma}_{h} \subset \mathrm{MD}_{h}$; since D_{h} is convex and balanced and

$$
\int_{0}^{t-h} \mathrm{~d} s \int_{0}^{t-h} \mathrm{~d} \tau \leq \frac{\mathrm{T}^{2}}{2}
$$

we can apply the mean value theorem to get that $\mathscr{A}_{h} \mathrm{~S}_{\mathrm{B}} \subset \mathrm{D}_{h}$.

Theorem 1 will follow if we shall prove that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}}\left|(\mathscr{A} b)(t)-\left(\mathscr{A}_{h} b\right)(t)\right|_{\mathrm{x}}=0 \tag{2}
\end{equation*}
$$

uniformly for $b \in \mathrm{~S}_{\mathrm{T}}$ and $o \leq t \leq \mathrm{T}$.
To prove (2) let us first consider the case $t \leq h$; then we have

$$
\left|(\mathscr{A} b)(t)-\left(\mathscr{A}_{h} b\right)(t)\right|_{\mathrm{x}}=|(\mathscr{A} b)(t)|_{\mathrm{x}} \leq \mathrm{M} h \int_{0}^{h}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathbb{B}, \mathrm{X})} \mathrm{d} \tau .
$$

In the case $t>h$ we have

$$
\begin{aligned}
(\mathscr{A} b)(t)- & \left(\mathscr{A}_{h} b\right)(t)=\int_{0}^{t-h} \mathrm{~d} s \int_{t-h}^{t} e^{-(t-\tau) \mathrm{A}} \mathrm{C}(\tau-s) b(s) \mathrm{d} \tau+ \\
& +\int_{t-h}^{t} \mathrm{~d} s \int_{:}^{t} e^{-(t-\tau) \mathrm{A}} \mathrm{C}(\tau-s) b(s) \mathrm{d} s
\end{aligned}
$$

therefore

$$
\left|(\mathscr{A} b)(t)-\left(\mathscr{A}_{h} b\right)(t)\right| \mathrm{x} \leq \mathrm{MT} \int_{0}^{h}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} \mathrm{d} \tau+\mathrm{M} h \int_{0}^{h}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} \mathrm{d} \tau
$$

and (2) follows. Theorem I is now proved.

§2. The local existence Theorem

The Volterra equation (PB 2) can be written in the form

$$
\begin{equation*}
u(t)=(\mathscr{A} \mathrm{G})(u(t))+f(t) \tag{2}
\end{equation*}
$$

so that we may study (PB 2) by means of Schauder's fixed point theorem.
More precisely, we have:
Theorem 2. Let us suppose, in addition to the hypotheses of Theorem 1 :
j) $\mathrm{G} \in \mathrm{C}^{0}(\mathrm{E}, \mathrm{B})$ where E is the ball $\left\{x \in \mathrm{X}:\left|x-x_{0}\right|_{\mathrm{x}} \leq r\right\}$;
jj) $g \in \mathrm{~L}^{1}(\mathrm{o}, \mathrm{T} ; \mathrm{X})$.
Then there exists a solution to (PB 2) in $\left[0, \mathrm{~T}_{0}\right]$ with a suitable $\mathrm{T}_{0} \leq \mathrm{T}$.
Proof. We may suppose $|\mathrm{G}(x)|_{\mathrm{B}} \leq \mathrm{N}, x \in \mathrm{E}$, because of the continuity of G. For every $T_{0} \leq T$ the map

$$
(\mathscr{B} u)(t)=f(t)+(\mathscr{A} \mathrm{G})(u(t))
$$

15. - RENDICONTI 1976, vol. LXI, fasc. 3-4.
is completely continuous from $\mathrm{C}^{0}\left(\mathrm{o}, \mathrm{T}_{0} ; \mathrm{E}\right)$ into $\mathrm{C}^{0}\left(\mathrm{o}, \mathrm{T}_{0} ; \mathrm{X}\right)$; to apply Schauder's theorem we have to choose T_{0} in such a way to get

$$
\mathscr{B}\left(\mathrm{C}^{0}\left(\mathrm{o}, \mathrm{~T}_{0} ; \mathrm{E}\right)\right) \subset \mathrm{C}^{0}\left(\mathrm{o}, \mathrm{~T}_{0} ; \mathrm{E}\right)
$$

We have

$$
\begin{aligned}
& \left|(\mathscr{B} u)(t)-x_{0}\right| \mathrm{x} \leq\left|e^{-t \mathrm{~A}} x_{0}-x_{0}\right|_{\mathrm{x}}+\int_{0}^{t}|f(\tau)| \mathrm{x} \mathrm{~d} \tau+ \\
& \quad+\operatorname{MNT} \int_{0}^{t}\left|e^{-\tau \mathrm{A}}\right|_{\mathrm{L}(\mathrm{~B}, \mathrm{X})} d \tau
\end{aligned}
$$

which is less than r if $t \leq \mathrm{T}_{0}$, where $\mathrm{T}_{0}>0$ is close to o ; the theorem follows.
Remark. If $g(t)$ belongs to $\mathrm{C}^{0}(\mathrm{o}, \mathrm{T} ; \mathrm{B})$, every solution to (PB 2) is a mild solution to

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}+\mathrm{A} u=h(t) \tag{3}
\end{equation*}
$$

where $h(t)=g(t)-\int_{0}^{t} \mathrm{C}(t-s) \mathrm{G}(u(s)) \mathrm{d} s$ is continuous.
Therefore $u(t)$ is Hölder-continuous in the sense of the B-norm (see [6]). We can now state the following

Corollary. If, in addition to the hypotheses of Theorem 2, we suppose: $\mathrm{j})^{\prime} g$ is Hölder-continuous from $[\mathrm{O}, \mathrm{T}]$ into B ;
jj) ${ }^{\prime} \mathrm{C}(t)$ is Hölder-continuous from [$\left.\mathrm{O}, \mathrm{T}\right]$ into $\mathrm{L}(\mathrm{B})$;
$(\mathrm{jjj})^{\prime} \quad x_{0} \in \mathrm{D}(\mathrm{A})$
we conclude that u is a strict solution to $\left(\mathrm{PB}_{\mathrm{I}}\right)$ and $\frac{\mathrm{d} u}{\mathrm{~d} t},(\mathrm{~A} u)(t) \in \mathrm{C}^{a}(\mathrm{O}, \mathrm{T} ; \mathrm{B})$ where α is the Hölder coefficient of g and C .

Proof. It suffices to prove that the function $h(t)$ is Hölder-continuous (see [6]). Set $b(t)=\mathrm{G}(u(t))$; we have, for $\mathrm{o} \leq t_{1}<t_{2} \leq \mathrm{T}_{\mathbf{0}}$:

$$
\begin{aligned}
& \left|h\left(t_{2}\right)-h\left(t_{1}\right)\right|_{\mathrm{B}} \leq\left|g\left(t_{2}\right)-g\left(t_{1}\right)\right|_{\mathrm{B}}+\mathrm{N} \int_{t_{1}}^{t_{2}}\left|\mathrm{C}\left(t_{2}-s\right)\right|_{\mathrm{L}(\mathrm{~B})} \mathrm{d} s+ \\
& \quad+\mathrm{N} \int_{0}^{t_{1}}\left|\mathrm{C}\left(t_{2}-s\right)-\mathrm{C}\left(t_{1}-s\right)\right|_{\mathrm{L}(\mathrm{~B})} \mathrm{d} s \leq \mathrm{K}_{\alpha}\left(t_{2}-t_{1}\right)^{\alpha}
\end{aligned}
$$

where K_{α} is a suitable constant.

§ 3. SOME APPLICATIONS

Let Ω be a bounded open set of R^{n} whose boundary $\partial \Omega$ is smooth. Let us consider the problem
(4)

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(x, t)-\Delta_{x} u(x, t)+\int^{t} c(x, t-s) \mathrm{G}(x, u(x, t-s), \\
\quad \nabla(u(x, t-s)) \mathrm{d} s=g(x, t) x \in \Omega, t>0 \\
u(x, t)=0 \quad x \in \partial \Omega \quad t \geq 0 \\
u(x, 0)=u_{0}(x) \in \mathrm{L}^{p}(\Omega) x \in \Omega .
\end{array}\right.
$$

Let us consider $\mathrm{B}=\mathrm{L}^{p}(\Omega)$ where $p>n, \mathrm{D}(\mathrm{A})=\mathrm{H}^{2, p}(\Omega) \cap \mathrm{H}_{0}^{1, p}(\Omega)$ and $\mathrm{A}=-\Delta$; let us choose $\theta<\mathrm{I}$ in such a way that $\mathrm{D}\left(\mathrm{A}^{\theta}\right) \subset \mathrm{C}^{1}(\bar{\Omega})$ and set $\mathrm{X}=\mathrm{D}\left(\mathrm{A}^{\theta}\right)$. Moreover, define $(\mathrm{C}(t) u)(x)=c(x, t) u(x)$. So by theorem 2 it follows

Theorem 3. Let $c(x, t)$ and $\mathrm{G}(x, u, v)$ be continuous, respectively, in $\bar{\Omega} \cdot[0, \mathrm{~T}]$ and $\bar{\Omega} \cdot \mathrm{R} \cdot \mathrm{R}^{n}$; suppose in addition that $g(\cdot, t)$ and $\frac{\hat{o} g}{\partial x_{i}}$ belong to $\mathrm{L}^{1}\left(0, \mathrm{~T} ; \mathrm{L}^{p}(\Omega)\right)$. Then there exists a mild local solution to problem (4).

If moreover $c(x, t)$ and $g(x, t)$ are Hölder-continuous in t and $u_{0}(x)$ belongs to $D^{\prime}(A)$, every mild solution to problem (4) is a strict solution and $\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x_{i}}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ belong to $\mathrm{C}^{0}\left(\mathrm{o}, \mathrm{T}_{0} ; \mathrm{L}^{p}(\Omega)\right)$.

Remark I. If $p<n$ Theorm 3 holds with the further hypothesis

$$
|\mathrm{G}(x, u, v)| \leq \gamma_{0}+\gamma_{1}|u|^{p_{1}}+\gamma_{2}|v|^{p_{2}} \quad x \in \bar{\Omega} u \in \mathrm{R} v \in \mathrm{R}^{n}
$$

where p_{1} and p_{2} are suitable Sobolev exponents.
Remark 2. Let $\mathrm{B}^{0}=\left\{u \in \mathrm{C}^{0}(\bar{\Omega}): u(x)=0 x \in \partial \Omega\right\}$. If $u_{0} \in \mathrm{~B}^{0}$ we can set our problem in B^{0} and pose $\mathrm{X}=\left|u \in \mathrm{C}^{1+\theta}(\bar{\Omega}): u(x)=0 x \in \partial \Omega\right|$, where $0<\theta<\mathrm{I}$; we conclude that every mild solution to problem (4) belongs to $\mathrm{C}^{\alpha}\left(\left[\mathrm{o}, \mathrm{T}_{0}\right] \times \bar{\Omega}\right)$.

Moreover, if $c(x, t)$ and $g(x, t)$ are Hölder-continuous and if $\Delta u_{0} \in \mathrm{~B}^{0}$, every mild solution to problem (4) is strict and all its derivatives of first order are Hölder-continuous as its space-derivatives of second order.

References

[I] V. Barbu (1973) - Integrodifferential equations in Hilbert spaces, "Anal. Stiin. ale Univ. 'Al. I. Cuza,' Din. Iași", 19.
[2] V. Barbu (1976) - Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing and Editura Academiei, Leyden-Bucaresti.
[3] V. BaRBU - Nonlinear Volterra Integrodifferential Equations in Hilbert Space (to appear on «Sem. Matem. Univ. », Bari).
[4] M. G. Crandall, S. O. Londen and J. A. Nohel (1975) - An abstract nonlinear Volterra integrodifferential equation, «M.R.C. Tech. Summary Report, Univ. of Wisconsin», December.
[5] C. M. Dafermos (1970) - An abstract Volterra equation with applications to linear viscoelasticity, "J. Differential Equations», 7, 554-569.
[6] G. Da Prato and P. Grisvard (1975) - Sommes d'operateurs lineaires et equations differentielles operationelles, "J. Math. pures et appl.", 54.
[7] R. C. MACCAMY - Stability theorems for a class of functional differential equations, «S.I.A.M., J. Math. Anal." (to appear).
[8] J. S. WONG - A nonlinear integro-partial differential equation arising from viscoelasticity (to appear).

