Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Aiden A. Bruen, Joseph A. Thas

Flocks, chains and configurations in finite geometries

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.6, p. 744-748.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_59_6_744_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometrie finite. - Flocks, chains and configurations in finite geometries. Nota di Aiden A. Bruen e Joseph A. Thas, presentata (*) dal Socio B. Segre.

Riassunto. - Lo studio dei sistemi di cerchi [o sezioni piane contenenti più di un punto] di un ovaloide $\left[\mathrm{O}\left(q^{2}+1\right)\right.$-calotta $]$ di un S_{3}, q ha utili applicazioni nella teoria dei piani di traslazione. Qui sistemi siffatti vengono investigati con particolare riguardo al caso in cui i piani dei loro cerchi escono da un punto non situato sull'ovaloide, assieme alla configurazione formata dai poli di tali piani rispetto all'ovaloide.

i. Introduction

An ovoid O of the threedimensional projective space $\mathrm{PG}(3, q), q>2$, is a set of $q^{2}+$ I points no three of which are collinear. The circles of O are the sets $\mathrm{P} \cap \mathrm{O}$, where P is a plane of $\mathrm{PG}(3, q)$, with $|\mathrm{O} \cap \mathrm{P}|>\mathrm{I}$. The circles of a non-singular ruled quadric Q of $\mathrm{PG}(3, q)$ are, by definition, the irreducible conics on Q. In what follows O will always denote an ovoid and Q a non-singular ruled quadric.

The study of sets of circles on O and Q is important for the theory of translation planes (see also section 2 below). If the planes of the circles of such a set all meet in one point $p \notin \mathrm{O}$ or Q, then their poles (with respect to O or Q) all lie in the polar plane P of p. Moreover these poles constitute an interesting configuration of points with respect to the circle $\mathrm{P} \cap \mathrm{O}$ or $\mathrm{P} \cap \mathrm{Q}$. This note is mainly concerned with such configurations of points.

2. Flocks

A flock of O (resp. Q) is a set F of q - I (resp. $q+\mathrm{I}$) mutually disjoint circles. If L is a line of $\operatorname{PG}(3, q)$ which has no point in common with O (resp. Q), then the circles $P \cap O$ (resp. $P \cap Q$), where P is a plane containing L with $|\mathrm{P} \cap \mathrm{O}|>\mathrm{I}$ (resp. where P is a plane containing L), constitute a so-called linear flock of O (resp. Q).

That each flock of the ovoid O is linear was proved by J . A. Thas for q even [3] and by W. F. Orr in the odd case [2]. Thas [4] also proved that each fiock of the non-singular ruled quadric Q of $\mathrm{PG}(3, q), q$ even, is linear, and that for each odd q the quadric Q has a non-linear flock. (We should also mention here that using the hyperquadric of Klein, it is possible to prove that with each non-linear flock of Q there corresponds a non-desarguesian transla-
(*) Nella seduta del 13 dicembre 1975.
tion plane of order q^{2}). As an application of theorems about flocks we state an interesting result concerning configurations of points in the plane PG $(2, q)$.

Theorem. (a) Let C be an oval of $\mathrm{PG}(2, q), q>2$, which can be embedded in an ovoid of $\operatorname{PG}(3, q)$ (e.g. an irreducible conic). If $\mathrm{F}=\left\{x_{1}, x_{2}, \cdots, x_{q-1}\right\}$ is a set of q - I points of $\mathrm{PG}(2, q)-\mathrm{C}$, such that any line $x_{i} x_{j}, i \neq j$, is a secant of C , then the points of F all lie on one secant of C .
(b) Let C be an irreducible conic of $\mathrm{PG}(2, q), q$ even. If $\mathrm{F}=\left\{x_{1}, x_{2}, \cdots, x_{q+1}\right\}$ is a set of $q+\mathrm{I}$ points such that any line $x_{i} x_{j}, i \neq j$, is an exterior line of C , then F is an exterior line of C ($=$ non-secant of C).

Proof. (a) Let C be embedded in an ovoid O of $\mathrm{PG}(3, q)$. The polar planes $\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{q-1}$ of $x_{1}, x_{2}, \cdots, x_{q-1}$ with respect to O , intersect O in q - I mutually disjoint circles. These circles constitute a flock F^{*} of O . As F^{*} is linear the planes P_{i} all pass through one exterior line L of O . Consequently their poles x_{i} all lie on one secant of O and hence on one secant of C .
(b) Let C be embedded in a non-singular ruled quadric Q of $\operatorname{PG}(3, q)$ (q even). The polar planes $\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{q+1}$ of $x_{1}, x_{2}, \cdots, x_{q+1}$ with respect to Q, intersect Q in $q+1$ mutually disjoint circles. These circles constitute a flock F^{*} of Q . As q is even, F^{*} is linear, and so the planes P_{i} all pass through one exterior line L of Q . Consequently their poles x_{i} all lie on one exterior line of Q. We conclude that F is an exterior line of C.

Corollary. Let O be an elliptic quadric of $\mathrm{PG}(3, q), q$ even. If F is a set of $q+1$ circles, any two of which have two points in common, and if furthermore the planes of these circles all meet in one point $p \notin \mathrm{O}$, then F is a pencil of circles (i.e. the $q+1$ circles all meet in two fixed points).

Proof. The poles (with respect to O) of the $q+\mathrm{r}$ planes containing the elements of F , all lie in the polar plane P of p. The line joining any two of these poles is an exterior line of the irreducible conic $\mathrm{P} \cap \mathrm{O}$. Since q is even, the set F^{*} of these poles is an exterior line of PO by our previous theorem. Consequently the planes of the $q+\mathrm{r}$ circles of F all contain one fixed secant of O . We conclude that F is a pencil of circles of the quadric O .
3. Chains of circles and the corresponding configurations in THE PLANE

In [r] A.A. Bruen studies maximal families F of circles on an elliptic quadric O of $\mathrm{PG}(3, q), q$ odd, having the following two properties:
(a) Any two circles of F have two distinct points in common;
(b) No three circles of F have a point in common.

It is easy to see that F contains at most $(q+3) / 2$ circles, i.e. $|\mathrm{F}| \leq$ $\leq(q+3) / 2$. If $|\mathrm{F}|=(q+3) / 2$ each point on a circle of the set F is contained in exactly two circles of F. Such a set of $q+3 / 2$ circles having properties (a) and (b) above is called a chain of circles. In [1] Bruen constructs a chain in the cases $q=3,5,7$ and shows that with certain chains of circles there correspond new translation planes of order q^{2}. For further details we refer to [1].

Let O be an elliptic quadric of $\operatorname{PG}(3, q), q$ odd, and let $\mathrm{F}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \cdots, \mathrm{C}_{(q+3 / 2}\right\}$ be a chain of O . Suppose further that the planes P_{i} of $\mathrm{C}_{i}, i=\mathrm{I}, 2, \cdots, q+3 / 2$, all meet in one point $p(p \notin \mathrm{O})$. Then the poles $x_{1}, x_{2}, \cdots, x_{(q+3) / 2}$ of the planes $\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{(q+3) / 2}$ all lie in the polar plane P of p. Moreover the set $\mathrm{F}^{*}=\left\{x_{1}, x_{2}, \cdots, x_{(q+3) / 2}\right\}$ has the following properties:
(i) any line $x_{i} x_{j}, i \neq j$, is an exterior line of the irreducible conic $\mathrm{C}=\mathrm{P} \cap \mathrm{O} ;$
(ii) F^{*} is an $(q+3) / 2-\operatorname{arc}$ of the plane P (i.e. no three points of F^{*} are collinear).

Conversely, we consider in $\operatorname{PG}(2, q), q$ odd, a set F^{*} of $(q+3) / 2$ points for which (i) and (ii) are satisfied, where C is an arbitrary irreducible conic. We embed C in an elliptic quadric O of $\mathrm{PG}(3, q)$, and we consider the polar planes of the elements of F^{*}. These $(q+3) / 2$ planes intersect O in $(q+3) / 2$ circles, which constitute a chain of O (moreover the planes of the $(q+3) / 2$ circles of the chain all meet in one point). Consequently it is of interest to construct in $\operatorname{PG}(2, q), q$ odd, sets F^{*} for which (i) and (ii) are satisfied. Here we shall only consider the cases $q=3$ and 5 . The general case is being investigated by the authors and will be treated elsewhere.

Theorem. Let C be an irreducible conic of the projective plane PG $(2, q)$, $q=3$ or 5 . Then there exists a $q+3 / 2$-arc $\mathrm{F}^{*}=\left\{x_{1}, x_{2}, \cdots, x_{(q+3) / 2}\right\}$ in $\operatorname{PG}(2, q)$, such that any line $x_{i} x_{j}, i \neq j$, is an exterior line of C. Moreover any two such sets F^{*} are equivalent with respect to the group of collineations whih leave C invariant.

Proof. Let $q=3$. Then $\mathrm{C}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right)$ is a set of four points, no three of which are collinear. If x_{1}, x_{2}, x_{3} are the diagonal points of the complete quadrangle C , then it is easy to check that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is the unique set F^{*} with the desired properties.

Now we suppose that $q=5$. Suppose that $\mathrm{F}^{*}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a 4 -arc of $\mathrm{PG}(2,5)$, such that any line $x_{i} x_{j}, i \neq j$, is an exterior line of the conic $\mathrm{C}=\left\{y_{1}, y_{2}, \cdots, y_{6}\right\}$. We shall prove that the diagonal points z_{1}, z_{2}, z_{3} of the quadrangle F^{*} are exterior points of C , and that z_{1}, z_{2}, z_{3} is a self-polar triangle with respect to C .

An exterior point of C is on two exterior lines of C , and an interior point of C is on three exterior lines of C . Since $x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}$ are exterior
lines, the point x_{1} is an interior point. In fact, each of $x_{1}, x_{2}, x_{3}, x_{4}$ are interior points. Consequently there are exactly i2 secants of C which have a point in common with F^{*}. Since C has exactly I_{5} secants there are at most three secants of C which have a point in common with $\left\{z_{1}, z_{2}, z_{3}\right\}$. Since $z_{i}, i=1,2,3$, is on at least two secants, it follows immediately that $z_{1} z_{2}, z_{2} z_{3}, z_{3} z_{1}$ are secants and that these are the only secants having a point in common with $\left\{z_{1}, z_{2}, z_{3}\right\}$. Hence z_{1}, z_{2}, z_{3} are exterior points. Let $z_{i} z_{j} \cap \mathrm{C}=\left\{u_{k}, u_{k}^{\prime}\right\}$, where $\{i, j, k\}=\{\mathrm{I}, 2,3\}$. Evidently $\mathrm{C}=\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}$. Since $z_{i} z_{j}$ and $z_{i} z_{k},\{i, j, k\}=\{\mathrm{I}, 2,3\}$, are the secants through z_{i}, the lines $z_{i} u_{i}, z_{i} u_{i}^{\prime}$ are the tangents through z_{i}. So $u_{i} u_{i}^{\prime}=z_{j} z_{k}$ is the polar line of z_{i}. We conclude that $z_{1} z_{2} z_{3}$ is a selfpolar triangle with respect to C. Now we shall prove that F^{*} is uniquely defined by each of its diagonal points.

Consider the diagonal point z_{i} of F^{*}. It is an exterior point. Then z_{j}, z_{k} are the exterior points of the polar line of z_{i} with respect to C . The points $x_{1}, x_{2}, x_{3}, x_{4}$ are the intersections of the two exterior lines on z_{i} with the two exterior lines on z_{j}. So F^{*} is uniquely defined by z_{i}. Since the group G of collineations which leave C invariant is transitive on the set of exterior points, we conclude that any two such sets F^{*} are equivalent with respect to G.

Finally we prove that F^{*} exists. Let $\mathrm{GF}(5)=\{0, \mathrm{I}, 2,3,4\}$ and let C be the irreducible conic with equation $x^{2}+y^{2}+z^{2}=0$. Consider the exterior point $(\mathrm{O}, \mathrm{O}, \mathrm{I})$. The exterior points on the polar line $z=\mathrm{o}$ of $(\mathrm{O}, \mathrm{o}, \mathrm{I})$ are the points ($\mathrm{O}, \mathrm{I}, \mathrm{O}$) and ($\mathrm{I}, \mathrm{O}, \mathrm{O}$). The exterior lines containing ($\mathrm{O}, \mathrm{O}, \mathrm{I}$) (resp. ($\mathrm{I}, \mathrm{O}, \mathrm{o}$), resp. $(\mathrm{O}, \mathrm{I}, \mathrm{o})$) are $y=x$ and $y=-x$ (resp. $z=y$ and $z=-y$, resp. $x=z$ and $x=-z$). These six exterior lines are exactly the six sides of the complete quadrangle with vertices ($\mathrm{I}, \mathrm{I}, \mathrm{I}$), ($\mathrm{I}, \mathrm{I},-\mathrm{I}$), ($\mathrm{I},-\mathrm{I},-\mathrm{I}),(\mathrm{I},-\mathrm{I}, \mathrm{I}) . \quad$ Consequently $\mathrm{F}^{*}=\{(\mathrm{I}, \mathrm{I}, \mathrm{I}),(\mathrm{I}, \mathrm{I},-\mathrm{I})$, ($\mathrm{I},-\mathrm{I},-\mathrm{I}),(\mathrm{I},-\mathrm{I}, \mathrm{I})\}$ has the desired properties.

Corollary i. Each elliptic quadric O of $\mathrm{PG}(3, q), q=3$ or 5 , possesses a chain with the property that the planes of the $(q+3) / 2$ circles of the chain all meet in one point.

Corollary 2. Each non-singular ruled quadric Q of $\mathrm{PG}(3, q) q=3$ or 5, possesses a set of $(q+3) / 2$ mutually disjoint circles (i.e. a partial flock of size $(q+3) / 2)$ no three of which are contained in a linear flock and such that the planes of these circles all meet in one point.

Proof. Let C be a circle of Q and let $\mathrm{F}^{*}=\left\{x_{1}, x_{2}, \cdots, x_{(q+3) / 2}\right\}$ be a set of points which has the properties (i) and (ii) with respect to the conic C, in the plane corresponding to C . If $\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{(\eta+3) / 2}$ are the polar planes of $x_{1}, x_{2}, \cdots, x_{(q+3) / 2}$ with respect to Q , then (i) the planes P_{i} all meet in the pole of the plane containing C (ii) the circles $P_{i} \cap Q$ constitute a partial flock of order $(q+3) / 2$ (iii) no three circles $P_{i} \cap Q$ are contained in a linear flock (this follows from the fact that F^{*} is a $\left.(q+3) / 2-\operatorname{arc}\right)$.

References

[I] A. A. Bruen - Inversive geometry and some new translation planes (submitted).
[2] W. F. OrR (1973) - The Miquelian inversive plane IP (q) and the associated projective planes, Thesis submitted to obtain the degree of Doctor of Philosophy at the University of Wisconsin.
[3] J. A. Thas (1972) - Flocks of finite egglike inversive planes, "C.I.M.E.», II ciclo, Bressanone», 189-191.
[4] J. A. Thas - Flocks of non-singular ruled quadrics in PG (3, q), «Accad. Naz. Lincei» (to appear).

