Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Bang-Yen Chen, Leopold Verstraelen

 Surfaces with flat normal connection

 Surfaces with flat normal connection}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.5, p. 407-410.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_59_5_407_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - Surfaces with flat normal connection. Nota di Bang-yen Chen e Leopold Verstraelen, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Dopo aver dato due diverse caratterizzazioni per le superficie di una varietà riemanniana m-dimensionale che hanno una connessione normale piatta, si caratterizzano le superficie sferiche di codimensione i e le varietà riemanniane conformemente piatte di dimensione $m>3$.

§ i. Introduction

Let $x: M \rightarrow R^{m}$ be an isometrical immersion of a surface M into an m-dimensional Riemannian manifold R^{m} and let ∇ and ∇^{\prime} be the covariant differentiations of M and R^{m} respectively. Let X and Y be two tangent vector fields on M . Then the second fundamental form h is given by

$$
\begin{equation*}
\nabla_{\mathrm{x}}^{\prime} \mathrm{Y}=\nabla_{\mathrm{x}} \mathrm{Y}+h(\mathrm{X}, \mathrm{Y}) \tag{I}
\end{equation*}
$$

It is well-known that $h(\mathrm{X}, \mathrm{Y})$ is a normal vector field on M and is symmetric on X and Y . Let ξ be a normal vector field on M , we write

$$
\begin{equation*}
\nabla_{\mathrm{x}}^{\prime} \xi=-\mathrm{A}_{\xi}(\mathrm{X})+\mathrm{D}_{\mathrm{x}} \xi \tag{2}
\end{equation*}
$$

where $-\mathrm{A}_{\xi}(\mathrm{X})$ and $\mathrm{D}_{\mathrm{X}} \xi$ denote the tangential and normal components of $\nabla_{\mathrm{x}}^{\prime} \xi$. Then D is the normal connection of M in R^{m} and we have

$$
\begin{equation*}
\left\langle\mathrm{A}_{\xi}(\mathrm{X}), \mathrm{Y}\right\rangle=\langle h(\mathrm{X}, \mathrm{Y}), \xi\rangle \tag{3}
\end{equation*}
$$

where \langle,$\rangle denotes the scalar product in \mathrm{R}^{m}$. The curvature tensor K^{N} associated with D is given by

$$
\begin{equation*}
\mathrm{K}^{\mathrm{N}}(\mathrm{X}, \mathrm{Y})=\left[\mathrm{D}_{\mathrm{x}}, \mathrm{D}_{\mathrm{y}}\right]-\mathrm{D}_{\left[\mathrm{X}, \mathrm{y}_{\mathrm{l}}\right.} . \tag{4}
\end{equation*}
$$

For a surface M in R^{m}, if the curvature tensor K^{N} vanishes identically, then M is said to have flat normal connection. For a surface in a conformally flat space, the flatness of normal connection is equivalent to the commutativity of the second fundament tensors [2].

In this' note, we shall first obtain two characterizations for surfaces with flat normal connection. Next, we shall apply this to obtain a characterization for spherical surfaces of codimension one. Finally, we shall prove that a Riemannian manifold R^{m} of dimension $m>3$ is conformally flat if and only if for any point $p \in \mathrm{R}^{m}$ and any plane section $\pi \subset \mathrm{T}_{p}\left(\mathrm{R}^{m}\right)$, there exists a surface M in R^{m} with $T_{p}(M)=\pi$ such that the normal connection of M in R^{m} is flat and the second fundamental tensors commute, where $\mathrm{T}_{p}(\mathrm{M})$ (resp. $\mathrm{T}(\mathrm{M})$) is the tangent space of M at p (resp. the tangent bundle of M).
(*) Nella seduta del 15 novembre 1975 .

§ 2. Characterizations of flat normal connections

Let M be a surface in an m-dimensional Riemannian manifold R^{m}. A normal vector field $\xi(\neq 0)$ is called a parallel (resp. umbilical) section if $\mathrm{D} \xi=0$ identically (resp. A_{ξ} is proportional to the identity transformation). Let X be a vector tangent to M . We denote by X^{\perp} a vector tangent to M such that $\langle\mathrm{X}, \mathrm{X}\rangle=\left\langle\mathrm{X}^{\perp}, \mathrm{X}^{1}\right\rangle$ and $\left\langle\mathrm{X}, \mathrm{X}^{\perp}\right\rangle=\mathrm{o}$.

Lemma I. Let M be a surface in an m-dimensional Riemannian manifold R^{m}. Then the following three statements are equivalent:
(a) $\left[\mathrm{A}_{\xi}, \mathrm{A}_{n}\right]=0$ for all normal vectors ξ, η at p;
(b) $\left\{h\left(\mathrm{X}, \mathrm{X}^{1}\right): \mathrm{X} \in \mathrm{T}_{p}(\mathrm{M})\right\} \subset$ line;
(c) there exist at least $m-3$ orthogonal sections umbilical at p.

Proof. $(a) \Rightarrow(b)$. If the second fundamental tensors commute, there exist an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ which diagonalize all second fundamental tensors. Hence, we have $h\left(e_{1}, e_{2}\right)=0$. Let $\mathrm{X}=\Sigma \mathrm{X}^{i} e_{i}, \mathrm{X}^{\perp}=\Sigma \mathrm{Y}^{j} e_{j}$, $i, j=1,2$. Then we have $h\left(\mathrm{X}, \mathrm{X}^{1}\right)=\mathrm{X}^{1} \mathrm{Y}^{1}\left(h\left(e_{1}, e_{1}\right)-h\left(e_{2}, e_{2}\right)\right)$.
(b) $\Rightarrow(a)$ and (c). Let $\mathrm{X}=\Sigma \mathrm{X}^{i} e_{i}, \mathrm{X}^{1}=\Sigma \mathrm{Y}^{j} e_{j}$, where $\left\{e_{1}, e_{2}\right\}$ is any orthonormal basis of $T_{p}(M)$. Then we have

$$
h\left(\mathrm{X}, \mathrm{X}^{1}\right)=\mathrm{X}^{1} \mathrm{Y}^{1}\left(h\left(e_{1}, e_{1}\right)-h\left(e_{2}, e_{2}\right)\right)+\left(\mathrm{X}^{1} \mathrm{Y}^{2}+\mathrm{X}^{2} \mathrm{Y}^{1}\right) h\left(e_{1}, e_{2}\right) .
$$

If $\left\{h\left(\mathrm{X}, \mathrm{X}^{1}\right): \mathrm{X} \in \mathrm{T}_{p}(\mathrm{M})\right\} \subset$ line, then $h\left(e_{1}, e_{2}\right)$ and $h\left(e_{1}, e_{1}\right)-h\left(e_{2}, e_{2}\right)$ are linearly dependent. If $h\left(e_{1}, e_{1}\right)-h\left(e_{2}, e_{2}\right)=0$ for any orthonormal basis e_{1}, e_{2}, then M is totally umbilical, i.e., every normal vector field is umbilical. Thus, the second fundamental tensors commute. If $h\left(e_{1}, e_{1}\right) \neq h\left(e_{2}, e_{2}\right)$ for some orthonormal basis e_{1}, e_{2}, then it is clear that every normal vector perpendicular to $h\left(e_{1}, e_{1}\right)-h\left(e_{2}, e_{2}\right)$ is umbilical. In particular, all second fundamental tensors commute.

$$
(c) \Rightarrow(a) . \text { This is trivial. }
$$

From Lemma A and Theorem 4 of [2], we have immediately the following
Theorem I. Let M be a surface in an m-dimensional conformally flat space $\mathrm{R}^{m}(m>3)$. Then the normal connection of M in R^{m} is flat if and only if one of the following three conditions holds:
(a) $\operatorname{dim}\left\{h\left(\mathrm{X}, \mathrm{X}^{\perp}\right): \mathrm{X} \in \mathrm{T}_{p}(\mathrm{M})\right\} \leqq \mathrm{I}$ for all $p \in \mathrm{M}$;
(b) there exist at least $m-3$ orthogonal umbilical sections;
(c) second fundamental tensors commute.

Remark i. For results in this direction, see also [3, 6].

§ 3. Characterization of "spherical" surfaces and Conformally flat spaces

Following [I], by a space form $\mathrm{R}^{m}(k)$ of curvature k, we mean a complete simply-connected Riemannian manifold of constant sectional curvature k. By an n-sphere of $\mathrm{R}^{m}(k)$ we mean a hypersphere of an ($n+\mathrm{I}$)-dimensional totally geodesic submanifold of $\mathrm{R}^{m}(k)$.

If M is a surface in a 3 -sphere S^{3} of a space form $\mathrm{R}^{m}(k)$, then the normal connection of M in $\mathrm{R}^{m}(k)$ is flat, $\left\{h\left(\mathrm{X}, \mathrm{X}^{\mathrm{L}}\right): \mathrm{X} \in \mathrm{T}(\mathrm{M})\right\}$ is parallel to the normal vector of M in S^{3} and gives a parallel section in $\mathrm{R}^{m}(k)$. Conversely, we have the following

Theorem 2. Let M be a surface in an m-dimensional space form $\mathrm{R}^{m}(k)$. If the normal connection of M in $\mathrm{R}^{m}(\underset{\sim}{k})$ is flat and $\left\{h\left(\mathrm{X}, \mathrm{X}^{\mathrm{I}}\right): \mathrm{X} \in \mathrm{T}(\mathrm{M})\right\}$ gives a parallel (normal) section in $\mathrm{R}^{m}(k)$, then M lies in a3-sphere of $\mathrm{R}^{m}(k)$.

Proof. Since the normal connection of M in $\mathrm{R}^{m}(k)$ is flat, there exists locally an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $\mathrm{T}(\mathrm{M})$ such that $h\left(e_{1}, e_{2}\right)=0$. Let $\xi_{1}, \cdots, \xi_{m-2}$ be orthonormal normal vector fields such that ξ_{1} is parallel to $\left\{h\left(\mathrm{X}, \mathrm{X}^{\boldsymbol{L}}\right): \mathrm{X} \in \mathrm{T}(\mathrm{M})\right\}$. Then by the assumption, $\mathrm{D} \xi_{1}=0$, and $\xi_{2}, \cdots, \xi_{m-2}$ are umbilical sections. If $A_{2}=\cdots=A_{m-2}=0, A_{\alpha}=A_{\xi_{\alpha}}$, then M is contained in a 3 -dimensional totally geodesic submanifold of $\mathrm{R}^{m}(k)$ [4]. Hence M lies a great 3 -sphere of $\mathrm{R}^{m}(\kappa)$. If $\mathrm{A}_{2}, \cdots, \mathrm{~A}_{m-2}$ are not all zero, then we may choose $\xi_{2}, \cdots, \xi_{m-2}$ in such a way that $\mathrm{A}_{2}=\lambda \mathrm{I}, \mathrm{A}_{3}=\cdots=\mathrm{A}_{m_{i-2}}=\mathrm{o}$. Thus, by the following equation of Codazzi:

$$
\left(\nabla_{\mathrm{Y}} \mathrm{~A}_{\xi}\right)(\mathrm{X})+\mathrm{A}_{\mathrm{D}_{\mathrm{X}} \xi}(\mathrm{Y})=\left(\nabla_{\mathrm{X}} \mathrm{~A}_{\xi}\right)(\mathrm{Y})+\mathrm{A}_{\mathrm{D}_{\mathrm{x}} \xi}(\mathrm{X})
$$

and the equation $\mathrm{D} \xi_{1}=\mathrm{o}$, we find

$$
\begin{equation*}
(\mathrm{Y} \lambda) \mathrm{X}=(\mathrm{X} \lambda) \mathrm{Y} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
A_{D_{x} \xi_{\alpha}}(Y)=A_{D_{y} \xi_{\alpha}}(X), \quad \alpha=3, \cdots, m-2 \tag{6}
\end{equation*}
$$

From (5) and (6) we see that λ is constant and ξ_{2} is parallel. Thus M lies in a small 3 -sphere of $\mathrm{R}^{m}(k)$ [I$]$.

If R^{m} is a conformally flat space, then it is clear that for any point $p \in \mathrm{R}^{m}$ and any plane section $\pi \subset T_{p}\left(\mathrm{R}^{m}\right)$ there exists a surface M in R^{m} through p, tangent to π, with flat normal connection and commutative second fundamental tensors. In the following, we shall prove that the converse of this is also true.

ThEOREM 3. An m-dimensional ($m>3$) Riemannian manifold R^{m} is conformally flat if an only if for every point $p \in \mathrm{M}$ and any plane section $\pi \subset \mathrm{T}_{p}\left(\mathrm{R}^{m}\right)$ there exists a surface in R^{m} through p, tangent to π, with flat normal connection and commutative second fundamental tensors.

Proof. We need only to prove the converse. Let p be any point in R^{m} and X and Y be any two orthonormal vectors in $\mathrm{T}_{p}\left(\mathrm{R}^{m}\right)$. Let π be the plane section in $\mathrm{T}_{p}\left(\mathrm{R}^{m}\right)$ containing X and Y . Then, by the hypothesis, there exists a surface through p, tangent to M , with flat normal connection and commutative second fundamental tensors. Let ξ and η be any two orthonormal normal vector field of M in R^{m}. Then we have

$$
\left\langle\mathrm{K}^{\mathbb{N}}(\mathrm{X}, \mathrm{Y}) \xi, \eta\right\rangle=\left\langle\left[\mathrm{A}_{\xi}, \mathrm{A}_{\eta}\right](\mathrm{X}), \mathrm{Y}\right\rangle=\mathrm{o} .
$$

Substituting this into the equation of $\operatorname{Ricci}([\mathrm{I}], \mathrm{p} .47)$, we find $\langle\stackrel{\mathrm{K}}{\mathrm{K}}(\mathrm{X}, \mathrm{Y}) \xi, \eta\rangle=0$ where $\overrightarrow{\mathrm{K}}$ is the curvature tensor of R^{m}. Since this is true for all points $p \in \mathrm{M}$ and all orthonormal vectors $\mathrm{X}, \mathrm{Y}, \boldsymbol{\xi}, \eta$ in $\mathrm{T}_{p}\left(\mathrm{R}^{m}\right), \mathrm{R}^{m}$ must be conformally flat ([5], p. 307).

References

[I] B.-Y. Chen (1973) - Geometry of Submanifolds, M. Dekker, New York.
[2] B.-Y. Chen (1974) - Some conformal invariants of submanifolds and their applications, «Boll. U.M.I.» (4), 1о, 380-385.
[3] B.-Y. Chen (1974) - Some results for surfaces with flat normal connection, "Atti Acad. Naz. Lincei», 56, 180-188.
[4] J. A. Erbacher (197I) - Reducation of the codimension of an isometric immersion, «J. Differential Geometry», 5, 333-340.
[5] J. A. Schouten (1954) - Ricci-Calculus, Springer, Berlin.
[6] L. Verstraelen - On surfaces with flat normal connection in a 4-dimensional elliptic space, to appear.

