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Algebra. — Remarks on Functors in Lie algebras ™. Nota di
Luier SERENA, presentata 9 dal Corrisp. G. ZAPpa.

RIASSUNTO. — In questa Nota si studiano i funtori definiti sulla classe della Algebre
di Lie di dimensione finita su un campo algebricamente chiuso di caratteristica zero e si
determinano quelli massimali e non coincidenti con il funtore universale sulle algebre di
Lie risolubili oppure sulle algebre di Lie semisemplici.

In [2] Barnes and Gastineau-Hills introduced the notion of functor on
the class of finjte-dimensional (soluble) Lie algebras over some fixed field

as a rule F selecting in every such Lie algebra L a set F (L) of subalgebras
subject to the axioms:

@ If ¢ is a homomorphism of L and Fe F (L), then F®e F (L%);
g: If Le F(L), then {L} = F (L);

y: If Fe F (L), and F is contained in some subalgebra M of L, then
FeF(M).

If one restricts attention to Lie algebras over an algebraically closed field
of characteristic O, then the results of [2] show that the only functors selecting
only soluble subalgebras are the zero functor O, the Cartan functor C which
selects in every Lie algebra L the set C (L) of Cartan subalgebras, and the
Borel functor selecting the set of all maximal soluble subalgebras of L. In
non-soluble Lie algebras there are also other functors, for example the Zev:
Sunctor § selecting in L the set 8 (L) of Levi (= maximal semi-simple) subal-
gebras. Of course one would like to obtain some sort of survey of the possible
functors. Here we shall go a few steps in that direction.

The functors C, B and 8 select in L a set of isomorphic subalgebras (in
fact they are conjugate under the group Aut L). Thus one might hope that
every functor is so well-behaved. We shall give an example showing that
this hope is ill founded.

There are two natural partial orders on the set of all functors on the
class of finite-dimensional Lie algebras: F< G if and only if for every Lie
algebra L. and for every F € F (L) there is a subalgebra G € G (L) with F = G.
More restrictively, we put F < G if F< G and if for every Ge G (L) there
is an Fe F (L) with F € G. One would like to obtain a survey of the maximal
functors (if they exist)—here we mean maximal distinct from U, the univer-
sal functor, associating {L} = U (L) to L. Does every functor F lie below
(in any of the two orderings some maximal functor?

(*) Eseguito nell’ambito dell’attivitd del G.N.S.A.G.A. del C.N.R.
(**) Nella seduta dell’8 maggio 1976.
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In the search for answers to these questions we have found a few new
types of functors which may be of some interest. All the maximal functors
have been determined which do not coincide with the universal functor U
on the soluble as well as the semi-simple Lie algebras, and every functor with
this property lies below one of these. However, there exist functors F = U
coinciding with U on the soluble as well as the semi-simple Lie algebras.
We have not been able to determine the maximal ones among these.

All Lie algebras considered will be finite-dimensional over some fixed
algebraically closed field of characteristic zero. The standard fact used is
that such an algebra L has the form L = A -+ R (L), where A is a Levi sub-
algebra (= maximal semi-simple) and R (L) is the maximal soluble ideal of
L (see, for example [3]).

I. SOME MAXIMAL FUNCTORS

In a fixed simple Lie algebra S select a non-empty set M (S) of maximal
subalgebras of S which is invariant under the group of all automorphisms
of S. Observe that this defines the set M (T) for every algebra T isomorphic
to S. We want to extend this selection to a rule Mg selecting a set of sub-
algebras in every Lie algebra L.

DEFINITION. Let L be any Lie algebra and A any Levi subalgebra of L.
The Lie algebra A decomposes into the direct sum A = A(sy ® Agsy’, where
A(sy is a direct sum of copies of S and A(sy', a direct sum of simple subalgebras

of A not isomorphic to S. If Ag= (o), put Mg (L) =L, If Ay = (:L) S;, put
i=1

Ms (L) = {(@ Mi) +As, +R@); M;e M (Si)}.
o

This definition does not depend on the choice of the Levi subalgebra
A in L, since the Levi subalgebras of L are conjugate under the special auto-
morphisms of L defined in terms of R (L) (see [3]).

TﬁEOREM 1. For the simple Lie algebra S the rule Mg is a functor.

Proof. Since homomorphism of L map Levi subalgebras of L to Levi
subalgebras of the homomorphic image, it is clear that for every homomor-
phism ¢ of L one has Mg (L%) = (Mg (L))*. If LeMs (L), then L cannot
have any composition factor isomorphic to S: By the definition of Mg one
thus has Mg (I) = {L}. If B is any subalgebra of L containing M € Mg (L),
then B = (B n As)) + Agsy + R (L) for any Levi subalgebra A of L. Now
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If now BnS;2 M, then BnS,=S; and M;e M (S;). Thus one has
M e Mg (B), and Mg is a functor.

In general, the simple Lie algebra S has maximal subalgebras which
are non-isomorphic (see, for example, Dynkin [4]). Thus we see that the
subalgebras of the Lie algebra L selected by the functor Mg need not be
isomorphic.

COROLLARY 1. If the functor F does not coincide with the universal functor
U on the class of simple Lie algebras, then there is a simple Lie algebra S and
a set M (S) of maximal subalgebras of S so that F < Mg.

Proof. Since F does not coincide with U on the class of simple Lie alge-
bras, there is a simple Lie algebra S with S ¢ F (S). Put M (S) the set of all
maximal subalgebras of S containing some Fe F (S). Then it follows from
the definition of the functor Ms and from the homomorphism invariance
of F(L) and Mg (L) that F < Ms.

The next statement is now pretty obvious, and will not be proved.

COROLLARY 2. For the simple Lie algebra S the functor Mg is maximal
with respect to the order relation <, it is also maximal with respect to the order
relation < if, and only if, M (S) is the set of all maximal subalgebras of S.

There is a further remarkable property of the functor Mg: for every
Lie algebra L and for every ideal I of L, one has that M e Mg (L) implies
In Me Mg (). Also the Levi functor S has this property This property
suggests the following definition.

DEFINITION. The functor F is called ¢deal (respectively, radical) if one
has for every Lie algebra L. and every Fe F (L) that Fn Ie F(I) for every
ideal I of L (respectively, Fn R (L)e F R (L))).

We now restate our results as a contrast and motivation for further con-
siderations.

COROLLARY 3. If the (ideal or radical) functor F is maximal with respect
to the order relation <, and if F does not coincide with the universal functor
U on the class of all simple Lie algebras, then F = Mg for some simple Lie
algebra S.

LEMMA. If the ideal functor F coincides with the universal functor U on
the class of all simple Lie algebras, then it coincides with U on the class of all

- semi-simple Lie algebras. That is, 8, the Levi functor, satisfies S < F.

Proof. 1f L is a semi-simple Lie algebra and Fe F (L), then one has
FnSeF () for every simple direct summand of L, since F is ideal. As F
coincides with U on S, one has Fn S =S. But then F=Le F @), and F
coincides with U on L. If L is now an arbitrary Lie algebra and Fe F (L),
then F must contain (or rather map onto) a Levi subalgebra of L, hence S < F.
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THEOREM 2. If the radical functor ¥ # U satisfies S < F, then either
F =8, or F coincides with C, the Cartan functor on the class of all soluble Lie
algebras. ' 7

Proof. 1f F £ 8, the F cannot coincide with O on the class of all soluble
Lie algebras. Barnes and Gastineau-Hills have shown that except for O the
only functors on the class of all soluble Lie algebras are the Cartan functor C
and the universal functor. If F coincides with U on the class of all soluble
Lie algebras and if Fe F (L) for any Lie algebra L, then Fn R(L) = R (L).
Since F contains a Levi subalgebra A by assumption, one has F DA
4+ R(@L)=L. Hence F=1L; and F coincides with U, contrary to our
assumption. Thus, if S £ F £ U, the functor F must coincide with the Cartan
functor C on the class of all soluble Lie algebras.

Consider the hypothetical situation of Theorem 2, that is a radical functor
F satisfying 8 < F, which coincides with C on the class of soluble Lie algebras.
For any Lie algebra L let F e F (L), then F =C + A, where C is a Cartan
subalgebra of R (L) and A is a Levi subalgebra of L. Clearly, C is an ideal
of F, and since C is its own idealiser in R(L), one has that F = {/eL;/°C < C}.

DEFINITION. The rule I selects in every Lie algebra L the set I (L) of
idealisers in L of the Cartan subalgebras of R (L).

THEOREM 3. The rule 1 is a radical functor satisfying S < 1.

Proof. By Barnes [1] one has I -+~ R (L) = L for every Lie algebra L
and every I€ I(L). Thus I must contain a Levi subalgebra of L. This shows
S <I. If ¢ is a homomorphism of L, then R (L*) = (R (L)), and Cartan
subalgebras of R (L) are mapped to Cartan subalgebras of R (L¥). Also the
Levi subalgebras of L are mapped to those of L?. Since the Cartan subalgebra
C? of the soluble Lie algebra R (L®) is its own idealiser in R (L%), it follows
that the idealiser of C® in L? is of the form I? with 1€ I(L). This shows the
invariance of the rule I under homomorphisms. If I€ I (L) then R (L) idealises
a Cartan subalgebra of R (L), thus R (L) is nilpotent and so its only Cartan
subalgebra. Hence I'(L) = {L}. Let B be an intermediate subalgebra of
L:TBgcL for some IeI(L); then R(B) = Bn R (L), and the Cartan
subalgebra C of R (L) idealised by I is still-a Cartan subalgebra of R (B).
Thus T is a functor; clearly, it is radical.

COROLLARY. The Levi functor S is the only ideal functor F 5= U coin-
ciding with U on the class of simple Lie algebras.

" Proof. Let F be such a functor. Since it coincides with U on the simple
Lie algebras, the Lemma gives us that S < F. An ideal functor is in parti-
cular also radical. Thus Theorems 2 and 3 together yield that either F = S
or F=1. The ideal functor F defines an ideal functor on the class of all so-
luble Lie algebras, but there only the trivial functors O and U are ideal. Thus
F cannot define the Cartan functor on the class of soluble Lie algebras. Hence

F#L
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We have thus obtained a complete survey of all the maximal ideal func-
tors and of those maximal radical functors which do not coincide with the
universal functor U on the class of soluble as well as on the class of simple
Lie algebras.

2. DIAGONAL FUNCTORS

If the functor F coincides with the universal functor U on the class of
all simple Lie algebras, but not on the class of semi-simple Lie algebras, we
shall call F a diagonal functor.

If F is a diagonal functor, then there is a simple Lie algebra such that
F does not coincide with U on the class of all (finite) direct sums of copies
of S. The reason for calling these functors diagonal/ will be apparent from the
following result.

PROPOSITION.  If the functor ¥ coincides with the universal functor U
on the simple algebra S, but not on the class of all direct sums of copies of S,

then one has for every L = QS Si, S ~S,;, and for every Fe F (L), that F ~S.
i=1

Proof. Let L be the direct sum of the minimal number 7 of copies of S,
L= G”Bz Si, S=S5; so that U(L) % F(L). The subalgebra Fe F(L) is a

i-1
subdirect sum of the 7 copies of S. Let S, be an arbitrary minimal ideal
of L. If the intersection Fn S, # (0), then S; € F. But then F/S, == L/S,.
On the other hand, F/S, e F (L/S,) = U (LS.}, by the minimality of L. These
two statements contradict each other! Hence, for every minimal ideal S,
of L one has S, n F = (0). Minimality of L yields again that S, + F = L.
But then F must contain a non-trivial ideal of L, unless 72 = 2 and F is a
diagonal. This establishes in particular, the Proposition for the direct sum
of two copies of S.

Suppose the. Proposition has been proved for direct sums of fewer than

n copies of S, and Let L = é S;. The subalgebra Fe F (L) is a subdirect

. t=1

sum of the S;. Since # > 2, and (F + S,)/S; is simple, by induction, one has
that F is a direct sum of at most two copies of S. Hence, there is a minimal
ideal S,, say, of L with Fn S; = (0); and one obtains that F ~ (F -+ Sp/S,
is simple.

Remark. For such a Lie algebra L = @ S; with S~ S; and for every

i=1 :

Fe F(L) there are 7 isomorphisms ¢;:S —S; so that F = (S%,... %)
s€ S, ie. F is the diagonal of the S; with respect to the isomorphisms {q;}.

DEFINITION. For the simple Lie algebra S we now define a diagonal
rule Ds on the class of all Lie algebras. If L is a semi-simple Lie algebra,
then L = L{S} ) L{S}’, where L{s} is the direct sum of the minimal ideals

37. — RENDICONTI 1976, vol. LX, fasc. 5
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of L isomorphic to S and Lgs," is the direct sum of the minimal ideals of L
not isomorphic to S; put

Ds (L) ={D + L¢sy; D diagonal in Lg}.
For the arbitrary Lie algebra L choose a Levi subalgebra A and put
Ds (L) = {D +R(L) ; De Dg (A)}.

THEOREM 4. The rule Ds is a functor maximal with respect to the

ordering <. For every diagonal functor ¥ there is a simple Lie algebra S so
that F < Dg.

Proof. 1f Le Dg (L), then—from the definition of Dg—any Levi sub-
algebra of L can have at most one direct summand isomorphic to S. But
in that case the definition of Ds yields {L} = Dg(L). If De Dg (L) and
M is any intermediate subalgebra of L:D < M < L. Then one has
M = (Agsy + R (L)) + (M n Ags)) for every Levi subalgebra A of L. Since
Mn A{S} contains a diagonal of Agsy (viz. D n Aysy), the algebra (M n Asy)
must be a direct sum of copies of S. And a diagonal of As remains a diagonal
of M n Agsy. Thus D e Dg (M).

If M is a Lie algebra with Levi subalgebra B and if ¢ is a homomorphism
of L onto M such that A® = B, then clearly ¢ maps every diagonal of Agsy
to one of Bysy and Bgsy + R (M) = (Asy + R(IL)". Hence for every
subalgebra D € Dg (L) one has D¥e Dg (M). Thus Ds is a functor.

That Dg is maximal with respect to the order relation < is clear from
the Proposition. Now let F 72 U be a functor satisfying Dg < F. Since Dg
coincides with U on the class of all Lie algebras without composition factor
isomorphic to S, the axiomations of functors yields that there F also coincides
with U. On the direct sums of copies of S, however, the Proposition yields
that F coincides with Dg. Thus in the Lie algebra L the subalgebra Fe F (L)
can differ from an element of Dy (L) at most in the intersection F n R (L).
But that means F +- R(L)e D (L). But now F and F + R (L) both are
elements of F (L), hence of F(F + R (L)), and so—by axiom—R (L) < F.
This shows that F = Dg.

Remarks. 1) Observe that the functor Dg is radical. Thus, we now have
obtained a complete survey of the maximal radical functors. 2) By modifying
the definition of Dg—essentially by replacing S by a set of simple Lie alge-
bras—one may construct 2% distinct diagonal functors.

COROLLARY. [If the functor F does not coincide with U on the class of semi-
simple Lie algebras, then there is a simple Lie algebra S and a set M (S) of ma-
ximal subalgebras of S such that either ¥ < Mg or F < Dg.

If the functor F does not satisfy F < Mg or F < Dg for a suitable simple
Lie algebra S and a set M (S) of maximal subalgebras of S, then F must
coincide with the universal functor U on the soluble as well as on the semi-
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simple Lie algebras. Is there any such functor F == U? Is every such functor
majorised by some maximal one? Describe the maximal functors in this c¢lass.

For the simple Lie algebra S let Ks be the rule which associates to every
Lie algebra L the set Kg (L) of subalgebras of the form A - K (S), where A
is a Levi subalgebra of L with the decomposition A :A{S} —i—A{S}r and
K (S) is the annihilator of Agsyin R(L). It is not difficult to prove.

THEOREM 5. The rule Kg is a functor which coincides with U on the solu-
ble as well as the semi-simple Lie algebras.

It seems likely that Kg is maximal with respect to <, but we have not
been able to prove this. Replacing S by a set of simple Lie algebras one ob-
tains similarly 2™ distinct functors coinciding with U on the soluble as well
as the semi-simple Lie algebras; but we do not know whether there are
further essentially different functors in this class.
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