
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Amalia Ercoli Finzi, Carlo Morosi

Maxwell’s equations and Clifford algebra: space-time
formulation. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.6, p. 775–782.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_59_6_775_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1975_8_59_6_775_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.
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F is ic a  m a te m a tic a . —  M axwell's equations and Clifford algebra; 
space-time fo rm u la tio n ^ . N ota II di A m a l i a  E r c o l i  F i n z i  (*#) e 
C a r l o  M o r o s i  (** (***)}, presentata (**#) dal Socio C . C a t t a n e o .

RIASSUNTO. — Si analizza la formulazione spazio-temporale delle equazioni genera
lizzate di campo elettromagnetico, ottenute in [i] secondo il formalismo dell’algebra di 
Clifford. Da tali equazioni si risale alla formulazione variazionale e alla descrizione in termini 
di un tensore sforzi-energia, senza che l’estensione del formalismo classico implichi, prescin
dendo da dati sperimentali, una riduzione del campo generalizzato al campo classico.

In t r o d u c t io n

In this paper the previous analysis is continued and completed of the 
properties of a generalized form ulation, by means of the formalism  of the 
Pauli algebra, of the M axwell’s equations for the electrom agnetic field [ i ]: 
the generalized field equations are as follows (1):

[ -37- +  div E =  p ;
(a) r

f -K-.---- rot B +  grad  oc =  •— j

-f- div B =  <?

-̂ 5 - -f- rot E +  grad ß =  —  m  ;

they give the tim e evolution of the classic field (E , B) and of a new scalar 
field (oc , ß).

In  the following three sections the possibility is examined to give to 
eqs. (a) and to those derived from them  an invariant tensor form, for a flat 
space-time four-m anifold: the conclusion can be draw n th a t the generalized 
equations can actually  be given in a tensor form (moreover, different but 
equivalent form ulations are possible), without particular restrictions upon 
the generalized field. S tarting  from one of these formulations a variational 
principle can be constructed sim ilar to a classic principle (Belinfante-Infeld).

By m eans of another form ulation, it is easy to give a description in term s 
of the same stress-energy tensor obtained in [1]; this tensor can be m ade sym 
metric: in this form, it m aintains the properties of the classic tensor, being 
expressed in term s of a positive definite generalized energy, a generalized 
Poynting vector and a generalized stress.

(*) Work done under the auspices of the G.N.F.M. of the C.N.R..
(**)■ Istituto di Matematica del Politecnico. Milano.

(***) Nella seduta del 15 novembre 1975.
(1) Eqs. (a) are written for the vacuum, with £0 =  =  c =  1: see [1] for the discus

sion of these equations and a possible interpretation of a , ß , a , m  .
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T hus the conclusions of [1] are confirmed by the results of this paper: 
the classic electrom agnetic field can be generalized in such a w ay to m aintain 
any form al property  of the M axwell field; it reduces to the classic field only 
b y  tak ing  into account the experim ental evidence th a t no m agnetic charged 
current density  exists and th a t the electric charge is conserved: the critical 
feature of this fact is thus stressed.

I . S pa c e -t im e  fo r m u la tio n

In  this section a tensor form (2) is given to the generalized M axwell’s 
equations (a): to this end we define the complex four-vectors

(I .I ) Jv= (p ~b t v  ; — j  ■— im)  ; in<f +  ; — A - - i C

and the tensor

a +  zß +  tBx Ey + E2 + z'Bz

( 1.2) Hpv —
(ß'x +  zBæ)

1 (Eg, +  zB^)

—  (a +  zß) — Bz + i E z Bg/ — lEy

Bz — i E z — (a + *P) -— iE x

(Ez T" zB^) --- By +  ZEy B« — t Ex — (oc +

H;^ can be <expressed as follows:

(i-3) HpV =  (a +  zß) +  F̂ v - i
~ UT £p.vpo pp" ;

where is the well-known M axwell electromagnetic tensor.
By the above notation, the first order field equations take the form (as 

we will see, this form ulation is not unique)

0 4 ) H

and the equations of the second order are given by

0*5) CH Hfxv — g  Vp Va =  ÿjjt/v 7v/[Jt +  g\Lv J°/a +  •

W e rem ark th a t eq. (1.4) corresponds to all the four eqs. (a), whereas the 
analogue classic equation, Faß/a =  , corresponds only to one group of equa
tions. T he generalized field can be expressed in term s of the four-potential,

(2) The equations are therefore written in a form valid for any choice of coordi
nates, and the usual notations of tensor calculus are used. The Cartesian form of the 
equations is immediately obtained if the Minkowsky metric tensor is chosen as =  
=  diag (1 ; —  I ; —  1 ; — -ï) , SpvPo becoming the permutation symbol. We remember that 
the (covariant) second order derivatives commute, the space-time manifold being flat: 
Vp. Vv =  /pv =  /vp =  Vv Vfi. .
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and the potential in term s of the current, by the following equations, respecti
vely:

C1 -6) H,v — A v̂  — Ajjt/v +  A +  zsjxvpo A P/°

( i - 7)

where eq. (1.7) is form ally the same as the classic one.
As for the relation between this form ulation and the classic equations, 

we rem ark th a t eq. (1.4) is equivalent to the classic form ulation (by separating 
the im aginary  and real parts) if a , ß , cr , m  vanish: if ip and C vanish, the 
same is true for eq. (1.6). As A v/V =  (a +  zß) by eq. (1.6), the Lorentz gauge 
is im plied when the form ulation reduces to the classic one by putting a =  ß = o .

As can be easily verified, eq. (1.6), for a ^  o ,  ß ^  o, is invariant only 
under restricted gauge transform ations of the second kind, for the unique 
gauge transform ation A v =  Bv +  zzv, under which (A) — (B), is
the following:

(1.8) uv =  X/v +  i[ijV, with □  X =  □  [X =  o .

Therefore, owing to the skew-symmetry: of , A °a m ust vanish
in the reduction to the classic form ulation, whereas in the present generalized 
form ulation the Lorentz condition is no more required, and A°^0 is invariant 
under the gauge transform ation (1.8). A t last let us com pute the divergence 
y°/0 of the current four-vector, wihch is given, by eqs. (1.4) and (1.6), by:

C1-9) J°fa =  H V°yvo =  Q  (a +  zß) .

As already stressed [1], the charge is no m ore conserved, owing to the 
existence of the “ scalar ” field (ol , ß): on the other hand the condition y °0 =  o 
implies the vanishing of the scalar field, under the hypothesis of uniqueness 
of the field for suitable “ boundary ” conditions. Thus it seems possible to 
describe com pletely the generalized field by means of a complex tensor o f the 
second order, H^v, with eigth different components, or by means of a skew- 
sym m etric tensor, F^v, and an isotropic tensor, (ff +  zß) (3).

2. V a r ia t io n a l  fo r m u la tio n

Eq. (1.4) does not seem to be directly derivable from a variational p rin
ciple, but it can be replaced by an equivalent form, i.e.

0  Hv̂  — -  Ha0/V -  i z ^  Hw/o =  -  4 / v .

(3) Among other generalizations of the electromagnetic field, see [2], where the 
field is expressed in terms of a skew-symmetric tensor of the second order, a scalar field and 
a completely skew-symmetric tensor of the fourth order.
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Now, if eqs. (1.6) and (2.1) are taken into account, th a t is both the generalized 
field equations and the relation between the field and the potential, both of 
them  can be derived by the stationarity  of the same func tiona l(4). Eq. (1.6) 
can be written in operator form

(2.2) —

where the following correspondences are made:

( h ; Av -> a ;

(2*3) \ A[X/V ' A ^  4“ g^  A /O A^ =  [ g  {ACT Vv gvG V [A 4~

I +  gw Va +  igpl SviAop Va] A° =  @a.

In  an analogous way, for the field equations one has:

(2 .4 ) ,

where

(2.5) H Xo/X +  HaxA H' A ja ’ ' ŝaApi H P/ — [■ gov Vpi 4~ g 0[i —

-ÄV Vo —  teow- Vs] H^v ^  *f0|AV E T  <€h ; yv-> j

Both equations (2.2) and (2.4) are collected into the operator equation:

(2.6) J/h  — v i

where:

' j  ' -o  : -rr)('2 .7)
O

As well-known [3, ch. 2], eq. (2.6) has a variational form ulation if the G eteaux 
derivative Jfu of J f  is sym m etric, th a t is if:

(2.8)

where and Of are defined by (2.3) and (2.5). The upper condition depends 
upon the linearity  of the operators just defined, for the G ateaux derivative 
of a linear operator is the operator itself (as mentioned above, the boundary 
conditions of the dom ain are not considered: if the dom ains were taken  into

(4) Here and in what follows, we consider only a “ formal ” variational formulation, 
i.e. we do not take into account initial, final and boundary conditions which have to be asso
ciated with the equations in order to obtain a complete formulation of the problem and its 
variational derivation. This we have only formal operators, written by capital Italic letters.
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account, the generalization to non-linear operators would be straightforward): 
thus condition (2.8) implies th a t

(2.9) [ 2  a ,A) —  { a , V A ) = j  [A„/v —  AVM +  A x/X +  A ^ yS A y/s] H v,t dQ —
Q

—  J  A° [—  +  H aX/x -  H \ , a —  AoXyS H Xy/s] d o  =  o
Q

where dO — ig  dx  11g  dx° d x 1 dx2 d x 3, g  — | d e t^ ^  | .
By trivial integrations by parts, eq. (2.9) is im m ediately verified, hence 

problem (2.6) can be deduced from the stationarity  of the functional:

(2*10) SF\u\ I (u , JCu\ — [u , v) ,

whose explicit form is as follows:

(2.11) &Qt 9 a) =  \ - [ a 9 <€h) +  \  [h , Sfa) —  J (k , h) +  4 ( a J  ) =

=  f  [ H , v ( A ^ - A ^ + ^ A x/x +  ^ x8A x/s- i H ^ )  +  4 A xyx] d i i .
Q

A t last, taking into account the M inkowski metric and definitions (1.1) and 
(1.2), one has:

(2.12)

where:

(U +  z V) dx  =  I ff? dx
Q Q

U =  4 E • ^grad 9 +  ~  +  rot Cj — 4 B • ^grad tp +  ~  •— rot - f

1
 +  4<X ( w  +  d iv A) ~  4 ß +  div C) —  2 (a2 —  ß2+  E2 — B2) +

+  4 (P9 — 1— A - j  +  C • m)

v  =  4 E  • (grad <]; +  —  — rot Aj +  4 B • (grad 9 +  —  +  rot Cj  +

+  4 « +  div +  4 ß (—?- +  di v —  4 (ocß —  E • B) +

+  4 (?c +  + P — A • m  — C • 7) .

T he form ulation sketched above can be considered as a generalization of the 
classic variational form ulation [4 ; 5 ; 6], but we rem ark tha t both the field 
equations and the relation between field and potential are obtained by the 
sam e functional, whereas the classic form ulation generally gives one group 
of equations and the solutions of the second group, expressed in term s of the
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potentials. As for the wave equation (1.7) for the four-potential A v, it can 
be form ally deduced from the functional:

(2.14) ( A ^ A ^  +  2 ^  A 11) dO ,
Q

which is functionally the same as the classic functional, A v and yv being given 
by the generalized expressions (1.1).

3. T h e  s t r e s s -e n e r CxY t e n so r

Am ong various procedures for constructing a stress-energy tensor, it is 
well-known [7, ch. 4], th a t one can start from the L agrangian of the pure 
field to obtain a tensor:

(3 .0

whose divergence vanishes if the field equations are satisfied; thus by  means 
of the L agrangian of the functional (2.12) and of the relation (1.6) between 
field and potential, we have:

(3.2) T1" =  — i g ^  Haß Hap +  AC [FCX -  HXii +  / “ H°0 +  /epnXli Hpo] .

However, in contrast w ith the case of classic electromagnetism, it does not 
seem straightforw ard to sym m etrize the tensor (3.2) and to express it only 
in term s of the field by m eans of eq. (ï .6); therefore a different procedure 
can be adopted, m aking use of the field equations directly, which gives the 
same form ulation as the one previously obtained from the vector equations 
for the Pauli algebra [ 1 ].

To this end, we consider the following condition, which is implied by 
eqs. (1.4)

(3-3) H j »  H*™ +  H * ,'1'- H va =  j v H*va +  j *  H va,

where H*v and y* are the complex conjugate field and current respectively: 
by taking into account the following identity  (independent of the field 
equations) for H ^ ,

(3-4) H ^ /o H 0(Jt =  H aJ° ,

and by defining the generalized stress-energy tensor 0^  and four-force Kv

(3-5) e ^ K H ^ H ^ + H ^ H D  ; Kv^  i  (H*™Ja +  H°Va*) ,

one easily verifies th a t eq. (3.3) corresponds to four real equations of the
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following form:

(3-6) 6“% =  Kv .

In fact, by (3.4) and (3.5) it is

(3-7) 6 " /, =  Re ( H ^ a H 0V)/[X =  Re H 0V) +  Re (H*0 H av/A) =

=  Re (./* H^v) +  Re (H*ov H J » )  =  2 Re ( j £  H^v) =  K v.

A n energetic form ulation of the field equations can thus be obtained from 
eqs. (1.4) m ore easily th an  from eqs. (2.1): at last one can directly verify that

s' s' +  I

s'
!

Pki

i.e. the non-sym m etric form already obtained in [1]: s', s', p ki are the gene
ralized field energy, the generalized Poynting vector and the generalized 
stress tensor, whereas the vector I has no clear physical meaning. Therefore 
we conclude by recalling th a t 0^v can be m ade sym m etric by the m ethod used 
in [1], where the tensor m ade sym m etric is indicated by T :,,txv in a completely 
analogous way as in the classic case, T  can thus be expressed only by means 
of the energy, the Poynting vector and the stress.

4. F in a l  rem ark s

From  the analysis m ade in [1] and in this paper, the conclusion can be 
draw n th a t the properties of the classic electromagnetic field can be m ain
tained : the equations can be given in a vector or a space-time tensor form u
lation, and can be derived from an action principle. U nder the hypothesis 
th a t the field and the current are represented by the m ost general elements 
of the Papli or D irac algebra, the following properties are valid:

1) the generalized energy 2/ is positive definite;
2) the Poynting vector s'  is parallel to the wave vector;
3) the stress tensor is symmetric: its linear invarian t is the opposite 

of the field energy -s';

4) the stress-energy tensor is symmetric, and T ,00>  o.
T he charge conservation and the non-existence of m agnetic charges 

are not implied. However, one has to take into account also the experim ental 
fact th a t m agnetic charges seem to have never been observed and th a t the 
m otion of the electric charged current density can be described only in term s 
of a conservation law.

As it can be easily verified, if the above dissymmetry between electric 
and m agnetic currents is required and suitable hypotheses are assumed on 
the uniqueness of the solution of the generalized equations, it follows tha t 
a =  ß — o: the generalized field reduces again to the classic field.
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