ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Ofelia Teresa Alas

On Blumberg's theorem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **60** (1976), n.5, p. 579–582.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1976_8_60_5_579_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1976.

Analisi matematica. — On Blumberg's theorem. Nota di OFELIA TERESA ALAS, presentata ^(*) dal Socio B. SEGRE.

RIASSUNTO. — Si stabilisce un'estensione di un teorema di Blumberg includente altre più o meno recenti estensioni [4,5,2].

H. Blumberg showed that if f is a real-valued function on \mathbb{R}^n , there is a dense subset D of \mathbb{R}^n such that f restricted to D is continuous. H. R. Bennet [2], J. C. Bradford and Casper Goffman [4], H. E. White Jr. [5], extended this theorem in different ways. An extension of Blumberg's theorem (including the precedent ones) will be proved here.

First we recall some definitions and theorems.

Let X be a topological space, (Y, d) be a metric space and $f: X \to Y$ be a function.

DEFINITION I ([2]). The function f is said to approach $x \in X$ First Categorically (written $f \to x$) if there is an $\varepsilon > 0$ and a neighborhood $N(x, \varepsilon)$ of x such that

$$M(x, \varepsilon) = \{z \in N(x, \varepsilon) \mid d(f(z), f(x)) < \varepsilon\}$$

is a First Category set.

DEFINITION 2 ([2]). The function f is said to approach $x \in X$ densely (written $f \to x$ densely) if given $\varepsilon > 0$ there is a neighborhood N (x, ε) of x such that

$$M(x, \varepsilon) = \{z \in N(x, \varepsilon) \mid d(f(z), f(x)) < \varepsilon\}$$

is dense in N (x, ε) . If D \subset X and x is a limit point of D then f is said to approach x densely via D (written $f \to x$ densely via D) if given $\varepsilon > 0$ there is a neighborhood N (x, ε) of x such that M $(x, \varepsilon) \cap$ D is dense in N $(x, \varepsilon) \cap$ D.

DEFINITION 3 ([2]). An open set $U \subset X$ is a partial neighborhood of a point $x \in X$ if either $x \in U$ or x is a limit point of U.

DEFINITION 4 ([5]). X has a σ -disjoint pseudo-base if there is a set $B = \bigcup \{B_n \mid n = 1, 2, \cdots\}$ of open subsets of X such that for each n the members of B_n are pairwise disjoint and for every nonempty open set $U \subset X$ there is a nonempty $V \in B$ contained in U.

THEOREM A ([2]). If $x \in X$, then $f \to x$ densely if and only if for each partial neighborhood U of x, f(x) is a limit point of f(U).

(*) Nella seduta dell'8 maggio 1976.

THEOREM B (Banach). If $E \subset X$ is such that each point of E is First Category relative to X then E itself is of First Category in X.

Following the proof of Theorem (1.6) of [2] we have

THEOREM 1. Let X be a topological space, (Y, d) be a second countable metric space and $f: X \to Y$ be a function. Then $F_1 = \{x \in X | f \mid x\}$ and $F_2 = \{x \in X | f \text{ does not densely approach } x\}$ are sets of First Category in X.

Proof. If $x \in F_1$ there is $\varepsilon(x) > 0$ and a neighborhood $N(x, \varepsilon(x))$ of x such that $M(x, \varepsilon(x)) = \{z \in N(x, \varepsilon(x)) \mid d(f(z), f(x)) < \varepsilon(x)\}$ is a set of First Category in X. (With no lost of generality we may assume $\varepsilon(x)$ of the form 1/m where $m = 1, 2, \cdots$). For each $k = 1, 2, \cdots$ let $C(k) = \{x \in F_1 \mid \varepsilon(x) = 1/k\}$ and let $D(k) = \{a(k, i) \mid i = 1, 2, \cdots\}$ be a countable dense subset of f(C(k)). Let $D = \cup \{a(k, i) \mid k, i = 1, 2, \cdots\}$. If $a(m, i) \in D$ let $R(m, i) = \{x \in C(m) \mid d(a(m, i), f(x)) < 1/2m\}$ and if $x \in R(m, i)$ let

RM
$$(x, i) = \{z \in M (x, 1/m) | d(f(z), a(m, i)) < 1/2 m \}.$$

Now, if $x, y \in \mathbb{R}$ (m, i) and $z \in \mathbb{RM}$ $(x, i) \cap \mathbb{N}(y, 1/m)$ then $z \in \mathbb{RM}(y, i)$. Indeed, $x, y \in \mathbb{R}(m, i)$ imply d(a(m, i), f(x)) < 1/2 m and d(a(m, i), f(y)) < 1/2 m; $z \in \mathbb{RM}(x, i)$ implies $z \in \mathbb{M}(x, 1/m)$ and d(f(z), a(m, i)) < 1/2 m. Thus, d(f(z), f(y)) < 1/m and $z \in \mathbb{N}(y, 1/m)$; it follows that $z \in \mathbb{M}(y, 1/m)$ and d(f(z), a(m, i)) < 1/2 m; in consequence $z \in \mathbb{RM}(y, i)$. Putting $\mathbb{T}(m, i) = \bigcup \{\mathbb{RM}(x, i) \mid x \in \mathbb{R}(m, i)\}$ we have that $\mathbb{T}(m, i)$ is of First Category in each of its points and by Theorem B is of First Category in X. Finally, we have that $F_1 \subset \bigcup \{\mathbb{T}(m, i) \mid m, i = 1, 2, \cdots\}$ and this last set is of First Category in X.

Let us now prove the second part of the theorem. For each $x \in F_2$ there is $\varepsilon(x) > 0$ such that for each neighborhood N $(x, \varepsilon(x))$ of x the set $M(x, \varepsilon(x)) = \{z \in N(x, \varepsilon(x)) \mid d(f(z), f(x)) < \varepsilon(x)\}$ is not dense in N $(x, \varepsilon(x))$.

Since Y is second countable let $\{G_n | n = 1, 2, \dots\}$ be an open basis of Y. For each $n = 1, 2, \dots$ let

$$\mathbf{F}(n) = \{ x \in \mathbf{F}_2 \mid f(x) \in \mathbf{G}_n \subset \mathbf{B}(f(x), \varepsilon(x)) \}.$$

Since F_2 is contained in $\cup \{F(n) \mid n = 1, 2, \dots\}$ it is enough to prove that the interior of the closure of F(n) is empty for each $n = 1, 2, \dots$ On the contrary, let G be a nonempty open set contained in the closure of F(n) for some n; if $p, q \in G \cap F(n)$ then $d(f(p), f(q)) < \varepsilon(p)$ and $\{q \in G \mid d(f(p), f(q)) < \varepsilon(p)\}$ would be dense in G which is not possible. The proof is completed.

THEOREM 2. Let X be a Baire topological space, (Y, d) be a second countable metric space and $f: X \to Y$ be a function. There is a dense set $D \subset X$ such that if $x \in D$ then $f \to x$ densely via D.

Proof. This theorem is a generalization of Theorem 2.2 of [2]. Let $F_1 = \{x \in X \mid f_1 \to x\}$; by Theorem 1 F_1 is of First Category in X. Now put $X_1 = X - F_1$ and $F_2 = \{x \in X_1 \mid f \text{ does not densely approach } x \text{ via } X_1\}$; by virtue of Theorem 1 F_2 is of First Category in X_1 (and thus in X). Put $D = X - (F_1 \cup F_2)$; D is dense in X and we shall prove that for each $x \in D$, $f \to x$ densely via D. Indeed, let $x \in D$ and let U be a partial neighborhood of x in X (thus, $U \cap D$ is a partial neighborhood of x in D). Since $x \notin F_2$, $f \to x$ densely via X_1 ; given $\varepsilon > 0$, there is a neighborhood M $(x, \varepsilon/2)$ of x in X such that

$$\mathbf{M}(x, \mathbf{\epsilon}/2) \cap \mathbf{X}_1 = \{ z \in \mathbf{N}(x, \mathbf{\epsilon}/2) \mid d(f(z), f(x)) < \mathbf{\epsilon}/2 \} \cap \mathbf{X}_1$$

is dense in $N(x, \varepsilon/2) \cap X_1$. Then, there is a $q \in U \cap M(x, \varepsilon/2) \cap X_1$ and, since q does not belong to F_1 , the set $\{z \in U \mid d(f(z), f(q)) < \varepsilon/2\} \cap D$ is not of First Category in X. If y belongs to this last set, we have that $d(f(y), f(x)) < \varepsilon$; it follows that f(x) is a limit point of $f(U \cap D)$, and by Theorem 1.5 of [2], $f \to x$ densely via D.

THEOREM 3. Let X be a Baire semi-metrizable topological space, (Y, d) be a second countable metric space and $f: X \to Y$ be a function. There is a dense subset D of X such that f restricted to D is continuous.

Proof. The proof follows in an analogous way of that of Theorem 2.5 of [2], since this last proof depends only on the existence of a dense subset D of X, such that for each $x \in D$, $f \to x$ densely via D.

THEOREM 4. Let X be a Baire Hausdorff space with a σ -disjoint pseudobase, Y be a Hausdorff second countable space and $f: X \to Y$ be a function. There is a dense subset D of X such that the restriction of f to D is continuous.

Proof. Following Proposition 1.7 of [5], let $\mathscr{P} = \bigcup \{P_n \mid n = 1, 2, \dots\}$ be a σ -disjoint pseudo-base of X; we may assume that, for each n, $G_n = \bigcup P_n$ is dense in X and P_n refines P_{n-1} . Since X is a Baire space, $X' = \cap \{G_n \mid n = 1, 2, \dots\}$ is dense in X. Put $P(X') = \{P \cap X' \mid P \in \mathscr{P}\}$. Then P(X')is a base for a topology τ^* on X' and is a pseudo-base for the subspace topology on X'. Since each element of P(X') is open-closed in (X', τ^*) , this last space is regular and P(X') is a σ -discrete base for τ^* ; thus, (X', τ^*) is pseudometrizable.

Furthermore, (X', τ^*) is a Baire space. On the other hand, since Y is a Hausdorff second countable space, there is a second countable metric space Z and a function $g: Z \to Y$, which is continuous and bijective.

Now we have the Baire pseudo-metrizable space (X', τ^*) , the second countable metric space Z and the function $h: X' \to Z$, which assigns to each $x \in X'$ the element $z \in Z$, where g(z) = f(x). Since every Baire pseudometrizable space contains a dense Baire metrizable subspace, we may apply Theorem 3 and there is a dense subset D of X' such that the restriction of h to D is continuous. But, since g is continuous, the restriction of fto D is continuous. (Indeed, for each $x \in D$, f(x) = g(h(x))). We now give a example to show that the hypothesis of second countability of Y in Theorem 4 cannot be entirely avoided.

Example. Let R be the real line (with the usual topology) and Y be the discrete space over the real numbers. Let $f: \mathbb{R} \to \mathbb{Y}$ be the identity function. Let us assume that there exists a dense subset D of R such that the restriction of f to D is continuous. For each $y \in f(D)$, the inverse image set $f^{-1}(\{y\})$ is an open unitary set in D; thus, there is an open set U_y in R such that $f^{-1}(\{y\}) = U_y \cap D$. It follows that the open set U_y has just one point in D, which impossible, because D is dense in R.

References

- [I] S. BANACH (1930) Théorème sur les ensembles de première catégorie, «Fund. Math.», 16, 395-398.
- [2] H. R. BENNETT (1975) Real-valued functions on certain semi-metric spaces, «Compositio Math.», 30, 137-144.
- [3] H. BLUMBERG (1922) New properties of all real functions, «Trans. Amer. Math. Soc. », 24, 113-128.
- [4] J.C. BRADFORD and C. GOFFMAN (1960) Metric spaces in which Blumberg's theorem holds, « Proc. Amer. Math. Soc. », 11, 667–670.
- [5] H. E. WHITE JR. (1974) Topological spaces in which Blumberg's theorem holds, « Proc. Amer. Math. Soc. », 44, 454-462.