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SEZIONE I
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Matematica. —• Strong oscillation o f elliptic systems o f second order 
partial differential equations. Nota di S a m u e l  M . R a n k i n , III, pre
sentata ((*) ** dal Socio C. M ir a n d a .

Riassunto. - • Si dà una condizione sufficiente ad assicurare il carattere fortemente 
oscillatorio dei sistemi ellittici del tipo

n
?  (Au M  u) +  c  {x) u =  o .i,j — 1

Con questo risultato si estendono vari criteri noti relativi al caso di una sola equazione.

Oscillation theory  for elliptic partia l differential equations and elliptic 
systems of partial differential equations of second order has developed rapidly 
during recent years with the papers of Clark and Swanson [i], H eadly  [3], 
H eadly  and Swanson [4], K reith  [5, 6, 7], K reith  and Travis [8, 9], Swanson 
[11, I21> and T ravis [13, 14]. The papers are separated into three basic 
types: (a) those concerned w ith Sturm -Picone comparison theorem s for scalar 
equations ,([1]), [5], [6]); (b) those concerned with sufficient conditions for 
non-oscillation and oscillation of scalar equations ([9], [12], [13]); (f) those 
concerned with elliptic systems of type (3) below ([7], [8], [11], [14]).

T he m ain  result of this paper gives a sufficient condition for strong oscil
lation of the equation

n
( 0  Cm =  S ', (A (oc) Dj m) -f- C (oc) u =  o

i,j=1

(*) Nella seduta del 15 novembre 1975.
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where A ^ (x) (i , j  =  1 , • • •, m) and C (x) are m X m  m atrix  functions defined 
in Ew. T he solution u (x) =  (ux (x) , • • *, um (x))T is an m X  1 vector function. 
To be explicit, we show th a t nodal oscillation of an equation of type (2)

n
(2) lu =  2  (a y  (x) D̂* v) +  c (x) v =  o

i , j = 1

implies the nodal oscillation of equation (1). Here a^(x)  (i , j  — 1 , • • - , ni) 
and c (x) are real valued scalar functions.

C om parison theorem s between two equations of type (1) and between 
equations of type (1) and equations of the form

(3) LV =  X  D« (A i i  (*) Di V) +  C ( x )  V =  o
i , j  =  1

where V  is an m X m  m atrix  function are also developed in this paper.
O ur techniques will be based on the m ethods of the calculus of variations 

in characterizing the eigenvalues and eigenfunctions of the system

(4) X  D» (Ay (x) Dj z (x)) +  C (x)z  (x) +  Iß (x) — o on G

2 (x) =  o on F (G)

where G is a bounded dom ain in En and F (G) is its boundary. W e will use 
properties of system  (4) which are developed in [10].

T he following assum ptions will be m ade throughout the paper.

(i) C (x) and each A ^  (x) are w-square real m atrix  functions defined 
in E^; the solutions u (x) of equation (1) are m  X 1 vectors.

(ii) A ij =  A ji and each A^* is sym m etric as class C ' (En).

(iii) T he m ^-square m atrix  (A^ (x)) is positive definite.

(iv) C is sym m etric and continuous.

(v) T he notations d 1̂ and chl will be used to denote the hi-th elements 
of the m atricies A^- (x) and C (x), respectively.

A  bounded dom ain G C Ew is said to be a nodal dom ain of a solution u of 
(1) (resp. (2)), if and only if u =  o on F (G). T he equation (1) (resp. (2)) will 
be called nodally or strongly oscillatory in E^ if for every R  >  o there is a 
a dom ain G in

Er =  {x  e E“ I I x  I =  ix \  H-------h xl > R },

such th a t G is a nodal dom ain for a solution of (1) (resp. (2)).
T he following three theorem s are stated w ithout proofs. T heir proofs 

can be found in [10].
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THEOREM A . The linear operator

n
L u =  £  D i (A w (*) «) +  C (*) «i,i=l

^  a discrete spectrum in the bounded region G C E", the smallest eigenvalue 
of the operator being given by the form ula

\  =  m in

Di uT (x) u — uT C( x)u dG

2  (x) dG
i = l

The class is an appropriate set of admissible functions. ”

T h eo r em  B. For rx > o define G (rxr) =  { x  \ rx <  \ x  \ < r  }, then 
the smallest eigenvalue À (r) of the system

(S)
n

S  (Aij (x ) u) T  C (x) u ~  o on G (r-, .r)i,j= 1 '

satisfies lim X (r) — oo.
r-t î*i

u =  o on F  (G (rx , r))

THEOREM C. Define G (rx , f) as m  Theorem B, then the smallest eigenvalue 
^ (f) ° f  the system (5) depends continuously on r.

W e now state and prove a useful lemma.

L em m a . I f  there exists a solution v (x) of equation (2) that has a nodal domain 
G C E r  for, some R  >  o, then there exists a region G (a , 6) such that G (a , b) 
zs a nodal domain fo r  a solution z (pc) of equation (2).

Proof. Since v (pc) satisfies equation (2) for the region G and v (x )= o  on 
F(G ), zero is an eigenvalue of equation (2) and v(x)  is its corresponding eigen
function. Enclose G in a region of the form G (a , f )  =  {x | o <  a < \ x \ <  r}. 
By classical variational principles [2] the smallest eigenvalue of the problem

lu  -f~ 1m =  o on. G (a , r)

u =  o on F  (G (a , r))

is less than  or equal to zero. A ppealing to Theorem s B and C, there exists 
a b >  a such th a t zero is the  sm allest eigenvalue of the system

lu T- 1m =  o on G (a , B)

u — o on F  (G (a , b)).
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T hus the proof is complete.
O ur m ain  theorem  can now be stated.

THEOREM i . I f  the scalar elliptic equation

n
(6) 2  D j (af} (x) D,- v (x)) +  ckl (x) v — o ,

i,j=1

is nodally oscillatory fo r  some k =  1 , • • - , m then equation (1) is nodally oscil
latory.

Proof. Since (6) is nodally oscillatory we have by the lem m a th a t there 
exists for each R  >  o a dom ain G =  G (rx , r) where rx >  R  and such that 
G is a nodal dom ain for a solution v (x) of (6). Dehne u (x) — v (x) ß where 
ß is a constant m  X 1 vector w ith one in the k-Xh com ponent and zeros 
elsewhere, then  u (x) =  o on F (G (rx , r)). Now consider the eigenvalue 
problem  (4). If  $  denotes the class of “ admissible functions ” , Theorem  A 
implies th a t

2 ) D ^ A ^ ) * ~ * TC(*),sr dG
i , j=1

Xx =  m in 
26$

2  dGJc= 1

/( 2  uT A^a (x) D j u —■ dl  C (x) u ) dG
i,j=1

<  -

j  (. 2 1 Di v (*) D; » (*) — C** v2 (*)) dG

G

Since v (x) satisfies (6) and v (x) =  o on F (G), the last ratio is zero and 
\  ^  o. Now by Theorem s B and C, there is a dom ain G (rt , r r) C G for 
which the eigenvalue problem

L u +  'h'u —■ o on G (rt , r')

u =  o on F (G (r±, r'))

satishes — o. This completes the proof.
From  the proof of Theorem  1 we see tha t the following result can be 

stated.
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THEOREM 2. I f  fo r  each R  >  o there exists a domain G C E R , 
a k € { I ,•• •, m } and a solution v of equation (6) such that v =  o on F  (G), 
then equation (2) is nodally oscillatory.

C o ro lla ry  i . I f  fo r  each R  >  o there exists a bounded region G C E r  
with piecewise smooth boundary, a continuously differentiable function z with 
z (pc) — o on F  (G) and an integer k € { 1 , • • •, m  } such that

(7) J i  -p  â 2^ i 2—c*h * )dG ~  ° ’
G

the equation (1) is strongly oscillatory.

Proof. Condition (7) implies tha t the smallest eigenvalue for the system
n

(8) L  D i 0 $  D j u) +  Cm u +  'hu =  o on G
i,i=l

u =  o on F (G)

is less than  or equal to zero. Now by classical variational principles found 
in [2], there exists a dom ain G ' C G such th a t the smallest eigenvalue X' for 
the system  (8) defined on G ' satisfies X' =  o and the corresponding eigenfunction 
ur satisfies u ’ {£) =  0 on F (G). Now apply Theorem  2.

W e can extend a result of K reith  and Travis [9] to vector equations. 
Define

ß t( r)= J  rT (e)At ( r>8)-, r  (0) d6
A

(/) = J ch (r , 0) dO
A

where A denotes the unit (n ■— i) sphere in En the column vector r  (0) is the 
exterior unit norm al to the sphere A at (r , 0) and where A k (r , 0) and ck (r , 0) 
denote the m atrices (afj (x)) and cM (x), respectively; a: is written in term s of 
hyperspherical coordinates for Ew.

T h eo r em  3 . I f  the ordinary differential equation

f f 1 $k (r) — j +  r«-1 a t (r) v =  o

fo r  some k =  1 , • • - , m is oscillatory at r — oo, then equation (1) is nodally 
oscillatory at \x  \ =  00.

Proof. E quation  (6) is nodally oscillatory by the theorem  of T ravis [13]. 
Now by Theorem  1 we have the strong oscillation of (1) in En.
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T h e o r e m  4. I f  fo r  some k =  1 ■ - ,m  equation (*) Au +  ckk u  =  o
is nodatty oscillatory fo r  all positive X and i f  (afj (x)) is bounded as a form  in  E", 
then equation (1) is strongly oscillatory.

Proof. L et a0 be a positive upper bound for (dfj (x)). Since (*) is nodally 
oscillatory for all X >  o, there exists for each R  >  o a dom ain G C E e and a
solution u  of (*) w ith X =  —  such th a t u =  o on F  (G). Now we have

a0 y

J" ^ 2  aij D i dDj u —  ckk u2\  dG

-f  (a« X (D< dG
G 1-1 '

=  ao J  ( j S  (Di u f  —  Xckk u A  dG =  o.
G *~1 ^

By corollary (1), the conclusion follows.

L et ak (r) - if rfck ( r , 0) d 0 where A again denotes the full range of

angular coordinates and 2  d 0. W e then have the following corollary
A

of Theorem  4, which extends another result of K reith and T ravis [9] to 
vector equations.

C o ro lla ry  2. I f  lim sup
r—>00

dr  =  00 and (afj (x)) is bounded as a
r

form, on En fo r  some k =  1 , • • - , m y then equation (1) is strongly oscillatory.

Proof. T he proof follows from Theorem  4.4 of [9] and Theorem  4.
A  result sim ilar to one found in a paper by Swanson [12] for scalar 

equations can be obtained for vector equations.

THEOREM 5. Equation (1) is strongly oscillatory i f  fo r  every r  >  o 
there exists

(1) a bounded region M C E r with piecewise smooth boundary and

(2) a piecewise continuously differentiable function ur defined on M such 
that ur =  o on F  (M) and

M
D ; uT A ij (x) D j ur —  ur C dG <  o.
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Proof. L et r  >  o and M be a bounded region in E r , then the smallest 
eigenvalue X (M) of the problem

L u +  \u  — o on M

u — o on F  (M )

is less th an  or equal to zero. Enclose the region M of (i) by a region 
M r (/i , r2) — { x  6 En I r  <  rx <  \x  \ < r2}, then the smallest eigenvalue X (M r) 
of the region M r satisfies, X (M r) <  X (M). By Theorem s B and C there exists 
a region M.r =  { ^ e E ^ | r < r 1 <  \ x  | <  r 2 <  r2 } such tha t the smallest 
eigenvalue (M r) =  o. Thus the region M r , is a nodal dom ain of a non-trivial 
solution of (i).

U sing our m ethods, a com parison result which gives a stronger result 
than  the results obtained by K reith  [5, 6] and Clark and Swanson [1] can be 
obtained. Consider equation (1) along with another equation of the sam e form:

(9) L ^ = S d  , (By (x) T>j v ) + D ( x ) v  =  o.
i , j = 1

T h eo r em  6 . I f  fo r  some R  >  o there exists a G C E R and a solution u of 
equation (1) with u  =  o on F (G) and such that

(10) [(D^ u  (Ay (x) —  B ^ (x)) D j u + ut (D (x) — C (x)) u\ dG >  o,
JG

then there exists a domain G ' C E r  such that G ' is a nodal domain fo r  a solution 
z (x) of equation (8).

Proof. Let G (a , r) =  { x £ E n \ o < a <  \ x  \ < r }  be such th a t 
G C G (a , r). E xtend u  to G (a , r) by letting u — o on G (a , r) ■— G, 
since u  is, a solution of (1) on G and from (10) we have

o = u A  ij (x) D j u — u C dG

— J ( 2  D» A^- (x) u  —  u  C (x ) u)  dG 
J \ i , j = 1

G (a,r)

>
G (a,r)

J  ^ .-S  u  B^- (x) D j u — u D (x) u^j dG .

Therefore the smallest eigenvalue of the problem

Lj u  +  Xu =  o

u =  o

on G (a , f)

on F (G (a , ff)
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is less th an  or equal to zero. Again, by Theorem s B and C there exists a dom ain 
G — G (a,  r r) =  { x \ o < a < \ x \ <  r ' < . r }  such th a t Xj (G') =  o.

A nother type of com parison theorem  involves equation (i)  and an equa
tion of the form (3). For prepared solutions of (3), th a t is, solutions which

n
satisfy V* 2  A «D ,-»  is sym m etric for i =  i , • • ■, n, we have the following 

theorem:

THEOREM 7* I f  êQuation (1) is tiodcdly oscillatory, then the déterminant 
of every prepared solution of (3) has a zero in E R fo r  every R >  o.

Proof. Since equation (1) is oscillatory, there exists for each R > o  
a dom ain G C E R which is a nodal dom ain for a solution u(pc) of equation (1). 
Now applying Sw anson’s Theorem  1 of [11], we get our results.

Note we have assum ed the existence of classical solutions of the eigenvalue 
problem  (4). Theorem  A  guarantees the existence of generalized solutions 
under the stated assum ptions on the coefficients of L.
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