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Geometrie finite. —  Flocks, chains and configurations in finite  
geometries. N o ta  di A id en  A. B r u e n  e Joseph  A. T h a s ,  p re sen ta ta  (*> 
dal Socio B. S e g r e .

RIASSUNTO. — Lo studio dei sistemi di cerchi [o sezioni piane contenenti più di un 
punto] di un ovaloide [0(?2+  i)-calotta] di un S8fff ha utili applicazioni nella teoria dei piani 
di traslazione. Qui sistemi siffatti vengono investigati con particolare riguardo al caso in 
cui i piani dei loro cerchi escono da un punto non situato sulPovaloide, assieme alla confi
gurazione formata dai poli di tali piani rispetto alPovaloide.

i. I n tr o d u c tio n

A n ovoid O of the threedim ensional projective space PG (3 , q), q >  2, 
is a set of q2 -f- 1 points no three of which are collinear. The circles of O are 
the sets P O O ,  where P is a plane of PG (3 , q), w ith | O O P | >  1. The circles 
of a non-singular ruled quadric Q of PG (3 , q) are, by definition, the irredu
cible conics on Q. In  w hat follows O will always denote an ovoid and Q a 
non-singular ruled quadric.

T he study  of sets of circles on O and Q is im portant for the theory  of 
translation planes (see also section 2 below). If  the planes of the circles of 
such a set all m eet in one point p € O or Q, then their poles (with respect to 
O or O) all lie in the polar plane P of p. M oreover these poles constitute an 
interesting configuration of points with respect to the circle P f iO  or P O Q .  
This note is m ainly concerned with such configurations of points.

2. Flocks

A  flock  of O (resp. Q) is a set F of q •— 1 (resp. q T O  m utually  disjoint 
circles. If  L  is a line of PG ("3 , q) which has no point in common with O (resp. 
Q), then  the circles P O O  (resp. P O Q), where P is a plane containing L  with 
I P O O  I >  I (resp. where P is a plane containing L), constitute a so-called 
linear flock of O (resp. Q).

T h a t each flock of the ovoid O is linear was proved by J. A. T has for q 
even [3] and by W. F. O rr in the odd case [2]. T has [4] also proved th a t each 
flock of the non-singular ruled quadric Q of PG (3 , q), q even, is linear, and 
th a t for each odd q the quadric Q has a non-linear flock. (We should also m en
tion here th a t using the hyperquadric of Klein, it is possible to prove that 
with each non-linear flock of Q there corresponds a non-desarguesian transla-

(*) Nella seduta del 13 dicembre 1975.
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tion plane of order q2). As an application of theorem s about flocks we state 
an interesting result concerning configurations of points in the plane PG (2 ,q).

Theorem , (a) Let C be an oval o f PG (2 , q) , q >  2, which can be embedded 
in  an ovoid o f PG (3 , q) ([e.g. an irreducible conic). I f  F =  { x 1 , » * * *, x q-i  }
ts a set o f q ■— 1 points of PG (2 , q) — C, such that any Une Xj , i f i  j ,  is a
secant o f C, then the points o f F  all lie on one secant o f C.

(b) L et C be an irreducible conic o f PG (2 , q), q even. I f
F =  { x 1 , x 2 , • • •, xq+1 } is a set o f q T  1 points such that any line
x i x j , i  f i  j ,  is an exterior line o f C, then F  is an exterior line o f C 
( =  non-se cant o f C).

Proof, (a) Let C be em bedded in an ovoid O of PG (3 , q). T he polar 
planes Pi , P2 , * * ■, Fq_x of x x , x% , • • •, x q_x w ith respect to O, intersect O in 
q — I m utually  disjoint circles. These circles constitute a flock F* of O. As 
F is linear the planes P* all pass through one exterior line L  of O. Consequen
tly  their poles x { all lie on one secant of O and hence on one secant of C.

(b) Let C be em bedded in a non-singular ruled quadric Q of PG (3 , q) 
(q even). T he polar planes Px , P2 , • • •, P^+i of x 1 , x 2 , • • •, x Q+1 w ith respect 
to O, intersect Q in q +  1 m utually  disjoint circles. These circles constitute a 
flock F* of Q. As q is even, F* is linear, and so the planes P^ all pass through 
one exterior line L of Q. Consequently their poles x^ all lie on one exterior 
line of Q. W e conclude th a t F  is an exterior line of C.

COROLLARY. Let O be an elliptic quadric o f PG (3 , q), q even. I f  F is a 
set o f q +  I circles, any two o f which have two points in  common, and i f  fu r th er
more the planes o f these circles a ll meet in  one po in t p  GO, then F  is a pencil 
o f circles (i.e. the q -f- 1 circles a ll meet in  two fix e d  points).

Proof. T he poles (with respect to O) of the q + i  planes containing the 
elements of F, all lie in the polar plane P of p. The line joining any two of 
these poles is an exterior line of the irreducible conic P O O. Since q is even, 
the set F  of these poles is an exterior line of PO by our previous theorem . 
C onsequently the planes of the q +  i circles of F all contain one fixed secant 
of O. W e conclude th a t F  is a pencil of circles of the quadric O.

3. Chains of circles and the  corresponding configurations
IN THE PLANE

In  [1] A.A. Bruen studies m axim al families F  of circles on an elliptic 
quadric O of PG (3 , ^), q odd, having the following two properties:

(a) A ny two circles of F  have two distinct points in common;
(b) No three circles of F  have a point in common.
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It is easy to see th a t F contains at most (q +  f ) / 2  circles, i.e. j F | <
<  (3 +  3) /2- I f  ! F  I =  (q +  3)/2 each point on a circle of the set F  is con
tained in exactly two circles of F. Such a set of q +  3/2 circles having pro
perties (a) and (Jf above is called a chain o f circles. In [1] Bruen constructs 
a chain in the cases q — 3, 5, 7 and shows th a t w ith certain chains of circles 
there correspond new translation  planes of order y2. For further details we 
refer to [1].

Let O be an elliptic quadric of PG (3 , q) , q odd, and let 
F  = { C X , C2 , • • •, C(î+s)/2} be a chain of O. Suppose further th a t the planes 
Pi of Cj , i  =  I , 2 , • • - , q 3/2, all meet in one point p  (p  eO ). T hen the 
poles x l , x z , • • - , ^(î+3)/2 of the planes Px , P2 , P(î+3)/2 all lie in the polar
plane P of p. M oreover the set F* =  { x 1 , x 2 ■ - , *(î+3>/a} has the following
properties:

(i) any line x t Xj , i f  j , is an exterior line of the irreducible conic
C =  P n  O;

(ii) F* is an (q +  3)/ 2-arc of the plane P (i.e. no three points of F* 
are collinear).

Conversely, we consider in PG (2 , q) , q odd, a set F* of (q +  3)/^ points 
for which (i) and (ii) are satisfied, where C is an arb itra ry  irreducible conic. 
W e em bed C in an elliptic quadric O of PG (3 , q), and we consider the polar 
planes of the elements of F*. These ( q 3)/2 planes intersect O in {q j)  12
circles, which constitute a chain of O (moreover the planes of the (q +  3)/2 
circles of the chain ail m eet in one point). Consequently it is of interest to 
construct in PG (2 , q) , q odd, sets F* for which (i) and (ii) are satisfied. Here 
we shall only consider the cases <7 =  3 and 5* The general case is being investi
gated by  the authors and will be treated elsewhere.

THEOREM. L et C be an irreducible conic o f the projective plane PG (2 , q), 
$ =7 3 or 5. Then there exists a q +  3/2-arc F* =  { xx , , • • •, x iq+3)i2 } in
PG (2 , q), such that any line Xj , i j ,  is an exterior line o f C. Moreover 
any tw o such sets F  are equivalent w ith respect to the group o f collineations 
whih leave C invariant.

Proof. Let q — 3. T hen C =  { y 1 , y 2 , y 3 , y 4) is a set of four points, no 
three of which are collinear. If x 1 , x 2 , x 3 are the diagonal points of the com
plete quadrangle C, then it is easy to check tha t { x l i x 2 , x 3} is the unique 
set F  with the desired properties.

Now we suppose th a t q =  5. Suppose th a t F* =  { x 1 , ;r2 , x 3 , x 4 } is 
a 4-arc of PG (2,5), such th a t any line x i x J- , i ^ j ,  is an exterior line of the 
conic C =  { y 1 , y 2 , y 6 }. We shall prove th a t the diagonal points % , z2 , z 3 

of the quadrangle F* are exterior points of C, and th a t z1 , z2 , z 3 is a self-polar 
triängle with respect to C.

A n exterior point of C is on two exterior lines of C, and an interior point 
of C is on three exterior lines of C. Since x 1 x 2 , x t x 3 , x t x é are exterior
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lines, the point x 1 is an interior point. In  fact, each of x 1 , , x 3 , are
interior points. Consequently there are exactly 12 secants of C which have 
a point in common with F*. Since C has exactly 15 secants there are at 
most three secants of C which have a point in common with { ,  z2 , z 3 }. 
Since z { , i =  I , 2 , 3, is on at least two secants, it follows im m ediately 
th a t zxz2 , z2z3 , z 3z1 are secants and that these are the only secants having a 
point in common with { % , £2 > ^3 }• Hence z1 , z2 , z 3 are exterior points. 
Let z i zj O C =  { u k , uk }, where { i  , j  , k  } =  { 1 , 2 , 3 } .  Evidently  
C =  { ux , u[ , u2 , u 2 , u 3 , u fs }. Since z i zj and z i zh , { i  J  , k } =  { 1 , 2 , 3 } ,  
are the secants through z i} the lines ^  u { , z % ili are the tangents through z { . 
So ui Mi — Zj zh is the polar line of z { . We conclude th a t z1 z2 z 3 is a self- 
polar triangle with respect to C. Now we shall prove th a t F* is uniquely 
defined by each of its diagonal points.

Consider the diagonal point z i of F*. It is an exterior point. T hen Zj , zk 
are the exterior points of the polar line of z^ with respect to C. The points 
x i > x 2 > x 3 > x 4 are the intersections of the two exterior lines on z i w ith the two 
exterior lines on zj. So F* is uniquely defined by z { . Since the group G of 
collineations which leave C invarian t is transitive on the set of exterior points, 
we conclude th a t any two such sets F* are equivalent with respect to G.

Finally we prove tha t F* exists. Let G F (5) — { o , 1 , 2 , 3 , 4  } and let 
C be the irreducible conic with equation -fi y 2 -f  z2 — o. Consider the exte
rior point ( 0 , 0 ,  1). The exterior points on the polar line z =  o of ( 0 , 0 , 1 )  
are the points ( 0 , 1 , 0 )  and (1 , 0 , 0 ) .  The exterior lines containing ( 0 , 0 , 1 )  
(resp. (1 , o , o), resp. ( 0 , 1 ,  o)) are y  =  x  and y  — ■— ^ (resp. z  =  y  and 
^ =  •— y , resp. x  =  z  and # =  — z). These six exterior lines are exactly the 
six sides of the complete quadrangle with vertices ( 1 , 1 ,  1), (1 , 1 , ■— 1),
(1 , — I , — 1) , (1 , — 1 , 1 ) .  Consequently F* =  {(1 , 1 , 1) , (1 , 1 , ■— 1),
(1 , —  I , —- 1) , (1 , •— I , 1)} has the desired properties.

COROLLARY i . Each elliptic quadric O of PG (3 , q) , q == 3 or 5, possesses
a chain w ith the property that the planes o f the (q -f f ) / 2  circles o f the chain all 
meet in  one point.

COROLLARY 2. Each non-singular ruled quadric Q of PG (3 , q) q =  3 
or 5, possesses a set o f (q -f- 3)/2 m utually disjoint circles (i.e. a p artia l flock  
of size (q T  3)/2) no three o f which are contained in  a linear flock and such that 
the planes o f these circles a ll meet in  one point.

Proof. Let C be a circle of Q and let F* =  { x 1 , , • • •, x (g+3)i2 } be a
set of points which has the properties (i) and (ii) with respect to the conic C? 
in the plane corresponding to C. If  P3 , P2 , • • •, V (g+3)(2 are the polar planes of 
x i , x 2 ‘, X(q+3)/2 with respect to Q, then (i) the planes P  ̂ all m eet in the 
pole of the ; plane containing C (ii) the circles P i D Q constitute a partial flock 
of order (qiJr  3)/2 (di) no three circles P ^O Q  are contained in a linear flock 
(this follows from the fact tha t F* is a (y +  3)/2-arc).



7 4 8 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LIX -  dicembre 1975

R e f e r e n c e s

[1] A. A. Bru en  -  Inversive geometry and some new translation planes (subm itted).
[2] W. F. Orr (1973) -  The Miquelian inversive plane IP (q) and the associated projective 

planes, Thesis submitted to obtain the degree of Doctor of Philosophy at the University 
of Wisconsin.

[3] J-A. ThâS (1972) -  Flocks of finite egglike inversive planes, «C.I.M.E.», II ciclo, Bressa
none», 189-191.

[4] J-A. Th AS -  Flocks of non-singular ruled quadrics in PG (3 , q), «Accad. Naz. Lincei» 
(to appear).


