Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

Israel Vainsencher

On a formula of Ingleton and Scott

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 60 (1976), n.5, p. 629-631.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_60_5_629_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria algebrica. - On a formula of Ingleton and Scott. Nota di Israel Vainsencher ${ }^{(*)}$, presentata ${ }^{(* *)}$ dal Socio B. Segre.
RiAssunto. - Viene data una portata più larga alla formula (i.i) di Ingleton e Scott [5].

i. Introduction

Let V denote a smooth variety over an algebraically closed ground field of arbitrary characteristic. Let $\mathrm{V}^{*}=\mathrm{P}\left(\Omega_{\mathrm{V}}^{1}\right)$ denote the bundle of tangent directions of V , and $s: \mathrm{V}^{*} \rightarrow \mathrm{~V}$ the bundle map. Let L be an r-dimensional linear system on V , and M the associated invertible O_{V}-Module. Ingleton and Scott introduced in ([5], p. 365) a subvariety \mathbf{L} of V^{*} parametrizing the tangent directions t such that either $s(t)$ lies in the base locus of L or t is formally tangent to every member of L passing through $s(t)$. Assuming L is regular (in the sense of p. 366, loc. cit.), they obtain a formula for the (classical) cohomology class l dual to \mathbf{L},

$$
\begin{equation*}
l=\sum_{i=0}^{r}\binom{r+\mathrm{I}}{i} s^{*} m^{i} v^{r-i}, \tag{I.I}
\end{equation*}
$$

where m (resp. v) denotes the ist. Chern class of M (resp. $\mathrm{O}_{\mathrm{V} *}$ (I), the universal I-quotient of $s^{*} \Omega_{\mathrm{V}}^{1}$).

We prove here (I.I) holds already in the Chow ring of V^{*}, under the sole assumption that both \mathbf{L} and the base locus B of L have the right codimension, namely, r and $r+$ I respectively. Our proof rests on the observation that \mathbf{L} is naturally the scheme of zeros of a regular section of a certain vector bundle over V^{*}, whence it represents the top Chern class of that bundle in the Chow ring of V^{*} ([4], Cor. p. I53).

2. Preliminaries

We borrow from ([I], 2.2. and 2.3) the definition and proposition below.
2.1. Definition. Let $p: \mathrm{Y} \rightarrow \mathrm{S}$ be a morphism of schemes, and let $u: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$ be an O_{Y}-homomorphism of O_{Y}-Modules. A closed sub-scheme of S is called the scheme of zeros of u in S if it has the universal property that a map $g: \mathrm{T} \rightarrow \mathrm{S}$ factors through it iff $u_{\mathrm{T}}=g_{\mathrm{Y}}^{*}(u)$ is equal to zero. (Here $g_{\mathrm{Y}}: \mathrm{T} \times \mathrm{Y} \rightarrow \mathrm{Y}$ is the pull-back).
(*) Lavoro eseguito con contributo del C.N.P.q., Brasil.
(**) Nella seduta dell'8 maggio 1976.
2.2. Proposition. Let $p: \mathrm{Y} \rightarrow \mathrm{S}$ be a morphism of schemes, and lei $u: \mathrm{O}_{\mathrm{Y}} \rightarrow \mathrm{A}$ be a section of the $\mathrm{O}_{\mathrm{Y}}-$ Module A . Assume A is quasi-coherent and $p_{*}(\mathrm{~A})$ is locally free and its formation commutes with base change. Then the scheme of zeros of u in S exists (i.e., is representable by a closed subscheme of S) and is equal to the scheme of zeros of the adjoint $u^{\prime}: \mathrm{O}_{\mathrm{S}} \rightarrow p_{*}(\mathrm{~A})$.
3. PRCOF OF (I.I)

We have an exact sequence of Chow groups,

$$
\mathrm{A}\left(\mathrm{~B}^{*}\right) \xrightarrow{i_{*}} \mathrm{~A}\left(\mathrm{~V}^{*}\right) \xrightarrow{j^{*}} \mathrm{~A}\left(\mathrm{~V}^{*}-\mathrm{B}^{*}\right) \rightarrow \mathrm{o},
$$

([2], [3]), where $\mathrm{B}=s^{-1}(\mathrm{~B})$ (the pullback of the base locus), and i and j denote inclusion maps. Since the codimension of B^{*} in V^{*} is the same as that of B in V , namely $r+1$, the homomorphism j^{*} is an isomorphism in the relevant codimension r. Thus, it suffices to prove (I.I) after restriction to $V^{*}-B^{*}$. Therefore, we may assume B is empty. Now consider the diagram,

L
Here, D denotes the universal divisor of L (incidence correspondence), and D^{*} is the pullback of D to V^{*}. Since L has no base points, there is an exact sequence of O_{V}-Modules,

$$
\begin{equation*}
\mathrm{O} \rightarrow \mathrm{E} \rightarrow \mathrm{O}_{\mathrm{V}} \xrightarrow{\oplus r+1} \mathrm{M} \rightarrow \mathrm{O} . \tag{3.2}
\end{equation*}
$$

It is well known that the dual epimorphism $\mathrm{O}_{\mathrm{V}} \xrightarrow{\oplus r+1} \mathrm{E}^{\dagger}$ induces the embedding of projective bundles over V ,

$$
\mathrm{D}=\mathrm{P}\left(\mathrm{E}^{V}\right) \subset \mathrm{P}\left(\mathrm{O}_{\mathrm{V}}^{\oplus r+1}\right)=L \times \mathrm{V}
$$

On D^{*}, we have a diagram of sheaves,

$$
\begin{align*}
& \mathrm{O} \rightarrow \mathrm{O}_{\mathrm{D}^{*}} \rightarrow \\
& \stackrel{\mathrm{~N}_{\mathrm{D}^{*}} \otimes}{ } \otimes a^{*} \Omega_{L \times \mathrm{V} / L}^{1} \rightarrow \mathrm{~N}_{\mathrm{D}^{*}} \otimes a^{*} \Omega_{\mathrm{D} / L}^{1} \rightarrow \mathrm{O}, \\
& \downarrow \\
& \mathrm{~N}_{\mathrm{D}^{*}} \otimes b^{*} \mathrm{O}_{\mathrm{V}^{*}(\mathrm{I})}
\end{align*}
$$

where the horizontal sequence is the pullback to D^{*} of the sequence of relative differentials and conormal sheaves of $\mathrm{D} \subset L \times \mathrm{V}$ over L, twisted by the normal line bundle N_{D}. The vertical map is the pullback to D^{*} of the universal I-quotient of $s^{*} \Omega_{\mathrm{V}}^{1}$, taking into account the identification

$$
\Omega_{L \times \mathrm{V} / L}^{1} \mid \mathrm{D}=q^{*} \Omega_{\mathrm{V}}^{1} .
$$

Since $N_{D}=q^{*} \mathrm{M} \otimes \mathrm{O}_{\mathrm{D}}(\mathrm{I})$, therefore $\mathrm{N}_{\mathrm{D}^{*}}=b^{*} s^{*} \mathrm{M} \otimes \mathrm{O}_{\mathrm{D}^{*}}(\mathrm{I})$. Since D^{*} is a projective bundle over $\mathrm{V}^{*}, \mathrm{R}^{1} b_{*}\left(\mathrm{O}_{\mathrm{D}} *(\mathrm{I})\right)=\mathrm{o}$. Therefore, the sheaf

$$
\mathrm{F}=b_{*}\left(\mathrm{~N}_{\mathrm{D}} * \otimes b^{*}\left(\mathrm{O}_{\mathrm{V}^{*}}(\mathrm{I})\right)\right)
$$

is locally free and its formation commutes with base change ([6], p. 5 I). Let u^{\prime} denote the section of F , adjoint of u in (3.3). By (2.2), the scheme of zeros of u^{\prime} in V^{*} is equal to the scheme of zeros of u in V^{*}. However, looking at the restriction of (3.3.) to the fibre of b over a point t in V^{*} it is not hard to see that u_{t} is zero iff the cotangent direction corresponding to t is in fact a i-quotient of the cotangent space of every member of L passing through $s(t)$. Thus, \mathbf{L} is the scheme of zeros of a section of the bundle F. Equation (i.I) now follows from the lemma below.
4. Lemma. The rank of F is r, and its r-th Chern class equals the right hand side of (I.I).

> Proof. We have, $\begin{array}{ll}\text { (projection formula) } \mathrm{F} & =\mathrm{O}_{\mathrm{V}^{*}}(\mathrm{I}) \otimes s^{*} \mathrm{M} \otimes b_{*} \mathrm{O}_{\mathrm{D}^{*}}(\mathrm{I}) \\ & \\ \text { (flat base change) } & =\mathrm{O}_{\mathrm{V}^{*}}(\mathrm{I}) \otimes s^{*} \mathrm{M} \otimes s^{*} q_{*} \mathrm{O}_{\mathrm{D}} \text { (I) } \\ \text { (Serre's theorem) } & \\ =\mathrm{O}_{\mathrm{V}^{*}}(\mathrm{I}) \otimes s^{*} \mathrm{M} \otimes s^{*} \mathrm{E}^{V} .\end{array}$

In view of (3.2), we get:

$$
c_{r} \mathrm{~F}=c_{r}\left(\mathrm{O}_{\mathrm{V}^{*}}(\mathrm{I}) \otimes s^{*} \mathrm{M}^{\oplus r+1}\right)
$$

which is (I.I), by standard properties of Chern classes.

References

[i] A. B. Altman and S. L. Kleiman - Foundations of the Theory of Fano Schemes (Toappear).
[2] W. Fulton - Rational Equivalence on Singular Varieties (To appear).
[3] A. Grothendieck (1958) - Seminaire C. Chevalley, 2^{e} anne, exp., 4.
[4] A. Grothendieck (1958) - La theorie des classes de Chern, "Bull. Soc. Math. de France», 86, 137-I 59.
[5] A. W. Ingleton and D. B. Scott (196i) - The tangent direction bundle..., «Annali di Mat." (4), 56, 359-374.
[6] D. MUMFORD (1966) - Lectures on curves of an algebraic surface, Princeton University Press.

