Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Italo Capuzzo Dolcetta, Massimo Lorenzani

On a partition of an Euclidean half-space

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 60 (1976), n.5, p. 623-628.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_60_5_623_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

> Geometria. - On a partition of an Euclidean half-space (*). Nota di Italo Capuzzo Dolcetta e Massimo Lorenzani, presentata (**) dal Socio B. Segre.

Riassunto. - Con metodi geometrici si stabilisce l'esistenza di soluzioni per sistemi di complementarità degeneri.

Introduction

The partition theorem for Euclidean spaces due to H. Samelson, R.M. Thrall and O. Wesler, see [4] ${ }^{(1)}$, is one of the most important results in the theory of complementarity since it characterizes the matrices \mathscr{A} with positive principal minors among those for which the complementarity system

$$
\left\{\begin{array}{l}
\boldsymbol{x} \geq 0 \tag{I}\\
\mathscr{A} \boldsymbol{x}+\boldsymbol{b} \geq 0 \\
x_{i}(\mathscr{A} \boldsymbol{x}+\boldsymbol{b})_{i}=0, \quad i=\mathrm{I}, \cdots, n,
\end{array}\right.
$$

has a unique solution for all $\boldsymbol{b} \in \mathbf{R}^{n}$ (see [3] for a wide bibliography on the subject).

However, in many interesting cases the system (I) is degenerate, that is \mathscr{A} happens to be singular. This is the case, for example, when $\mathscr{A}=\mathscr{I}-\mathscr{P}$, where \mathscr{I} is the identity matrix and \mathscr{P} is stochastic. Such a situation occurs when an optimal stopping problem for a Markov chain is studied by means of complementarity system (see [I]).

Having in mind this situation the purpose of this Note is to obtain a partition theorem for an half-space of \mathbf{R}^{n}, and then determine a class of matrices for which this partition is possible, characterizing in this way the set of all $\boldsymbol{b} \in \mathbf{R}^{n}$ for which (I) is uniquely solvable.
I. Let \mathscr{A} be a $n \times n$ matrix, \mathscr{I} the $n \times n$ identity matrix and B_{j} a column vector belonging to the set $\left\{\mathrm{I}_{j},-\mathrm{A}_{j}\right\}$, where I_{j} and $-\mathrm{A}_{j}$ are the $j^{\text {th }}$ column of \mathscr{I} and $-\mathscr{A}$ respectively. Let us denote by $\operatorname{pos}\left(\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right)$ the cone

$$
\left\{\boldsymbol{v} \in \mathbf{R}^{n} / \boldsymbol{v}=\sum_{i=1}^{n} \lambda_{i} \mathrm{~B}_{i}, \lambda_{i} \geq 0\right\} ;
$$

and by $\mathrm{K}(\mathscr{A})$ the cone

$$
\bigcup \operatorname{pos}\left(\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right),
$$

(*) Partially supported by G.N.A.F.A. of C.N.R. for the first Author and by G.N.S.A.G.A. of C.N.R. for the second.
(**) Nella seduta dell'8 maggio 1976.
(I) The numbers in [] send to the bibliography at the end of the paper.
where the union runs all over the 2^{n} possible choices of the n-tuple ($\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}$), Clearly $\mathrm{K}(\mathscr{A})$ coincides with the set of all $\boldsymbol{b} \in \mathbf{R}^{n}$ for which (I) has a solution. Finally we denote by $\mathrm{K}^{\prime}(\mathscr{A})$ the cone

$$
\mathrm{K}(\mathscr{A})-\left\{\operatorname{pos}\left(-\mathrm{A}_{1}, \cdots,-\mathrm{A}_{n}\right)\right\} .
$$

From now on we shall make the following assumption on the matrix \mathscr{A} of the system (I):
(H) $\left\{\begin{array}{l}\text { i) } \operatorname{rank} \mathscr{A}=n-\mathrm{I}, \\ \text { ii) the hyperplane } \pi=\operatorname{Im}(\mathscr{A}) \text { has equation } \sum_{i=1}^{n} \alpha_{i} x_{i}=0 \text {, with } \\ \alpha_{i}>0, i=1, \cdots, n .\end{array}\right.$

Observe that (\mathbf{H}) implies $\mathrm{K}(\mathscr{A}) \subseteq \bar{\pi}^{+}$, where $\bar{\pi}^{+}$is the closure of the positive half-space determined by π.

In analogy with [4], we give the following
DEfinition 1. The $2^{n}-\mathrm{I}$ cones pos $\left(\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right)$, with $\left(\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right) \neq$ $\left(-\mathrm{A}_{1}, \cdots,-\mathrm{A}_{n}\right)$, are a partition of the half space $\bar{\pi}^{+}$if
i) $\mathrm{K}^{\prime}(\mathscr{A})=\bar{\pi}^{+}$.
ii) The intersection of every pair of distinct cones is exactly the lower dimensional cone spanned by the common vectors.

The following theorem is an adaptation of the mentioned result of [4] to the case of a matrix satisfying the assumption (\mathbf{H}); the proof can be performed along the same line and is therefore omitted.

Theorem i. The following conditions are equivalent:

1) The 2^{n} - I cones pos $\left(\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right)$ are a partition of $\bar{\pi}^{+}$.
2) For every choice of $\mathrm{B}_{j}, j=\mathrm{I}, \cdots, n-\mathrm{I}$, with $\mathrm{B}_{j} \neq-\mathrm{A}_{j}$ for some j, the hyperplane spanned by those vectors separates the two vectors of \mathscr{I} and $-\mathscr{A}$ corresponding to the omitted index.
3) If \mathscr{B} is the matrix whose columns are the vectors $\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}$, then sign det $\mathscr{B}=(-1)^{s}$, wheres s is the number of the $-\mathrm{A}_{j}$'s among $\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}$.
4) The principal minors of \mathscr{A} up to the order $n-\mathrm{I}$ included are positive.

Corollary. If one of the four equivalent conditions in Theorem I is satisfied, then the system (I) is uniquely solvable for all $\boldsymbol{b} \in \pi^{+}$.

Proof. It is enough to observe that $\pi^{+}=\frac{0}{\mathrm{~K}^{\prime}(\mathscr{A})}$.
2. In this section we look for a condition which permits us to apply the previous Theorem i. Precisely, we consider the following problem:
"Given n vectors $\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}$ on an hyperplane $\pi \subset \mathbf{R}^{n}$ of equation $\sum_{i=1}^{n} \alpha_{i} x_{i}=0, \alpha_{i}>0$ for every i, is the matrix \mathscr{A} whose columns are $\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}$ (not necessarily in this order) such that $\mathrm{K}^{\prime}(\mathscr{A})$ is a partition of $\bar{\pi}^{+}$?"

To answer this question we introduce the cones $\mathrm{K}_{i}, i=\mathrm{I}, \cdots, n$, defined by

$$
\mathrm{K}_{i}=\left\{\boldsymbol{v} \in \pi / \boldsymbol{v}=\sum_{j \neq i} \lambda_{j} \mathrm{~A}_{j}, \lambda_{j} \geq \mathrm{o}\right\} .
$$

DEFINITION 2. The n cones K_{i} are a partition of π if

$$
\pi=\bigcup_{i=1}^{n} \mathrm{~K}_{i} .
$$

Proposition i. The following conditions are equivalent:
I) The n cones K_{i} are a partition of π.
2) Each ($n-1$)-tuple of vectors A_{i} is linearly independent and the linear space spanned by any $n-2$ among the A_{i} 's separates the other two.
3) $-\mathrm{A}_{i} \in \stackrel{\circ}{\mathrm{~K}}_{i}, \quad i=\mathrm{I}, \cdots, n$.
4) $\sum_{i=1}^{n} \lambda_{i} \mathrm{~A}_{i}=0 \quad$ for some $\quad \lambda_{i}>0, \quad i=1, \cdots, n$.

Proof. The following implications are obvious: 1$) \Rightarrow 3) \Leftrightarrow 4$). Let us show then that 3$) \Rightarrow 2) \Rightarrow 1$); observe that 3) implies that each ($n-1$)-tuple of A_{i} 's is linearly independent. If one assumes that an ($n-2$)-tuple exists which does not separate the other two, say A_{1} and A_{2}, it would follow that $-A_{1}$ is separated from A_{2}, that is A_{1} cannot belong to K_{1}, which is a contradiction.

Secondly, if 2) holds, suppose that the cones K_{i} are not a partition of π. Then the boundary of $\pi-\bigcup_{i=1}^{n} \mathrm{~K}_{i}$ is determined by $(n-2)$-dimensional faces of certain cones. Consider one of these faces: this separates the remaining two vectors, say A_{1} and A_{2}. Each interior point of this face will be also interior to the cones spanned by the face and $\mathrm{A}_{1}, \mathrm{~A}_{2}$ respectively. Then, such a point would belong to $\pi-\bigcup_{i=1}^{n} \mathrm{~K}_{i}$, therefore $\pi=\bigcup_{i=1}^{n} \mathrm{~K}_{i}$.

Let $\left(\mathrm{C}_{1}, \cdots, \mathrm{C}_{n}\right)$ and ($\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}$) be two n-tuples of vectors of π both satisfying one of the equivalent conditions of Proposition I ; denote by H_{i} and $\mathrm{K}_{i}, i=\mathrm{I}, \cdots, n$, respectively, the cones associated to the two n-tuples and let us fix an ordering for the vectors C_{i}.

Definition 3. The two n-tuples $\left(\mathrm{C}_{1}, \cdots, \mathrm{C}_{n}\right),\left(\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}\right)$ are said to be congruent if there exists a permutation of the A_{i} 's such that $\mathrm{A}_{i} \in \stackrel{\circ}{\mathrm{H}}_{i}$, $i=\mathrm{I}, \cdots, n$; or, equivalently, $\mathrm{C}_{i} \in \stackrel{\circ}{\mathrm{~K}}_{i}, i=\mathrm{I}, \cdots, n$.

Proposition 2. Let π be an hyperplane of \mathbf{R}^{n} of equation $\sum_{i=1}^{n} \alpha_{i} x_{i}=0$, with $\alpha_{i}>\mathrm{o}$. Then the vectors $\mathrm{C}_{i}, i=\mathrm{I}, \cdots, n$, obtained by orthogonal projection on π of the vectors I_{i}, determine a partition of π.

Proof. For every choice of $n-2$ vectors among $\mathrm{C}_{1}, \cdots, \mathrm{C}_{n}$, the linear variety spanned by those is exactly the intersection of π with the hyperplane spanned by the $n-2 I_{i}$'s corresponding to the C_{i} 's and the normal vector to π. This hyperplane separates the two remaining vectors, say I_{1} and I_{2}, since by the assumption on π, its normal lies in $\longdiv { \circ } \stackrel { \circ } { \mathbf { R } _ { + } ^ { n } }$. Consequently, their projections too are separated by the linear variety. Then, by ii) of Proposition I the thesis follows.

Theorem 2. Let $\left(\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}\right)$ be a n-tuple of vectors in π. Assume that $\left(\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}\right)$ satisfies one of the equivalent conditions of Proposition I and that $\left(\mathrm{A}_{1}, \cdots, \mathrm{~A}_{n}\right)$ is congruent to the n-tuple $\left(\mathrm{C}_{1}, \cdots, \mathrm{C}_{n}\right)$ of the orthogonal projection on π of the vectors $\mathrm{I}_{1}, \cdots, \mathrm{I}_{n}$. Then, $\mathrm{K}^{\prime}(\mathscr{A})$ is a partition of $\bar{\pi}^{+}$, where \mathscr{A} is the matrix whose columns are the $\mathrm{A}_{i}{ }^{\prime} s, i=\mathrm{I}, \cdots, n$, in a suitable ordering.

Proof. We shall make use of condition 2) of Theorem I. To this purpose consider, without loss of generality, the $n-\mathrm{I}$ vectors $\mathrm{A}_{2}, \cdots, \mathrm{~A}_{k}, \mathrm{I}_{k+1}, \cdots, \mathrm{I}_{n}$. Let π^{\prime} be the hyperplane spanned by them and $\rho=\pi \cap \pi^{\prime}$. By assumption, $C_{1} \in \stackrel{\circ}{\mathrm{~K}}_{1}$ and C_{1} will belong to one of the two half-hyperplanes determined by ρ. Of course, A_{1} will be in the other half-hyperplane, since $\left(A_{1}, \cdots, A_{n}\right)$ is a partition of π. It necessarily follows then π^{\prime} separates I_{1} from A_{1}; the theorem is therefore proved.
3. Let us apply now the results of the previous sections to the complementary system (I). Let \mathscr{P} be an irreducible non negative matrix, that is all its entries $p_{i j}$ are non negative and does not exist a permutation matrix \mathscr{M} such that

$$
\mathscr{M}^{-1} \mathscr{P} \mathscr{M}=\left(\begin{array}{cc}
\mathscr{B}_{1} & \mathrm{O} \\
\mathscr{B} & \mathscr{B}_{2}
\end{array}\right)
$$

where $\mathscr{B}_{i}, i=1,2$, is a square matrix of order $\mathrm{I} \leq m_{i}<n$, (see [5]).
Let \mathscr{D} denote the diagonal matrix with $d_{i}=\sum_{j=1}^{n} p_{i j}, i=\mathrm{I}, \cdots, n$, at position (i, i). The irreducibility of a non negative matrix \mathscr{P} has been charac-
terized by I.M. Chakravarty (see [2]) in terms of $\mathscr{A}=\mathscr{D}-\mathscr{P}$; we recall his result in a slightly different but equivalent form, using our terminology:

A non negative matrix \mathscr{P} is irreducible if and only if $\mathscr{A}=\mathscr{D}-\mathscr{P}$ satisfies the assumption (\mathbf{H}).

THEOREM 3. If \mathscr{P} is a non negative irreducible matrix, then $\mathrm{K}^{\prime}(\mathscr{D}-\mathscr{P})$ is a partition of $\bar{\pi}^{+}$, where $\pi=\operatorname{Im}(\mathscr{D}-\mathscr{P})$.

Proof. The thesis will follow from Theorem 2 once it is shown that the n-tuple of the column vectors ($-\mathrm{A}_{1}, \cdots,-\mathrm{A}_{n}$) of $-\mathscr{A}^{(1)}$ is congruent to the n-tuple $\left(\mathrm{C}_{1}, \cdots, \mathrm{C}_{n}\right)$ of Proposition 2, that is we have to show that $-\mathrm{A}_{i} \in \stackrel{\circ}{\mathrm{H}}_{i}, i=\mathrm{I}, \cdots, n$.

Consider the hyperplanes $\pi_{i}, i=\mathrm{I}, \cdots, n$, spanned by the vectors $\mathrm{I}_{1}, \cdots, \mathrm{I}_{i-1}, \mathrm{I}_{i+1}, \cdots, \mathrm{I}_{n}$, and their intersections π_{i}^{\prime} with π which are linear varieties of dimension $n-2$.

To be clear we look at the case where $i=n$. Then the linear variety π_{i} separates C_{i} from the remaining $\mathrm{C}_{j}{ }^{\prime} \mathrm{s}, i=\mathrm{I}, \cdots, n-\mathrm{I}$. In the semihyperplane determined by π_{n}^{\prime} containing H_{n}, the linear varieties π_{i}^{\prime} bound a closed convex cone contained in $\stackrel{\circ}{\mathrm{H}}_{n}$. Moreover this cone is the intersection of π with the orthant of \mathbf{R}^{n} whose elements have non negative components except for the $n^{\text {th }}$ which is strictly negative.

Since the entries $a_{i n}$ of \mathscr{A} are non positive for $i \neq n$ and strictly positive for $i=n$, because \mathscr{P} is irreducible, it follows that $-\mathrm{A}_{n}$ has non negative components except for the $n^{t h}$ which is strictly negative. But this means that $-\mathrm{A}_{n} \in \stackrel{\circ}{\mathrm{H}}_{n}$. Similar reasoning goes on for $i \neq n$ and the theorem is proved.

Corollary i. If \mathscr{P} is a non negative irreducible matrix, then all the principal minors of $\mathscr{A}=\mathscr{D}-\mathscr{P}$ up to the order $n-\mathrm{I}$ included are positive.

Proof. It follows from 4) of Theorem I.
Corollary 2. If \mathscr{P} is a non negative irreducible matrix then the complementary system

$$
\left\{\begin{array}{l}
\boldsymbol{x} \geq 0 \\
(\mathscr{D}-\mathscr{P}) \boldsymbol{x}+\boldsymbol{b} \geq 0 \\
x_{i}((\mathscr{D}-\mathscr{P}) \boldsymbol{x}+\boldsymbol{b})_{i}=0, \quad i=1, \cdots, n,
\end{array}\right.
$$

has a solution for all $b \in \mathbf{R}^{n}$ such that

$$
\sum_{i=1}^{n} \alpha_{i} b_{i} \geq 0
$$

(I) Observe that in this case the order of the A_{2} 's is fixed.
where the α_{i} are the positive coefficients of the equation of $\pi=\operatorname{Im}(\mathscr{D}-\mathscr{P})$.
We observe that, if $\sum_{i=1}^{n} \alpha_{i} b_{i}>0$ there exists a unique solution as follows from the Corollary of Theorem I; if $\sum_{i=1}^{n} \alpha_{i} b_{i}=0$, there is an infinite number of solutions, as it is easy to check.

Bibliography

[I] I. Capuzzo Dolcetta, M. Lorenzani and F. Spizzichino - Optimal stopping for Markov chains and complementarity systems, to appear.
[2] I.M. Chakravarti (1975) - On a characterization of irreducibility of a non negative matrix, "Lin. Alg. and its Appl.», Io, 103-109.
[3] R. W. Cottle (1974) - Complementarity and variational problems, System Optimization Lab., Dept. of Operations Research, Stanford Univ.
[4] H. Samelson, R.M. Thrall and O. Wesler (1958) - A partition theorem for Euclidean n-space, "Proc. Am. Math. Soc.», 9, 805-807.
[5] H. H. Schaefer (1974) - Banach Lattices and Positive Operators, Springer-Verlag.

