Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

John H. Hodges

Ranked partitions of rectangular matrices over finite fields

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 60 (1976), n.1, p. 6-12.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1976_8_60_1_6_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - Ranked partitions of rectangular matrices over finite fields. Nota di John H. Hodges, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Per certe matrici $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}$, viene determinato in modo esplicito il numero delle soluzioni ($\mathrm{U}_{1}, \mathrm{U}_{2}$) dell'equazione matriciale ($\mathrm{I} \cdot \mathrm{I}$) su di un campo finito, dove le U_{1}, U_{2} abbiano ranghi assegnati.

I. INTRODUCTION

Let A_{1} be an $m \times t$ matrix of rank ρ_{1}, A_{2} be an $s \times n$ matrix of rank ρ_{2} and B be an $s \times t$ matrix of rank r over a finite field F of q elements. In [3], the Author enumerated the pairs of $s \times m$ matrices U_{1} and $n \times t$ matrices U_{2} such that

$$
\begin{equation*}
\mathrm{U}_{1} \mathrm{~A}_{1}+\mathrm{A}_{2} \mathrm{U}_{2}=\mathrm{B} \tag{I.I}
\end{equation*}
$$

More recently, A. Duane Porter [7] and the Author [4] have determined for certain integers $a \geqq \mathrm{I}, b \geqq \mathrm{I}$, and matrices $\mathrm{A}_{1}, \mathrm{~A}_{2}$, the number of solutions $\mathrm{W}_{a}, \cdots, \mathrm{~W}_{1}, \mathrm{~V}_{1}, \cdots, \mathrm{~V}_{b}$ over F of the more general matrix equation

$$
\begin{equation*}
\mathrm{W}_{a} \cdots \mathrm{~W}_{1} \mathrm{~A}_{1}+\mathrm{A}_{2} \mathrm{~V}_{1} \cdots \mathrm{~V}_{b}=\mathrm{B} \tag{1.2}
\end{equation*}
$$

In this paper we study the problem of determining the number of solutions $\mathrm{U}_{1}, \mathrm{U}_{2}$ of (I.I) of given ranks r_{1}, r_{2}, respectively, over F. If this problem could be solved for arbitrary A_{1}, A_{2}, then it would be possible to determine the number of solutions of (I.2) for arbitrary $a, b, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ by using Porter's enumeration [6] of the solutions of the matrix equation $W_{a} \cdots W_{1}=U_{1}$, which depends on the rank of U_{1}. Unfortunately, however, the enumeration given in the present paper is only complete for matrices A_{1}, A_{2}, and B satisfying certain special conditions that are implied by Porter's conditions in [7] on A_{1} and A_{2}.

2. NOTATION AND PRELIMINARIES

Let F denote the finite field of $q=p^{f}$ elements, p a prime. Except as noted, Roman capitals $\mathrm{A}, \mathrm{B}, \cdots$ will denote matrices over F . $\mathrm{A}(m, n)$ will denote a matrix of m rows and n columns and $\mathrm{A}(m, n ; r)$ a matrix of the same size with rank r. I_{r} will denote the identity matrix of order r and $\mathrm{I}(m, n ; r)$ will denote an $m \times n$ matrix with I_{r} in its upper left corner and zeros, elsewhere.

[^0]If $\mathrm{A}=\left(\alpha_{i j}\right)$ is square, then $\sigma(\mathrm{A})=\Sigma \alpha_{i i}$ is the trace of A and whenever $A+B$ or $A B$ is square, then $\sigma(A+B)=\sigma(A)+\sigma(B)$ and $\sigma(A B)=$ $=\sigma(\mathrm{BA})$.

For $\alpha \in \mathrm{F}$, we define

$$
\begin{equation*}
e(\alpha)=\exp 2 \pi i t(\alpha) / p \quad, \quad t(\alpha)=\alpha+\alpha^{p}+\cdots+\alpha^{p^{f-1}} \tag{2.1}
\end{equation*}
$$

so that for all $\alpha, \beta \in \mathrm{F}, e(\alpha) \in \mathrm{GF}(p), e(\alpha+\beta)=e(\alpha) e(\beta)$ and

$$
\sum_{\gamma \in \mathrm{F}} e(\alpha \gamma)= \begin{cases}q, & \alpha=0, \tag{2.2}\\ o, & \alpha \neq 0,\end{cases}
$$

where the sum is over all $\gamma \in \mathrm{F}$. By use of (2.2) and properties of σ it is easily shown that for $\mathrm{A}=\mathrm{A}(m, n)$

$$
\sum_{\mathrm{B}} e\{\sigma(\mathrm{AB})\}= \begin{cases}q^{m n}, & \mathrm{~A}=0 \tag{2.3}\\ 0, & \mathrm{~A} \neq \mathrm{o}\end{cases}
$$

where the sum is over all matrices $\mathrm{B}=\mathrm{B}(n, m)$.
The number $g(u, v ; y)$ of $u \times v$ matrices of rank y over F is given by Landsberg [5] as

$$
\begin{equation*}
g(u, v ; y)=\prod_{j=0}^{y-1}\left(q^{u}-q^{j}\right)\left(q^{v}-q^{j}\right) /\left(q^{y}-q^{j}\right) . \tag{2.4}
\end{equation*}
$$

Following [2; (8.4)], if $\mathrm{B}=\mathrm{B}(s, t ; \rho)$, we define

$$
\begin{equation*}
\mathrm{H}(\mathrm{~B}, z)=\sum_{\mathrm{C}} e\{-\sigma(\mathrm{BC})\} \tag{2.5}
\end{equation*}
$$

where the sum is over all matrices $\mathrm{C}=\mathrm{C}(t, s ; z)$. This sum is evaluated in [2, Theorem 7] to be

$$
\mathrm{H}(\mathrm{~B}, z)=q^{\rho z} \sum_{j=0}^{z}(-\mathrm{I})^{j} q^{j(j-2 \rho-1) / 2}\left[\begin{array}{l}
\rho \tag{2.6}\\
j
\end{array}\right] g(s-\rho, t-\rho ; z-j),
$$

where $\left[\begin{array}{l}\rho \\ j\end{array}\right]$ denotes the q-binomial coefficient defined for nonnegative integers ρ and j by $\left[\begin{array}{l}\rho \\ o\end{array}\right]=\mathrm{I},\left[\begin{array}{l}\rho \\ j\end{array}\right]=\mathrm{o}$ if $j>\rho$ and

$$
\left[\begin{array}{l}
\rho \\
j
\end{array}\right]=\left(\mathrm{I}-q^{\rho}\right) \cdots\left(\mathrm{I}-q^{\circ-j+1}\right) /(\mathrm{I}-q) \cdots\left(\mathrm{I}-q^{j}\right), \quad \mathrm{o}<j \leqq \rho .
$$

Since $\mathrm{H}(\mathrm{B}, z)$ as given by (2.6) depends only on s, t, ρ and z, we write $\mathrm{H}(\mathrm{B}, z)=\mathrm{H}(s, t, \rho, z)$.

3. Ranked solutions of (i.i); general case

Let N denote the number of solutions $\mathrm{U}_{1}=\mathrm{U}_{1}\left(s, m ; r_{1}\right), \mathrm{U}_{2}=\mathrm{U}_{2}\left(n, t ; r_{2}\right)$ over F of equation (I.I) for given $\mathrm{A}_{1}=\mathrm{A}_{1}\left(m, t ; \rho_{1}\right), \mathrm{A}_{2}=\mathrm{A}_{2}\left(s, n ; \rho_{2}\right)$ and $\mathrm{B}=\mathrm{B}(s, t ; r)$. Let $\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{P}_{2}, \mathrm{Q}_{2}$ be arbitrary, but fixed, nonsingular
matrices of appropriate sizes over F such that $\mathrm{P}_{1} \mathrm{~A}_{1} \mathrm{Q}_{\mathbf{1}}=\mathrm{J}_{1}=\mathrm{I}\left(m, t ; \rho_{1}\right)$ and $\mathrm{P}_{2} \mathrm{~A}_{2} \mathrm{Q}_{2}=\mathrm{J}_{2}=\mathrm{I}\left(s, n ; \rho_{2}\right)$. Then, letting $\mathrm{B}_{0}=\mathrm{B}_{0}(s, t ; r)=\mathrm{P}_{2} \mathrm{BQ}_{1}$, it is easy to show that (I.I) is equivalent to

$$
\begin{equation*}
\mathrm{U}_{1} \mathrm{~J}_{1}+\mathrm{J}_{2} \mathrm{U}_{2}=\mathrm{B}_{0} . \tag{3.1}
\end{equation*}
$$

Therefore, in view of (2.3) and other properties of σ and e from section 2, N is given by

$$
\begin{align*}
\mathrm{N} & =q^{-s t} \sum_{\mathrm{U}_{2}, \mathrm{U}_{1}} \sum_{\mathrm{C}(t, s)} e\left\{\sigma\left(\left(\mathrm{U}_{1} \mathrm{~J}_{1}+\mathrm{J}_{2} \mathrm{U}_{2}-\mathrm{B}_{0}\right) \mathrm{C}\right)\right\} \tag{3.2}\\
& =q^{-s t} \sum_{\mathrm{C}(t, s)} e\left\{\sigma\left(\mathrm{~B}_{0} \mathrm{C}\right) \sum_{\mathrm{U}_{1}} e\left\{-\sigma\left(\mathrm{U}_{1} \mathrm{~J}_{1} \mathrm{C}\right)\right\} \sum_{\mathrm{U}_{2}} e\left\{-\sigma\left(\mathrm{J}_{2} \mathrm{U}_{2} \mathrm{C}\right)\right\},\right.
\end{align*}
$$

where the summations are over all $\mathrm{U}_{1}=\mathrm{U}_{1}\left(s, m ; r_{1}\right), \mathrm{U}_{2}=\mathrm{U}_{2}\left(n, t ; r_{2}\right)$ and $\mathrm{C}(t, s)$ over F .

In order to sum over all $\mathrm{C}(t, s)$ in (3.2), we may group together all terms corresponding to C's of the same rank z with $0 \leqq z \leqq \min (t, s)$. For each such $z>0$, we may let $\mathrm{C}=\mathrm{PI}(t, s ; z) \mathrm{Q}$, where P and Q are nonsingular of orders t and s, respectively. Then, to sum over all C of rank z in (3.2), we may sum independently over all such nonsingular P and Q and divide this sum by the number of different pairs P, Q which yield each different $\mathrm{C}=\mathrm{C}(t, s ; z)$. This number is easily shown to be equal to $g_{t} g_{s} / g(t, s ; z)$, where $g(t, s ; z)$ is the number of such C over F as given by (2.4) and $g_{k}=g(k, k ; k)$ is the number of nonsingular matrices of order k over F .

If all of the above is done in (3.2), we get

$$
\begin{align*}
\mathrm{N} & =q^{-s t}\left[g\left(s, m ; r_{1}\right) g\left(n, t ; r_{2}\right)+\right. \\
& \left.+\sum_{z=1}^{(t, s)} g(t, s ; z) \mid g_{t} g_{s} \sum_{P, Q} e\left\{\sigma\left(\mathrm{~B}_{0} \mathrm{PI}(t, s ; z) \mathrm{Q}\right)\right\} \cdot \mathrm{S}_{1} \cdot \mathrm{~S}_{2}\right],
\end{align*}
$$

where (t, s) denotes the minimum of t and s, P and Q run independently through all nonsingular matrices of orders t and s, respectively, over F and for arbitrary but fixed z, P, and Q, the sums S_{1} and S_{2} are defined by

$$
\left\{\begin{array}{l}
\mathrm{S}_{1}=\sum_{\mathrm{U}_{1}\left(s, m ; r_{1}\right)} e\left\{\sigma\left(\mathrm{U}_{1} \mathrm{~J}_{1} \mathrm{PI}(t, s ; z)\right)\right\} \tag{3.4}\\
\mathrm{S}_{2}=\sum_{\mathrm{U}_{2}\left(n, t ; r_{2}\right)} e\left\{\sigma\left(\mathrm{I}(t, s ; z) \mathrm{QJ}_{2} \mathrm{U}_{2}\right)\right\}
\end{array}\right.
$$

(Note that S_{1} and S_{2} have been simplified by replacing $-\mathrm{QU}_{1}$ and $-\mathrm{U}_{2} \mathrm{P}$ by U_{1} and U_{2}, respectively).

If P and Q in (3.4) are partitioned into submatrices as $\mathrm{P}=\left(\mathrm{P}_{i j}\right)$, $\mathrm{Q}=\left(\mathrm{Q}_{i j}\right)$ for $i, j=\mathrm{I}, 2$, where $\mathrm{P}_{11}=\mathrm{P}_{11}\left(\rho_{1}, z ; f_{1}\right)$ with $\mathrm{o} \leqq f_{1} \leqq \min \left(\rho_{1}, z\right)$, $\mathrm{P}_{12}=\mathrm{P}_{12}\left(\rho_{1}, t-z\right) \quad, \quad \mathrm{P}_{21}=\mathrm{P}_{21}\left(t-\rho_{1}, z\right), \quad \mathrm{P}_{22}=\mathrm{P}_{22}\left(t-\rho_{1}, t-z\right)$ and $\mathrm{Q}_{11}=\mathrm{Q}_{11}\left(z, \rho_{2} ; f_{2}\right)$ with $\mathrm{o} \leqq f_{2} \leqq \min \left(z, \rho_{2}\right), \mathrm{Q}_{12}=\mathrm{Q}_{12}\left(z, s-\rho_{2}\right), \mathrm{Q}_{21}=$ $=Q_{21}\left(s-z, \rho_{2}\right), Q_{22}=Q_{22}\left(s-z, s-\rho_{2}\right)$, then it is easily shown that $\operatorname{rank} \mathrm{J}_{1} \mathrm{PI}(t, s ; z)=f_{1}$ and $\operatorname{rank} \mathrm{I}(t, s ; z) Q \mathrm{~J}_{2}=f_{2}$.

Therefore, for any such P and Q , in view of the definition (2.5) and comment following (2.6), $\mathrm{S}_{1}=\mathrm{H}\left(m, s, f_{1}, r_{1}\right)$ and $\mathrm{S}_{2}=\mathrm{H}\left(t, n, f_{2}, r_{2}\right)$, where $\mathrm{H}(s, t, \rho, z)$ is given by (2.6). Substituting these results into (3.3) and grouping terms for which P and Q have P_{11} and Q_{11} of ranks f_{1} and f_{2}, respectively, we get

$$
\begin{align*}
\mathrm{N} & =q^{-s t}\left[g\left(s, m ; r_{1}\right) g\left(n, t ; r_{2}\right)\right. \tag{3.5}\\
& +\sum_{z=1}^{(t, s)} g(t, s ; z) / g_{t} g_{g} \sum_{f_{1}=0}^{\left(\rho_{1}, z\right)} \sum_{f_{2}=0}^{\left(z, \rho_{2}\right)} \mathrm{H}\left(m, s, f_{1}, r_{1}\right) \mathrm{H}\left(t, n, f_{2}, r_{2}\right) . \\
& \left.\cdot \sum_{\mathrm{P}, \mathrm{Q}} e\left\{\sigma\left(\mathrm{~B}_{0} \mathrm{PI}(t, s ; z) \mathrm{Q}\right)\right\}\right],
\end{align*}
$$

where for each choice of z, f_{1}, and f_{2}, P and Q run independently through all nonsingular matrices of order t with rank $\mathrm{P}_{11}=f_{1}$ and order s with rank $\mathrm{Q}_{11}=f_{2}$, respectively. In order to proceed further, we must obtain a more explicit value for the inner sum in (3.5). This is done in section 4 for certain special B_{0}. The Author has been unable as yet to evaluate this sum for general B_{0}.

4. The value of N for $\operatorname{special} \mathrm{B}_{0}$

If certain assumptions are made concerning the form of B_{0}, then it is possible to obtain explicit values for N from the formula (3.5). For this purpose, let B_{0} be partitioned as $\mathrm{B}_{0}=\left(\mathrm{B}_{i j}\right)$ for $i=1,2$, where B_{11} is $\rho_{2} \times \rho_{1}, \mathrm{~B}_{12}$ is $\rho_{2} \times\left(t-\rho_{1}\right), \mathrm{B}_{21}$ is $\left(s-\rho_{2}\right) \times \rho_{1}$, and B_{22} is $\left(s-\rho_{2}\right) \times\left(t-\rho_{1}\right)$.

First of all, it was shown by the author [3, Theorem 7] that with A_{1}, A_{2} and B_{0} as defined earlier, a necessary condition that (I.I) has solutions U_{1}, U_{2} of any ranks is that $\mathrm{B}_{22}=0$. In this case, it is easy to show that for P and Q defined and partitioned as in section 3, the summand in the inner sum in (3.5) becomes

$$
\begin{gather*}
e\left\{\sigma\left(\mathrm{~B}_{0} \mathrm{PI}(t, s ; z) \mathrm{Q}\right)\right\}= \tag{4.I}\\
=e\left\{\sigma\left(\mathrm{~B}_{11} \mathrm{P}_{11} \mathrm{Q}_{11}\right)\right\} e\left\{\sigma\left(\mathrm{~B}_{12} \mathrm{P}_{21} \mathrm{Q}_{11}\right)\right\} e\left\{\sigma\left(\mathrm{~B}_{21} \mathrm{P}_{11} \mathrm{Q}_{12}\right)\right\}
\end{gather*}
$$

The difficulty in obtaining a more explicit value for the inner sum in (3.5) occurs because in (4.1) the matrices P_{11} and Q_{11} are each involved in two different factors. If we assume that not only $B_{22}=0$, but also $B_{12}=0$ and $\mathrm{B}_{21}=\mathrm{o}$, so that B_{11} has rank $r \leqq \min \left(\rho_{1}, \rho_{2}\right)$, then we can prove

Theorem. Let $\mathrm{A}_{1}=\mathrm{A}_{1}\left(m, t ; \rho_{1}\right), \mathrm{A}_{2}=\mathrm{A}_{2}\left(s, n ; \rho_{2}\right)$ and $\mathrm{B}=\mathrm{B}(s, t ; r)$, with $r \leqq \min \left(\rho_{1}, \rho_{2}\right)$. Let $\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{P}_{2}, \mathrm{Q}_{2}$ be arbitrary nonsingular matrices over F such that $\mathrm{P}_{1} \mathrm{~A}_{1} \mathrm{Q}_{1}=\mathrm{I}\left(m, t ; \rho_{1}\right)$ and $\mathrm{P}_{2} \mathrm{~A}_{2} \mathrm{Q}_{2}=\mathrm{I}\left(s, n ; \rho_{2}\right)$ and let $\mathrm{B}_{0}=\mathrm{P}_{2} \mathrm{BQ}_{1}$ be partitioned as above, with $\mathrm{B}_{11}=\mathrm{B}_{11}\left(\rho_{2}, \rho_{1} ; r\right), \mathrm{B}_{12}=0$, $\mathrm{B}_{21}=\mathrm{o}$ and $\mathrm{B}_{22}=\mathrm{o}$. Then the number N of solutions $\mathrm{U}_{1}=\mathrm{U}_{1}\left(s, m ; r_{1}\right)$,
$\mathrm{U}_{2}=\mathrm{U}_{2}\left(n, t ; r_{2}\right)$ of equation (1.1) over F is given by

$$
\begin{align*}
& \text { 2) } \quad \mathrm{N}=q^{-s t}\left[g\left(s, m ; r_{1}\right) g\left(n, t ; r_{2}\right)\right. \tag{4.2}\\
& +\sum_{z=1}^{(t, s)} g(t, s ; z) / g_{t} g_{s} \sum_{f_{1}=0}^{\left(\rho_{1}, z\right)} \sum_{f_{2}=0}^{\left(z, \rho_{2}\right)} \mathrm{H}\left(m, s, f_{1}, r_{1}\right) \mathrm{H}\left(t, n, f_{2}, r_{2}\right) \cdot \\
& \cdot \varphi\left(f_{1}, t-\rho_{1}, z, z\right) \varphi(z, t-z, t, t) \varphi\left(f_{2}, s-\rho_{2}, z, z\right) \varphi(z, s-z, s, s) . \\
& \left.\cdot \sum_{y=0}^{\left(r, f_{1}\right)} g(r, z ; y) \varphi\left(y, \rho_{1}-r, z, f_{1}\right) \mathrm{H}\left(\rho_{2}, z, y, f_{2}\right)\right],
\end{align*}
$$

where $g(u, v ; y)$ is the number of $u \times v$ matrices of rank y over F as given by (2.4) and $g_{k}=g(k, k ; k)$ is the number of nonsingular matrices of order k over $\mathrm{F},(a, b)$ denotes the minimum of integers a and b, the value of the function $\mathrm{H}(s, t, \rho, z)$ is given by (2.6) and $\varphi(r, n, t, r+v)$, as given by (4.5) below is the number of $(n+m) \times t$ matrices of rank $r+v$ over F whose last m rows are those of a given $m \times t$ matrix of rank r.

Proof. Suppose that the hypotheses of the theorem are true. Then in view of (4.1), we see that the inner sum in (3.5) becomes

$$
\begin{equation*}
\mathrm{S}=\sum_{\mathrm{P}, \mathrm{Q}} e\left\{\sigma\left(\mathrm{~B}_{11} \mathrm{P}_{11} \mathrm{Q}_{11}\right)\right\}, \tag{4.3}
\end{equation*}
$$

where for fixed z, f_{1}, and f_{2}, P and Q run independently through all nonsingular matrices of order t with $\mathrm{P}_{11}=\mathrm{P}_{11}\left(\rho_{1}, z ; f_{1}\right)$ and order s with $Q_{11}=Q_{11}\left(z, \rho_{2} ; f_{2}\right)$, respectively. For each fixed such pair of matrices $\mathrm{P}_{11}, \mathrm{Q}_{11}$, the number of distinct corresponding pairs of nonsingular matrices P, Q is easily seen to be
(4.4) $\varphi\left(f_{1}, t-\rho_{1}, z, z\right) \varphi(z, t-z, t, t) \varphi\left(f_{2}, s-\rho_{2}, z, z\right) \varphi(z, s-z, s, s)$,
where $\varphi(r, n, t, r+v)$ is the number of $(n+m) \times t$ matrices of rank $r+v$ over F whose last m rows are those of a given $m \times t$ matrix of rank r. This number has been determined by Brawley and Carlitz [i; Lemma, p. 167] as

$$
\varphi(r, n, t, r+v)=\left[\begin{array}{l}
n \tag{4.5}\\
v
\end{array}\right] q^{r(n-v)} \prod_{i=0}^{v-1}\left(q^{t}-q^{r+i}\right)
$$

where $\left[\begin{array}{l}n \\ v\end{array}\right]$ denotes the q-binomial coefficient defined for non-negative integers n and v in section 2. Thus, sum S defined by (4.3) is equal to the expression (4.4) times the sum

$$
\begin{equation*}
\mathrm{S}^{\prime}=\sum_{\mathrm{P}_{11}, \mathrm{Q}_{11}} e\left\{\sigma\left(\mathrm{~B}_{11} \mathrm{P}_{11} \mathrm{Q}_{11}\right)\right\}=\sum_{\mathrm{P}_{11}, \mathrm{Q}_{11}} e\left\{\sigma\left(\mathrm{I}\left(\rho_{2}, \rho_{1} ; r\right) \mathrm{P}_{11} \mathrm{Q}_{11}\right)\right\} . \tag{4.6}
\end{equation*}
$$

If now any arbitrary, but fixed, P_{11} in (4.6) is partitioned as $\mathrm{P}_{11}=\operatorname{col}\left(\mathrm{P}_{111}, \mathrm{P}_{122}\right)$, where P_{111} is $r \times z$ of rank $y, \mathrm{o} \leqq y \leqq \min \left(r, f_{1}\right)$, then
$\mathrm{I}\left(\rho_{2}, \rho_{1} ; r\right) \mathrm{P}_{11}=\operatorname{col}\left(\mathrm{P}_{111}, o\right)$ is $\rho_{2} \times z$ of rank y so that in view of definition (2.5),

$$
\begin{equation*}
\sum_{\mathrm{Q}_{11}\left(z, \rho_{2}: f_{z}\right)} e\left\{\sigma\left(\mathrm{I}\left(\rho_{2}, \rho_{1} ; r\right) \mathrm{P}_{11} \mathrm{Q}_{11}\right\}=\mathrm{H}\left(\rho_{2}, z, y, f_{2}\right),\right. \tag{4.7}
\end{equation*}
$$

where $\mathrm{H}(s, t, \rho, z)$ is given by (2.6). For each y, the number of such matrices P_{111} over F is $g(r, z ; y)$ and for each such fixed matrix P_{111}, the number of matrices $\mathrm{P}_{11}\left(\rho_{1}, z ; f_{1}\right)$ is just $\varphi\left(y, \rho_{1}-r, z, f_{1}\right)$ as given by (4.5). Therefore, it follows from (4.6) and (4.7) that sum S defined by (4.3) is equal to the expression (4.4) times the sum

$$
\begin{equation*}
\sum_{y=0}^{\left(r, f_{1}\right)} g(r, z ; y) \varphi\left(y, \rho_{1}-r, z, f_{1}\right) \mathrm{H}\left(\rho_{2}, z, y, f_{2}\right) \tag{4.8}
\end{equation*}
$$

If the value of S so obtained is substituted for the inner sum in (3.5), we get formula (4.2) so that the theorem is proved.

5. An illustration of the theorem

We close with an example of matrices A_{1}, A_{2} and B in (I.I) for which the hypotheses of the theorem, concerning B_{0}, apply. Consider (I.I) for matrices A_{1} and A_{2} such that $\rho_{1}=\operatorname{rank} A_{1}=t$ and $\rho_{2}=\operatorname{rank} A_{2}=s$ and $\mathrm{B}=\mathrm{B}(s, t ; r)$. If P and Q are arbitrary but fixed nonsingular matrices such that $\mathrm{PBQ}=\mathrm{I}(s, t ; r)$, then (I.I) is easily shown to be equivalent to

$$
\begin{equation*}
\mathrm{V}_{1}\left(\mathrm{~A}_{1} \mathrm{Q}\right)+\left(\mathrm{PA}_{2}\right) \mathrm{V}_{2}=\mathrm{I}(s, t ; r) \tag{5.I}
\end{equation*}
$$

where $\mathrm{A}_{1} \mathrm{Q}$ is $m \times t$ of rank t and PA_{2} is $s \times n$ of rank s. If we take $\mathrm{A}_{1} \mathrm{Q}$ and PA_{2} in place of A_{1} and A_{2}, respectively, in the theorem, it follows by virtue of the special ranks of these matrices that we may take both Q_{1} and P_{2} to be identity matrices and so $\mathrm{B}_{0}=\mathrm{I}(s, t ; r)$ satisfies the hypotheses of the theorem concerning its submatrices. Thus, the number N of solutions $\mathrm{V}_{1}=\mathrm{V}_{1}\left(\mathrm{~J}, m ; r_{1}\right), \mathrm{V}_{2}=\mathrm{V}_{2}\left(n, t ; r_{2}\right)$ of (5.1), which is equal to the number of solutions $\mathrm{U}_{1}=\mathrm{U}_{1}\left(s, m ; r_{1}\right), \mathrm{U}_{2}=\mathrm{U}_{2}\left(n, t ; r_{2}\right)$ of (I.I), is given by (4.2).

We note that these conditions on A_{1} and A_{2} are exactly those assumed by Porter [7] in connection with equation (I.2) for arbitrary a and b.

References

[I] J. V. Brawley and L. Carltiz (1973) - Enumeration of matrices with prescribed row and column sums, «Linear Algebra and its Applications», 6, 165-174.
[2] John H. Hodges (1956) - Representations by bilinear forms in a finite field, «Duke Math. J.», 22, 497-510.
[3] John H. Hodges (1957) - Some matrix equations over a finite field, "Annali di Mat.", 44, 245-250.
[4] John H. Hodges (1975) - Note on some partitions of a rectangular matrix, «Rend. Acc. Naz. dei Lincei».
[5] Georg Landsberg (1893) - Über eine Anzahlbestimmung und eine damit zusammenhängende Reihe, «J. f.d. Reine und Ang. Math.», 87-88.
[6] A. Duane Porter (1968) - The matrix equation $\mathrm{AX}_{1} \cdots \mathrm{X}_{a}=\mathrm{B}$, «Rend. Acc. Naz. dei Lincei», 44, 727-732.
[7] A. DUANe Porter (1974) - Some partitions of a rectangular matrix, «Rend. Acc. Naz. dei Lincei», 56, 667-671.

[^0]: (*) Nella seduta del 10 gennaio 1976.

