ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ELISABETTA STRICKLAND

Sulle serie di composizione di una classe di gruppi finiti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **61** (1976), n.1-2, p. 20–22. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_61_1-2_20_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Teoria dei gruppi. — Sulle serie di composizione di una classe di gruppi finiti. Nota (*) di Elisabetta Strickland, presentata dal Socio B. Segre.

SUMMARY. — In this paper we study the class (D) of finite groups which admit a unique disposition for their composition factors. Precisely it is shown that, in the soluble case, a group G whose proper subgroups belong to the class (D), has order divisible by at most two primes. A counterexample is given showing that the above property doesn't hold for a soluble D-group in general.

Introduzione

Dato un gruppo G, una catena di suoi sottogruppi:

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_{k-1} \triangleright G_k = \{1\}$$

ciascuno massimale nel precedente e terminante con il sottogruppo $\{1\}$, si dice « serie di composizione » di G. L'intero k si chiama « lunghezza » della serie e i quozienti G_{i-1}/G_i , i=1, 2, \cdots , k i « quozienti di composizione » ed i loro ordini i « fattori di composizione ». Ogni gruppo finito $\neq \{1\}$ ammette una serie di composizione. La considerazione di serie di vario tipo permette la determinazione di invarianti per un gruppo G o meglio, per una sua classe di isomorfismo. Se un gruppo G ammette una serie di composizione, come è noto, il Teorema di Jordan-Hölder permette di dire che la lunghezza di una tale serie è un invariante. Per lo stesso teorema, l'insieme dei fattori di composizione e l'insieme dei gruppi semplici che compaiono come quozienti di composizione sono invarianti.

Un altro invariante è il numero di modi in cui i fattori di composizione compaiono ordinatamente come ordini dei quozienti di una serie di composizione. Ad esempio, 2 e 3 compaiono solo nell'ordine (2,3) in S³, mentre compaiono negli ordini (2,3) e (3,2) nel gruppo C6, ciclico di ordine 6. Poiché non vi sono altri gruppi di questo ordine, il numero delle possibili disposizioni dei fattori di composizione di un gruppo di ordine 6 costituisce un invariante. Analogamente il fatto di ammettere un'unica disposizione dei fattori di composizione caratterizza A⁴, gruppo alterno su quattro elementi, fra i gruppi di ordine 12, ed S⁴, gruppo simmetrico su quattro elementi, tra i gruppi di ordine 24.

Scopo della presente Nota è lo studio di alcune proprietà generali della classe (D) dei gruppi finiti dotati di una sola disposizione dei fattori di composizione, proprietà collegate alle precedenti osservazioni.

(*) Pervenuta all'Accademia il 20 luglio 1976.

§ I. IL CASO RISOLUBILE

È una conseguenza piuttosto ovvia delle definizioni date, che la proprietà (D) si conserva per i sottogruppi normali H di un gruppo $G \in (D)$ e per i relativi quozienti G/H. In generale esistono gruppi non isomorfi dello stesso ordine che ammettono lo stesso numero di disposizioni dei fattori di composizione basta pensare a due p-gruppi dello stesso ordine.

Inoltre si ha il seguente:

TEOREMA I.I. Sia G un gruppo finito risolubile. Allora G è nilpotente se e solo se, G ammette tutte le possibili disposizioni dei fattori di composizione.

Dimostrazione. Se G ammette tutte le disposizioni, sia S un p-Sylow di G con $|S| = p^h$. Poiché G è risolubile, i fattori sono numeri primi, ed esisterà allora, per l'ipotesi, una serie i cui ultimi h + 1 termini sono a quozienti di ordine p:

$$\cdots \triangleright H_1 \triangleright H_2 \triangleright \cdots \triangleright H_{h+1} = \{ \mathbf{1} \}.$$

Il sottogruppo H_1 è allora Sylow, perché ha ordine p^h ed è subnormale, perché compare in una serie normale. Ciò implica H_1 normale in G e dunque, essendo p generico, G nilpotente. Il viceversa è evidente, q.e.d.

COROLLARIO 1.2. Se G∈ (D) è nilpotente, allora G è un p-gruppo.

Dimostrazione. Segue subito da 1.1.

È possibile a questo punto provare il seguente:

TEOREMA 1.3. Sia G risolubile finito. Condizione necessaria e sufficiente affinché G e tutti i suoi sottogruppi godano della proprietà D è che G sia somma (nel senso della teoria degli insiemi) dei suoi sottogruppi di Sylow.

Dimostrazione. Sia $G \in (D)$ assieme a tutti i suoi sottogruppi Sia g un arbitrario elemento di G. Si consideri il sottogruppo ciclico $H = \langle g \rangle$, $H \leq G$. H è un D-gruppo ed è nilpotente, quindi, per 1.2, ha ordine la potenza di un primo, cioè o $(g) = p^n$. Viceversa, sia G risolubile finito somma dei suoi sottogruppi di Sylow. Proviamo che allora G (e quindi i suoi sottogruppi) ammettono un'unica disposizione dei fattori di composizione. Sia G il minimo controesempio e $|G| = p_1^{k_1} \cdots p_n^{k_n}$. Se G' è il sottogruppo derivato di G, G' contiene le potenze massime di n-1 primi che dividono l'ordine di G, altrimenti il quoziente abeliano G/G' con ordine divisibile per due o più primi distinti porta elementi di periodo misto. Del resto $G' \nleq G$, quindi sarà $G' = p_1^{k_1} \cdots p_n^{k_n}$, con $0 \leq h_i < k_i$, per un certo $1 \leq i \leq n$.

Sia A un sottogruppo normale massimale di G. A ha indice primo in G, quindi G/A è abeliano e $A \ge G'$. Segue $[G:A] = p_i$. Cioè ogni serie di composizione di G parte con un quoziente di ordine p_i . Siano A e B i secondi termini di due arbitrarie serie di composizione di G. Si consideri A \cap B. Essendo

G il minimo controesempio, i quozienti che seguono $A \cap B$ hanno ordini univocamente determinati e quelli che lo precedono anche, quindi le due serie ammettono la stessa disposizione per i fattori di composizione, q.e.d.

Faremo ora uso del seguente

LEMMA 1.4. (Higman [5]). Sia G finito risolubile somma dei suoi sottogruppi di Sylow. Allora l'ordine di G è divisibile per al più due primi distinti.

Si noti che 1.3. non è valido se la proprietà (D) vale solo per i sottogruppi propri di G. Il gruppo ciclico di ordine 6, C₆ è un esempio. Tuttavia, dal Lemma 1.4. e dal Teorema 1.3. segue che:

TEOREMA 1.5. Se G è risolubile finito e se $H \in (D)$ per ogni $H \leq G$, allora |G| è divisibile per al più due primi distinti.

Ed inoltre:

TEOREMA 1.6. Un gruppo risolubile finito G, minimale non (D) è ciclico di ordine $p \cdot q$ ($p \neq q$) primi.

Dimostrazione. G non è somma dei suoi sottogruppi di Sylow, per il Teorema 1.3. e quindi esiste $x \in G$ di ordine pq $(p \neq q, primi)$. Si ha $\langle x \rangle \notin (D)$ e pertanto: $\langle x \rangle = G$, q.e.d.

§ 2. UN CONTROESEMPIO

È spontaneo ora chiedersi se un gruppo $G \in (D)$ risolubile arbitrario abbia anch'esso ordine divisibile per al più due primi distinti. Ebbene, la proprietà non vale in generale, come dimostra il seguente controesempio.

Si costruisca il gruppo $(Z_5 \times Z_5) \tilde{x} S_3$, cioè il prodotto semidiretto del gruppo abeliano elementare di ordine 25 e del gruppo delle permutazioni su tre elementi. È facile provare che tale gruppo, di ordine 150=2.3.5² ammette come unica disposizione per i fattori di composizione la (2, 3, 5, 5), con la serie

$$G_{150} \rhd H_{75}^1 \rhd H_{25}^2 \rhd H_5^3 \rhd \{1\}$$
.

Tale controesempio può essere generalizzato prendendo il gruppo $(Z_p \times Z_p) \tilde{x} S_3$, p primo, $p \neq 2$.

Desidero ringraziare a conclusione di questa esposizione il Prof. Mario Curzio dell'Università di Napoli ed il prof. Corrado De Concini dell'Università di Pisa per i consigli ricevuti.

BIBLIOGRAFIA

- [1] D. GORENSTEIN (1968) Finite Groups, Harper and Row.
- [2] M. HALL (1959) The theory of groups, MacMillan, N.Y.
- [3] H. ZASSENHAUS (1958) The Theory of groups, Chelsea.
- [4] B. HUPPERT (1967) Endliche Gruppen I, Springer.
- [5] G. HIGMAN (1957) Finite groups in which every element has prime power order, «J. London, Math. Soc. », 32,