Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

Lucie de Munter-Kuyl

Some invariants for rank three torsion-free modules over a Dedekind domain

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 59 (1975), n.5, p. 349-356.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_59_5_349_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Abstract

Algebra. - Some invariants for rank three torsion-free modules over a Dedekind domain. Nota di Lucie De Munter-Kuyl, presentata (*) dal Corrisp. G. Zappa.

Riassunto. - Viene associato un sistema completo di invarianti ad un modulo M di rango tre libero da torsione sopra un dominio di Dedekind e ad una terna di elementi indipendenti di M. I metodi usati sono simili a quelli della teoria dei gruppi abeliani.

I. Introduction

In [3], we have associated a complete system of invariants with the triple (M, x_{1}, x_{2}) consisting of a rank two torsion-free module M and two independent elements of M . The purpose of this paper is to extend our results to modules of rank three.

Let A be a Dedekind domain, K its field of fractions, \mathscr{P} the set of non-zero prime ideals of $\mathrm{A}, \mathrm{A}_{\mathfrak{p}}$ the local ring of A at the non-zero prime ideal \mathfrak{p}, and π a uniformizing element of A.

An (integral) superdivisor of A is defined to be a mapping μ from \mathscr{P} to $\overline{\mathbf{N}}=\mathbf{N} \cup\{0, \infty\}$. Multiplication of superdivisors is defined by $\left(\mu \mu^{\prime}\right)(\mathfrak{p})=$ $=\mu(\mathfrak{p})+\mu^{\prime}(\mathfrak{p})$, with the convention that $n+\infty=\infty, \forall n \in \overline{\mathbf{N}}$. Integral ideals of A are identified with the superdivisor corresponding to their prime decomposition and multiplicative terminology is carried over from ideals to superdivisors. In particular, we write $\mu \mid \mu^{\prime}$, when μ divides μ^{\prime}, and we denote by $\left[\mu, \mu^{\prime}\right]$ the GCD of two arbitrary superdivisors μ and μ^{\prime}.

In accordance with the group theoretical terminology, we define a torsion A-module T to be \mathfrak{p}-primary if every element of T has order a power of \mathfrak{p}, i.e. if the submodule zero is \mathfrak{p}-primary in T, in the usual sense.

For $k \in \mathbf{N} \cup\{0\}$, we denote by $\mathrm{A}\left(p^{k}\right)$ the \mathfrak{p}-primary A -module $\mathrm{A} / \mathrm{p}^{k}$ and by $A\left(p^{\infty}\right)$ the \mathfrak{p}-primary component of the torsion A-module K / A. A p-primary A-module T satisfying the descending chain condition on submodules is the direct sum of a finite number of submodules of the form $\mathrm{A}\left(\mathfrak{p}^{k}\right), k \in \mathbf{N} \cup\{\infty\}$. The number of direct summands is independent of the decomposition of T. It is called the rank of T and is denoted by $r(\mathrm{~T})$. If T is any torsion A-module whose \mathfrak{p}-primary components $\mathrm{T}_{(p)}$ satisfy the d.c.c., we set $r(\mathrm{~T})=\sup _{\mathfrak{p} \in \mathscr{P}} r\left(\mathrm{~T}_{(\mathfrak{p})}\right)$ and still call it the rank of T . When $r(\mathrm{~T}) \leq \mathrm{I}$, we thus have $\mathrm{T}_{(p)} \simeq \mathrm{A}\left(w_{\mathfrak{p}}(\mathrm{T})\right)$, where $w_{\mathfrak{p}}(\mathrm{T}) \in \overline{\mathbf{N}}$. We denote by $w(\mathrm{~T})$ the superdivisor defined by $w(\mathrm{~T})(\mathfrak{p})=w_{p}(\mathrm{~T})$.

Unless otherwise explicitly mentioned, we further use the terminology and notations of [I], Chap. I.
(*) Nella seduta del 15 novembre 1975 .

2. INVARIANTS

Let E be a three-dimensional vector space over K . Let M be a rank three A-submodule of E and let x_{1}, x_{2}, x_{3} be independent elements of M .

For any x in \mathbf{M}, let $h_{\mathfrak{p}}^{\mathrm{M}}(x)=\sup \left\{k \in \mathbf{N} \cup\{0\} ; \pi^{-k} x \in \mathrm{M}_{p}\right\}$ and consider the superdivisor $h(\mathrm{M}, x): \mathfrak{p} \mapsto h_{\mathfrak{p}}^{\mathrm{M}}(x)$. In particular, set $\mu_{i}=h\left(\mathrm{M}, x_{i}\right)$, $i=1,2,3$.

Let $\mathrm{N}_{\boldsymbol{i}}$ be the pure A -submodule of M generated by $x_{i}, i=\mathrm{I}, 2,3$, and set $M / N_{1}+N_{2}+N_{3}=M^{0}$. We have proved in [2] that M^{0} is a torsion module and that $\mathrm{M}_{(p)}^{0}$ is of the form $\mathrm{A}\left(p^{\mu(p)}\right) \oplus \mathrm{A}\left(p^{\mu^{\prime}(p)}\right)$, with $\mu(\mathfrak{p}), \mu^{\prime}(p) \in \overline{\mathbf{N}}$, and requiring $\mu^{\prime}(p) \leq \mu(p)$, we have thus determined two superdivisors μ and μ^{\prime} which characterize the structure of M^{0} and were proved to satisfy:
$\left(\mathrm{C}_{1}\right) \quad \mu^{\prime} \mid \mu$;
$\left(\mathrm{C}_{2}\right)$ if there exists i such that $\mu_{i}(\mathfrak{p})=\infty$, then $\mu^{\prime}(\mathfrak{p})=0$;
$\left(\mathrm{C}_{3}\right)$ if there exist i and $j, i \neq j$, such that $\mu_{i}(\mathfrak{p})=\mu_{j}(\mathfrak{p})=\infty$, then $\mu(p)=\mu^{\prime}(p)=o$.
Let $\mathrm{N}_{i j}$ be the pure A-submodule of M generated by x_{i} and x_{j}, where $i, j=\mathrm{I}, 2,3$ and $i \neq j$. Then $\mathrm{N}_{i j} / \mathrm{N}_{i}+\mathrm{N}_{j}$ is a torsion module of rank at most one (see [2]). Set $h_{k}=w\left(\mathrm{~N}_{i j} / \mathrm{N}_{i}+\mathrm{N}_{j}\right)$, where $k=\mathrm{I}, 2,3$ and $\{i, j, k\}=\{\mathrm{I}, 2,3\}$. Denote by f the canonical homomorphism of M onto M^{0} and let $\mathrm{N}_{i j}^{0}=f\left(\mathrm{~N}_{i j}\right)$.

For $i=\mathrm{I}, 2,3$, denote by M_{i} the A-submodule of E consisting of the elements $r x_{i}$ for which there exist $s, t \in \mathrm{~K}$ such that $r x_{i}+s x_{j}+t x_{k} \in \mathrm{M}$, with $\{i, j, k\}=\{\mathrm{I}, 2,3\}$. For any subset $\{i, j\}$ of $\{\mathrm{I}, 2,3\}$, denote by $\mathrm{M}_{i j}$ the A-submodule of E consisting of the elements $r x_{i}+s x_{j}$ for which there exists $t \in \mathrm{~K}$ such that $r x_{i}+s x_{j}+t x_{k}$ belongs to M , with $k \neq i, j$.

Finally, if H is a submodule of M^{0} of rank at most I , set $m_{i}(\mathrm{H}, \mathfrak{p})=$ $=w_{p}\left(\mathrm{H} \cap \mathrm{N}_{j k}^{\mathbf{0}}\right)$, with $i=\mathrm{I}, 2,3$ and $\{i, j, k\}=\{\mathrm{I}, 2,3\}$, and let $m_{i}(\mathrm{H}): \mathfrak{p} \mapsto m_{i}(\mathrm{H}, \mathfrak{p})$.
2.1. Lemma. Let $z_{i}(\mathfrak{p})=0$, if $\mu_{i}(\mathfrak{p})=\infty$ and $z_{i}(\mathfrak{p})=s_{i}(\mathfrak{p}) x_{i}$, if $\mu_{i}(\mathfrak{p})<\infty$, where $s_{i}(\mathfrak{p}) \in \mathrm{K}$ satisfies $v_{\mathfrak{p}}\left(s_{i}(\mathfrak{p})\right)=-\mu_{i}(\mathfrak{p})$ and $v_{\mathfrak{q}}\left(s_{i}(\mathfrak{p})\right) \geq 0$, for $\mathfrak{q} \neq \mathfrak{p}$, and where $i=1,2,3$.
(a) If H is a rank I submodule of M^{0} and if $\mathrm{o}<m \leq w_{p}(\mathrm{H})$, there exist $a_{1}, a_{2}, a_{3} \in \mathrm{~A}$ such that $v_{\mathfrak{p}}\left(a_{i}\right)=\inf \left(m_{i}(\mathrm{H}, \mathfrak{p}), m\right)$ and $h_{\mathfrak{p}}^{\mathrm{M}}\left(a_{1} z_{1}(\mathfrak{p})+\right.$ $\left.+a_{2} z_{2}(\mathfrak{p})+a_{3} z_{3}(\mathfrak{p})\right) \geq m$.
(b) If $b_{1}, b_{2}, b_{3} \in \mathrm{~A}$ are such that $v_{\mathfrak{p}}\left(b_{i}\right)=v_{\mathfrak{p}}\left(a_{i}\right)$, then $h_{\mathfrak{p}}^{\mathrm{M}}\left(b_{1} z_{1}(\mathfrak{p})+\right.$ $\left.+b_{2} z_{2}(\mathfrak{p})+b_{3} z_{3}(\mathfrak{p})\right) \geq m$ if and only if $v_{\mathfrak{p}}\left(a_{i} b_{j}-a_{j} b_{i}\right) \geq m$, for all $\{i, j\} \subset\{\mathrm{I}, 2,3\}$.

To abbreviate our notations, we set $z_{i}(\mathfrak{p})=z_{i}$ and $m_{i}(\mathrm{H}, \mathfrak{p})=m_{\boldsymbol{i}}$. Since $r(\mathrm{H})=\mathrm{I}$, there exists at most one index i such that $m_{i} \neq \mathrm{o}$. Suppose
$m_{1} \geq m_{2}=m_{3}=0$. Then, by virtue of [2], Prop. 5, Cor. I, we have $\mu_{2}(\mathfrak{p}), \mu_{3}(\mathfrak{p})<\infty$. If $\mu_{1}(\mathfrak{p})=\infty$, the lemma results immediately from [3], Lemma 1 , applied to the submodule N_{23}. Suppose thus $\mu_{1}(p)<\infty$. If $\mathrm{o}<m \leq w_{p}(\mathrm{H})$, let \bar{z} be an element of H whose order ideal is p^{m} and let $z=r_{1} z_{1}+r_{2} z_{2}+r_{3} z_{3} \in f^{-1}(\bar{z})$. Then $v_{p}\left(r_{i}\right) \geq-m$, where equality holds for at least two values of i since otherwise the order ideal of \bar{z} would contain \mathfrak{p}^{m-1}. We now show that z can be chosen such that $v_{\mathfrak{p}}\left(r_{i}\right)=\inf \left(m_{i}-m, o\right)$.

If $m_{1} \geq m$, we have $\bar{z} \in \mathrm{H} \cap \mathrm{N}_{23}^{0}$ and $f^{-1}(\bar{z}) \subset \mathrm{N}_{1}+\mathrm{N}_{23}$. Then, for any $z \in f^{-1}(\bar{z})$, we have $v_{\mathfrak{p}}\left(r_{1}\right) \geq 0$ and z can clearly be chosen such that $v_{\mathfrak{p}}\left(r_{1}\right)=0$.

Now let $m_{1}<m$. Let $z=r_{1} z_{1}+r_{2} z_{2}+r_{3} r_{3} \in f^{-1}(\bar{z})$ and write $v_{\mathfrak{p}}\left(r_{1}\right)=h-m$. Therefore $p^{m-h} \bar{z} \subset H \cap \mathrm{~N}_{23}^{0}$ and hence $h \leq m_{1}$. If we had $h<m_{1}$, there would exist $\bar{y} \in \mathrm{H} \cap \mathrm{N}_{23}^{0}$ of order \mathfrak{p}^{h+1} and $a \in \mathrm{~A}$ such that $\bar{y}=a \bar{z}$ and $v_{p}(a)=m-h-\mathrm{I}$. On the other hand, we would have $a z \in \mathrm{~N}_{1}+\mathrm{N}_{23}$, which implies $v_{\mathfrak{p}}\left(a r_{1}\right) \geq 0$ and $v_{\mathfrak{p}}(a) \geq m-h$. Thus $h=m_{1}$.

Now, if $c \in \mathrm{~A}$ is such that $v_{p}(c)=m$ and $v_{q}(c) \geq \sup \left(o,-v_{\mathfrak{q}}\left(r_{1}\right)\right.$, - $\left.v_{\mathfrak{q}}\left(r_{2}\right),-v_{\mathfrak{q}}\left(r_{3}\right)\right)$, for $\mathfrak{q} \neq \mathfrak{p}$, then the $a_{i}=c r_{i}, i=\mathrm{I}, 2,3$, satisfy part (a) of the lemma.

To prove (b), suppose first that $v_{\mathfrak{p}}\left(a_{i} b_{j}-a_{j} b_{i}\right) \geq m$, for all $\{i, j\} \subset$ $C\{1,2,3\}$. Then, from [3], Lemmas I and 2, applied to the module M_{23}, we know that if $r \in K$ is such that $v_{\mathfrak{p}}(r)=-m$ and $v_{q}(r) \geq 0$, for $\mathfrak{q} \neq \mathfrak{p}$, there exist $s \in \mathrm{~K}$ and $d_{2}, d_{3} \in \mathrm{~A}$ such that $r\left(b_{2} z_{2}+b_{3} z_{3}\right)=s\left(a_{2} z_{2}+a_{3} z_{3}\right)+$ $+d_{2} z_{2}+d_{3} z_{3}$, with $v_{\mathfrak{p}}(s) \geq-m$ and $v_{\mathfrak{q}}(s) \geq 0$, if $\mathfrak{q} \neq \mathfrak{p}$. Thus $r b_{2}=s a_{2}+d_{2}$ and $r b_{3}=s a_{3}+d_{3}$. Set $d_{1}=r b_{1}-s a_{1}$. Then $s\left(a_{3} b_{1}-a_{1} b_{3}\right)=d_{3} b_{3}-d_{1} b_{1}$ and thus $d_{1} \in \mathrm{~A}$. Therefore, $r\left(b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}\right)=s\left(a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}\right)+$ $+d_{1} z_{1}+d_{2} z_{2}+d_{3} z_{3}$ belongs to M .

Conversely, let $h_{\mathrm{p}}^{\mathrm{M}}\left(b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}\right) \geq m$. There exist $d_{1}, d_{2}, d_{3} \in \mathrm{~A}$ and $r, s \in \mathrm{~K}$ such that $v_{\mathfrak{p}}(r), v_{\mathfrak{p}}(s) \geq-m, v_{\mathfrak{q}}(r), v_{\mathfrak{q}}(s) \geq 0$, if $\mathfrak{q} \neq \mathfrak{p}$, and $r\left(b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}\right)=s\left(a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}\right)+d_{1} z_{1}+d_{2} z_{2}+d_{3} z_{3}$. This, together with $m_{2}=m_{3}=\mathrm{o}$, implies $v_{\mathfrak{p}}\left(a_{2} b_{3}-a_{3} b_{2}\right) \geq m$ (see [3]). We thus have $v_{\mathfrak{p}}\left(a_{3} b_{1}-a_{1} b_{3}\right)=h_{\mathfrak{p}}^{\mathrm{M}}\left(\left(a_{3} b_{1}-a_{1} b_{3}\right) z_{1}\right)=h_{\mathfrak{p}}^{\mathrm{M}}\left(\left(b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}\right) a_{3}-\right.$ $\left.-\left(a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}\right) b_{3}+\left(a_{2} b_{3}-a_{3} b_{2}\right) z_{2}\right) \geq m$. Similarly, we would obtain $v_{\mathfrak{p}}\left(a_{2} b_{1}-a_{1} b_{2}\right) \geq m$.
2.2. Corollary. Let $\mathrm{M}^{0}=\mathrm{H} \oplus \mathrm{H}^{\prime}$, with $w(\mathrm{H})=\mu$ and $w\left(\mathrm{H}^{\prime}\right)=\mu^{\prime}$. For all $0<m \leq \mu(p)$ and $0<m^{\prime} \leq \mu^{\prime}(\mathfrak{p})$, choose $a_{i}=a_{i}(p, m)$ and $a_{i}^{\prime}=a_{i}^{\prime}(p, m)$ in A , corresponding respectively to H and H^{\prime}, and satisfying Lemma 2.I. Then $v_{\mathfrak{p}}\left(a_{i} a_{j}^{\prime}-a_{j} a_{i}^{\prime}\right)=\mathrm{o}$, for all $\{i, j\} \subset\{\mathrm{I}, 2,3\}$.

This results from the fact that $\mathrm{H} \cap \mathrm{H}^{\prime}=\mathrm{o}$.
If $\mathrm{o}<m \leq \mu(\mathfrak{p})\left(\right.$ resp. $\left.\mathrm{o}<m \leq \mu^{\prime}(\mathfrak{p})\right)$, set $y(\mathfrak{p}, m)=t(\mathfrak{p}, m)\left(a_{1}(\mathfrak{p}, m) z_{1}(\mathfrak{p})+\right.$ $\left.+a_{2}(\mathfrak{p}, m) z_{2}(\mathfrak{p})+a_{3}(\mathfrak{p}, m) z_{3}(\mathfrak{p})\right)\left(\operatorname{resp} . y^{\prime}(p, m)=t(p, m)\left(a_{1}^{\prime}(p, m) z_{1}(p)+\right.\right.$ $\left.+a_{2}^{\prime}(\mathfrak{p}, m) z_{2}(p)+a_{3}^{\prime}(p, m) z_{3}(\mathfrak{p})\right)$, with $v_{\mathfrak{p}}(t(\mathfrak{p}, m))=-m$ and $v_{\mathfrak{q}}(t(\mathfrak{p}, m)) \geq 0$, for $\mathfrak{q} \neq \mathfrak{p}$. Thus $y(\mathfrak{p}, m) \in f^{-1}(\mathrm{H})\left(\operatorname{resp} . y^{\prime}(\mathfrak{p}, m) \in f^{-1}\left(\mathrm{H}^{\prime}\right)\right)$.

If $\mu_{i}(p)=\infty$, then for each $n \in \mathbf{N}$, let $t_{i}(p, n) \in \mathrm{K}$ be such that $v_{\mathfrak{p}}\left(t_{i}(\mathfrak{p}, n)\right)=-n$ and $v_{\mathfrak{q}}\left(t_{i}(\mathfrak{p}, n)\right) \geq 0$ for $\mathfrak{q} \neq \mathfrak{p}$. Set $y_{i}(\mathfrak{p}, n)=t_{i}(\mathfrak{p}, n) x_{i}$, $i=1,2,3$.
2.3. Lemma. Let $\mu_{1}, \mu_{2}, \mu_{3}, \mu$ and μ^{\prime} be the superdivisors associated with ($\mathrm{M}, x_{1}, x_{2}, x_{3}$). Let G be the set consisting of the x_{i} 's, the $z_{i}(\mathfrak{p})$'s for all p such that $\mu_{i}(\mathfrak{p})<\infty$, the $y_{i}(\mathfrak{p}, n)$'s for all \mathfrak{p} such that $\mu_{i}(\mathfrak{p})=\infty$ and all $n \in \mathbf{N}$, the $y(p, m)$'s for all p such that $\mu(p) \neq 0$ and all $m \in \mathbf{N}$ such that $m \leq \mu(\mathfrak{p})$ and, finally, the $y^{\prime}\left(\mathfrak{p}, m\right.$'s for all \mathfrak{p} such that $\mu^{\prime}(\mathfrak{p}) \neq 0$ and all $m \in \mathbf{N}$ such that $m \leq \mu^{\prime}(\mathfrak{p})$. Then G is a generating system of M .

Indeed, let N be the submodule of M generated by G . Then $f(\mathrm{~N})=f(\mathrm{M})=\mathrm{M}^{0}$, since the images of the $y(\mathfrak{p}, m)$'s and the $y^{\prime}(\mathfrak{p}, m)$'s in M^{0} generate M^{0}. Therefore, $\mathrm{MCN}+\operatorname{ker} f$. But, the x_{i} 's, $z_{i}(\mathrm{p})$'s and $y_{i}(\mathfrak{p}, n)$'s generate $\operatorname{ker} f$ and thus we have $\operatorname{ker} f \subset \mathrm{~N}$ and $\mathrm{M}=\mathrm{N}$.
2.4. Lemma. Let H be a rank I submodule of M^{0} such that $w(\mathrm{H})=\mu$. Then $h_{i}=\left[\mu, \mu^{\prime} m_{i}(\mathrm{H})\right]$.

We must prove that $w_{\mathfrak{p}}\left(N_{j k}^{0}\right)=\inf \left(\mu(\mathfrak{p}), \mu^{\prime}(\mathfrak{p})+m_{i}(H, \mathfrak{p})\right)$, where $m_{i}(\mathrm{H}, \mathfrak{p})=w_{p}\left(\mathrm{H} \cap \mathrm{N}_{j k}^{0}\right)$. This is obvious when $\mu^{\prime}(\mathfrak{p})=\mathrm{o}$ or when $\mu^{\prime}(p)=\mu(p) . \quad$ Suppose thus $0<\mu^{\prime}(p)<\mu(p) \leq \infty$, and suppose as before that $m_{1} \geq m_{2}=m_{3}=0$, where m_{i} stands for $m_{i}(\mathrm{H}, \mathfrak{p})$. We have immediately $h_{2}(\mathfrak{p})=h_{3}(p)=\mu^{\prime}(p)$, and it remains to show that $h_{1}(\mathfrak{p})=\inf \left(\mu(\mathfrak{p}), \mu^{\prime}(\mathfrak{p})+m_{1}\right)$. This equality is obvious if $m_{1}=\mu(p)$. Let then $m_{1}<\mu(\mathfrak{p})$ and let $m \in \mathbf{N}$ such that $\sup \left(m_{1}, \mu^{\prime}(\mathfrak{p})\right)<m \leq \mu(p)$. The submodule H is a direct summand of M^{0}; consider H^{\prime} such that $\mathrm{M}^{0}=\mathrm{H} \oplus \mathrm{H}^{\prime}$ and let $y(p, m)$ and $y^{\prime}\left(p, \mu^{\prime}(p)\right)$ be defined as in Lemma 2.3. To simplify the notations, set $y(\mathfrak{p}, m)=y(m)=t(m)\left(a_{1}(m) z_{1}+a_{2}(m) z_{2}+a_{3}(m) z_{3}\right)$ and $y^{\prime}\left(\mathfrak{p}, \mu^{\prime}(\mathfrak{p})\right)=y^{\prime}=t^{\prime}\left(a_{1}^{\prime} z_{1}+a_{2}^{\prime} z_{2}+a_{3}^{\prime} z_{3}\right)$. By Corollary 2.2., $m_{1}=v_{\mathfrak{p}}\left(a_{1}(m)\right)>0$ implies $v_{\mathfrak{p}}\left(a_{1}^{\prime}\right)=0$, i.e. at least one of the ideals $a_{1}(m) \mathrm{A}$ and $a_{1}^{\prime} \mathrm{A}$ is comaximal with $p^{\mu^{\prime}(p)}$. Then, there exist $b, c, d \in \mathrm{~A}$ such that $b a_{1}(m)+c a_{1}^{\prime}+d=0$, with $v_{\mathfrak{p}}(b)=v_{\mathfrak{p}}\left(a_{1}^{\prime}\right), v_{\mathfrak{p}}(c)=m_{1}$ and $v_{\mathfrak{p}}(d)=\mu^{\prime}(p)+m_{1}$. Therefore, $b\left(a_{1}(m) z_{1}+a_{2}(m) z_{2}+a_{3}(m) z_{3}\right)+c\left(a_{1}^{\prime} z_{1}+\right.$ $\left.+a_{2}^{\prime} z_{2}+a_{3}^{\prime} z_{3}\right)+\mathrm{d} z_{1}=\left(b a_{2}(m)+c a_{2}^{\prime}\right) z_{2}+\left(b a_{3}(m)+c a_{3}^{\prime}\right) z_{3}=u(m) \in \mathrm{N}_{23}$, with $h_{p}^{\mathrm{M}}(u(m)) \geq \inf \left(m, \mu^{\prime}(p)+m_{1}\right)$ and thus $h_{1}(p) \geq \inf \left(\mu(p), \mu^{\prime}(p)\right.$, $\left.\mu^{\prime}(p)+m_{1}\right)$. The lemma is proved if $\mu^{\prime}(p)+m_{1} \geq \mu(p)$. It remains to consider the case where $\mu^{\prime}(p)+m_{1}<\mu(p)$ and to show that $h_{1}(p) \leq \mu^{\prime}(p)+m_{1}$.

Suppose, on the contrary, that there exists $b z_{2}+c z_{3} \in \mathrm{~N}_{23}$ such that $v_{\mathfrak{p}}(b)=v_{\mathfrak{p}}(c)=0$ and $h_{\mathfrak{p}}^{\mathrm{M}}\left(b z_{2}+c z_{3}\right)=\mu^{\prime}(p)+m_{1}+\mathrm{I}$. Then, by Lemma 2.3, we can find $k \in \mathrm{~K}$, such that $v_{\mathfrak{p}}(k)=-\mu^{\prime}(\mathfrak{p})-m_{1}-\mathrm{I}$ and $v_{\mathfrak{q}}(k) \geq 0$ for $\mathfrak{q} \neq \mathfrak{p}$, and $d, d^{\prime}, n_{1}, n_{2}, n_{3} \in \mathrm{~A}$ satisfying $k\left(b z_{2}+c z_{3}\right)=\mathrm{d} y(m)+d^{\prime} y^{\prime}+n_{1} z_{1}+n_{2} z_{2}+n_{3} z_{3}$, where $m=\mu^{\prime}(p)+m_{1}+\mathrm{I}$. This means $\mathrm{d} t(m) a_{1}(m)+d^{\prime} t^{\prime} a_{\mathbf{1}}^{\prime}+n_{1}=\mathrm{o}$, $\mathrm{d} t(m) a_{2}(m)+d^{\prime} t^{\prime} a_{2}^{\prime}+n_{2}=k b$ and $\mathrm{d} t(m) a_{3}(m)+d^{\prime} t^{\prime} a_{3}^{\prime}+n_{3}=k c$. But, the first equality inplies $v_{\mathfrak{p}}(d)>0$, while each of the last two implies $v_{\mathfrak{p}}(d)=\mathrm{o}$!
2.5. Corollary. If $h_{i}(p)<\mu(p)$ for all $i=1,2,3$, then for all $\{j, k\} \subset\{\mathrm{I}, 2,3\}, w_{\mathfrak{p}}\left(\mathrm{H} \cap \mathrm{N}_{j k}^{0}\right)$ is independent of the choice of H , provided $w(\mathrm{H})=\mu$.
2.6.- Definition. We shall use the term adele, in a restricted sense, to designate the elements of the product ring $\mathscr{A}=\prod_{p \in \mathscr{F}} \bar{A}_{\mathfrak{p}}$, where $\overline{\mathrm{A}}_{\mathfrak{p}}$ is the completion of A with respect to the discrete valuation $v_{\mathfrak{p}}$. We shall identify the element a of A with the adele $(a(p))$ defined by letting $a(p)=a$ for all $\mathfrak{p} \in \mathscr{P}$. For any $p \in \mathscr{P}$ and $\eta \in \mathscr{A}$, we set $v_{\mathfrak{p}}(\eta)=v_{\mathfrak{p}}(\eta(p))$ and $v(\eta): \mathfrak{p} \mapsto v_{\mathfrak{p}}(\eta)$.

Let μ be a superdivisor and let $\left(\eta_{1}, \eta_{2}, \eta_{3}\right),\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right) \in \mathscr{A}^{3}$ such that for all $\mathfrak{p} \in \mathscr{P}$,

$$
\inf _{\substack{i, j \in\{1,2,3\} \\ i \neq j}} v_{\mathfrak{p}}\left(\eta_{i} \eta_{j}\right)=\inf _{\substack{i, j \in\{1,2,3\} \\ i \neq j}} v_{\mathfrak{p}}\left(\eta_{i}^{\prime} \eta_{j}^{\prime}\right)=0 .
$$

We shall say that $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ and $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right)$ are μ-equivalent (in symbol $\left.\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \underset{\mu}{\sim}\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right)\right)$ if
(1) $v\left(\eta_{i}\right)=v\left(\eta_{i}^{\prime}\right), i=1,2,3$ and
(2) $\mu \mid v\left(\eta_{i} \eta_{j}^{\prime}-\eta_{j} \eta_{i}^{\prime}\right), i, j=\mathrm{I}, 2,3, i \neq j$.
2.7. Lemma. (a) Let $z_{i}(\mathfrak{p})$ be defined as in Lemma 2.I. and let H be a submodule of M^{0} of rank at most I . Then, there exists $\left(\eta_{1}, n_{2}, \eta_{3}\right) \in \mathscr{A}^{3}$ such that
(i) $v\left(\eta_{i}\right)=m_{i}(\mathrm{H})$, for $i=1,2,3$;
(ii) if $w_{\mathfrak{p}}(\mathrm{H}) \neq 0$, if $m \in \mathbf{N}$ is such that $m \leq w_{\mathfrak{p}}(\mathrm{H})$ and if $a_{1}, a_{2}, a_{3} \in \mathrm{~A}$ satisfy $v_{\mathfrak{p}}\left(a_{i}\right)=\inf \left(m_{i}(\mathrm{H}, \mathfrak{p}), m\right)$, then $h_{\mathfrak{p}}^{\mathrm{M}}\left(a_{1} z_{1}(\mathfrak{p})+a_{2} z_{2}(\mathfrak{p})+a_{3} z_{3}(\mathfrak{p})\right) \geq m$ if and only if $v_{p}\left(a_{i} \eta_{j}-a_{j} \eta_{i}\right) \geq m$, for all $i, j=1,2,3, i \neq j$.
(b) A triple $\left(n_{\mathbf{1}}^{\mathbf{0}}, \eta_{\mathbf{2}}^{\mathbf{0}}, \eta_{\mathbf{3}}^{\mathbf{0}}\right)$ satisfies (i) and (ii) if and only if $\left(\eta_{1}^{0}, \eta_{2}^{0}, \eta_{3}^{0}\right) \underset{w(\mathrm{H})}{\sim}\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$.

Clearly, we can suppose immediately that $r(\mathrm{H})=\mathrm{I}$. Consider a fixed \mathfrak{p} such that $w_{\mathfrak{p}}(H) \neq 0$. It suffices to show the existence of $\eta_{1}(\mathfrak{p}), \eta_{2}(\mathfrak{p})$, $\eta_{3}(p) \in \bar{A}_{p}$ satisfying conditions (i) and (ii).

As before, suppose $m_{2}=m_{3}=0$. The existence of $\eta_{1}, \eta_{2}, \eta_{3}$ is obvious when $w_{p}(H)<\infty$ and results from [3], Lemma 3, when $w_{p}(H)=m_{1}=\infty$. Now suppose $w_{p}(\mathrm{H})=\infty$ and $m_{1}<\infty$. Consider the sequences $\left(a_{1}(m)\right),\left(a_{2}(m)\right)$ and $\left(a_{3}(m)\right.$) of elements of A , with $m \geq m_{1}$, as defined in Lemma 2.I. We thus have $v_{p}\left(a_{1}(m)\right)=m_{1}$ and $v_{\mathfrak{p}}\left(a_{2}(m)\right)=v_{\mathfrak{p}}\left(a_{3}(m)\right)=0$. The ideals $a_{3}(m) \mathrm{A}$ and \mathfrak{p}^{m} being comaximal, there exist $c_{m} \in \mathrm{~A}-\mathfrak{p}$ and $d_{m} \in \mathfrak{p}^{m}$ satisfying $c_{m} a_{3}(m)+d_{m}=\mathrm{I}$. Let $b_{i}(m)=c_{m} a_{i}(m)$. Then $h_{\mathfrak{p}}^{\mathrm{M}}\left(c_{m}\left(a_{1}(m) z_{1}+\right.\right.$ $\left.\left.+a_{2}(m) z_{2}+a_{3}(m) z_{3}\right)+d_{m} z_{3}\right)=h_{\mathfrak{p}}^{\mathrm{M}}\left(b_{1}(m) z_{1}+b_{2}(m) z_{2}+z_{3}\right) \geq m$. Similarly, we have $h_{\mathfrak{p}}^{\mathrm{M}}\left(b_{1}(m+\mathrm{I}) z_{1}+b_{2}(m+\mathrm{I}) z_{2}+z_{3}\right) \geq m+\mathrm{I}$, and applying again Lemma 2.I., we obtain $v_{\mathfrak{p}}\left(b_{1}(m+1)-b_{1}(m)\right) \geq m$ and $v_{\mathfrak{p}}\left(b_{2}(m+1)-\right.$ $\left.-b_{2}(m)\right) \geq m$. The sequences $\left(b_{1}(m)\right)$ and $\left(b_{2}(m)\right.$) are thus converging
in \bar{A}_{p}, say to η_{1} and η_{2}. Now, take $\eta_{3}=1$. It is readily checked that $\eta_{1}, \eta_{2}, \eta_{3}$ satisfy (i) and (ii).

Part (b) is the result of an easy calculation which we omit.
2.7. Corollary., Let $\mathrm{M}^{0}=\mathrm{H} \oplus \mathrm{H}^{\prime}$, with $w(\mathrm{H})=\mu$ and $w\left(\mathrm{H}^{\prime}\right)=\mu^{\prime}$. Let $\left(\eta_{1}, \eta_{2}, \eta_{3}\right),\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right) \in \mathscr{A}^{3}$ correspond respectively to H and H^{\prime}. Then, if $\mu^{\prime}(p) \neq 0$, we have $v_{p}\left(\eta_{i} \eta_{i}^{\prime}-\eta_{j} \eta_{j}^{\prime}\right)=0$ for all $i, j=1,2,3, i \neq j$.

This results immediately from the previous lemma and Cor. 2.2.
2.9. Definition. Let Q and Q^{\prime} be respectively a μ-class and a μ^{\prime}-class of elements of \mathscr{A}^{3}. We shall say that Q and Q^{\prime} are compatible if, whenever we have $\mu^{\prime}(p) \neq 0$, then $v_{p}\left(\eta_{i} \eta_{i}^{\prime}-\eta_{j} \eta_{j}^{\prime}\right)=0$ for all $\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in Q$, $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right) \in Q^{\prime}$ and $\{i, j\} \subset\{1,2,3\}$.

For each decomposition $\mathrm{H} \oplus \mathrm{H}^{\prime}$ of M^{0}, Corollary 2.8. ensures the existence of a pair (Q, Q^{\prime}) consisting of a μ-class and a μ^{\prime}-class which are compatible. We shall now investigate the relations between two pairs ($\mathrm{Q}, \mathrm{Q}^{\prime}$) and ($\overline{\mathrm{Q}}, \overline{\mathrm{Q}}^{\prime}$) associated with distinct decompositions $\mathrm{H} \oplus \mathrm{H}^{\prime}$ and $\overline{\mathrm{H}} \oplus \overline{\mathrm{H}}^{\prime}$ of M^{0}.
2.1o. Lemma. Let $\mathrm{H} \oplus \mathrm{H}^{\prime}$ and $\overline{\mathrm{H}} \oplus \overline{\mathrm{H}}^{\prime}$ be two decompositions of M^{0}, with $w(\mathrm{H})=w(\overline{\mathrm{H}})=\mu$ and $w\left(\mathrm{H}^{\prime}\right)=w\left(\overline{\mathrm{H}}^{\prime}\right)=\mu^{\prime}$. Let Q and $\overline{\mathrm{Q}}$ (resp. Q^{\prime} and \bar{Q}^{\prime}) be the corresponding μ-classes (resp. μ^{\prime}-classes). Then, for every $\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in Q$ and $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right) \in Q^{\prime}$, there exists a matrix $\left(\begin{array}{ll}\alpha & \alpha^{\prime} \\ \beta & \beta^{\prime}\end{array}\right)$ with coefficients in \mathscr{A} and such that
(1) $\left(\alpha \eta_{1}+\alpha^{\prime} \eta_{1}^{\prime}, \alpha \eta_{2}+\alpha^{\prime} \eta_{2}^{\prime}, \alpha \eta_{3}+\alpha^{\prime} \eta_{3}^{\prime}\right) \in \overline{\mathrm{Q}}$.
(2) $\left(\beta \eta_{1}+\beta^{\prime} \eta_{1}^{\prime}, \beta \eta_{2}+\beta^{\prime} \eta_{2}^{\prime}, \beta \eta_{3}+\beta^{\prime} \eta_{3}^{\prime}\right) \in \bar{Q}^{\prime}$,
(3) $v\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)=\mathrm{I}$,
(4) $\mu \mid \mu^{\prime}\left(v\left(\alpha^{\prime}\right)\right)$.

Let \mathfrak{p} be a fixed non-zero prime ideal.
Case $I: \mu^{\prime}(\mathfrak{p}) \leq \mu(\mathfrak{p})<\infty$. Let $\eta_{i}(\mathfrak{p})=a_{i}+\xi_{i}$, with $v_{\mathfrak{p}}\left(\xi_{i}\right) \geq \mu(p)$, and let $\eta_{i}^{\prime}(\mathfrak{p})=a_{i}^{\prime}+\xi_{i}^{\prime}$, with $v_{\mathfrak{p}}\left(\xi_{i}^{\prime}\right) \geq \mu^{\prime}(\mathfrak{p})$, where $a_{i}, a_{i}^{\prime} \in A$. Set $y(\mathfrak{p}, \mu(p))=$ $=y=t\left(a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}\right)$ and $y^{\prime}\left(p, \mu^{\prime}(p)\right)=y^{\prime}=t^{\prime}\left(a_{1}^{\prime} z_{1}+a_{2}^{\prime} z_{2}+a_{3}^{\prime} z_{3}\right)$. Choose $\left(\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right) \in \overline{\mathrm{Q}}$ and $\left(\bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right) \in \overline{\mathrm{Q}}^{\prime}$ with $\bar{a}_{i}, \bar{a}_{i}^{\prime} \in \mathrm{A}$. Set $\bar{y}(p, \mu(p))=$ $=\bar{y}=t\left(\bar{a}_{1} z_{1}+\bar{a}_{2} z_{2}+\bar{a}_{3} z_{3}\right)$ and $\bar{y}^{\prime}\left(p, \mu^{\prime}(p)\right)=\bar{y}^{\prime}=t^{\prime}\left(\bar{a}_{1}^{\prime} z_{1}+\bar{a}_{2}^{\prime} z_{2}+\bar{a}_{3}^{\prime} z_{3}\right)$.

There exist $c, c^{\prime}, r_{1}, r_{2}, r_{3} \in \mathrm{~A}$ such that $\bar{y}=c y+c^{\prime} y^{\prime}+r_{1} z_{1}+r_{2} z_{2}+r_{3} z_{3}$ and similarly, there exist $d, d^{\prime}, s_{1}, s_{2}, s_{3} \in \mathrm{~A}$ such that $\bar{y}^{\prime}=\mathrm{d} t^{\prime} t^{-1} y+d^{\prime} y^{\prime}+$ $+s_{1} z_{1}+s_{2} z_{2}+s_{3} z_{3}$. Thus $\bar{a}_{i}=c a_{i}+c^{\prime} t^{\prime} t^{-1} a_{i}^{\prime}+t^{-1} r_{i}$ and $\bar{a}_{i}^{\prime}=d a_{i}+$ $+d^{\prime} a_{i}^{\prime}+t^{\prime-1} s_{i}$. Let $\alpha(\mathfrak{p})=c, \alpha^{\prime}(\mathfrak{p})=c^{\prime} t^{\prime} t^{-1}, \beta(\mathfrak{p})=d$ and $\beta^{\prime}(\mathfrak{p})=d^{\prime}$. Then $v_{\mathfrak{p}}\left(\alpha^{\prime}(\mathfrak{p})\right) \geq \mu(\mathfrak{p})-\mu^{\prime}(\mathfrak{p})$ and $v_{\mathfrak{p}}\left(\left(\alpha(\mathfrak{p}) a_{i}+\alpha^{\prime}(\mathfrak{p}) a_{i}^{\prime}\right) \bar{a}_{j}-\left(\alpha(p) a_{j}+\right.\right.$ $\left.\left.+\alpha^{\prime}(\mathfrak{p}) a_{j}^{\prime}\right) \bar{a}_{i}\right) \geq \mu(p)$ and $v_{\mathfrak{p}}\left(\left(\beta(p) a_{i}+\beta^{\prime}(\mathfrak{p}) a_{i}^{\prime}\right) \bar{a}_{j}-\left(\beta(p) a_{j}+\beta^{\prime}(\mathfrak{p}) \alpha_{j}^{\prime}\right) \bar{a}_{i}\right) \geq$ $\geq \mu^{\prime}(p)$. These relations imply $v_{p}\left(\left(\alpha(p) \eta_{i}(p)+\alpha^{\prime}(p) \eta_{i}^{\prime}(p)\right) \bar{a}_{j}-\left(\alpha(p) \eta_{j}(p)+\right.\right.$ $\left.\left.+\alpha^{\prime}(p) \eta_{j}^{\prime}(p)\right) \bar{a}_{i}\right) \geq \mu(p)$ and $v_{p}\left(\left(\beta(p) \eta_{i}(p)+\beta^{\prime}(p) \eta_{i}^{\prime}(p)\right) \bar{a}_{j}-\left(\beta(p) \eta_{j}(p)+\right.\right.$ $\left.+\beta^{\prime}(\mathfrak{p}) \eta_{j}^{\prime}(\mathfrak{p}) \bar{a}_{i}\right) \geq \mu^{\prime}(\mu)$, which proves (I) and (2) at \mathfrak{p}. In addition, the
relations giving \bar{y} and \bar{y}^{\prime} in terms of y and y^{\prime} must be invertible and therefore $v_{p}\left(c d^{\prime}-c^{\prime} d t^{\prime} t^{-1}\right)=v_{\mathfrak{p}}\left(\alpha(p) \beta^{\prime}(p)-\alpha^{\prime}(p)(\beta)(p)\right)=0$.

Case 2: $\mu^{\prime}(\mathfrak{p})<\infty$ and $\mu(\mathfrak{p})=\infty$. Then $\mathrm{H}_{(\mathfrak{p})}$ is the largest divisible submodule of $M_{(p)}^{0}$ and therefore $\bar{H}_{(p)}=H_{(p)}$. We can thus choose $\alpha(p)=I$ and $\alpha^{\prime}(\mathfrak{p})=0$. The existence of $\beta(\mathfrak{p})$ and $\beta^{\prime}(\mathfrak{p})$ is proved as before.

Case 3: $\mu^{\prime}(\mathfrak{p})=\mu(\mathfrak{p})=\infty$. Let $\left(a_{i}(m)\right)$ and $\left(a_{i}^{\prime}(m)\right)$ be sequences of elements of A defined as in Lemma 2.I. and converging respectively to $\eta_{i}(p)$ and $\eta_{i}^{\prime}(p)$. On the other hand, let $\left(\bar{\eta}_{1}, \bar{\eta}_{2}, \bar{\eta}_{3}\right) \in \bar{Q}$ and $\left(\bar{\eta}_{1}^{\prime}, \bar{\eta}_{2}^{\prime}, \bar{\eta}_{3}^{\prime}\right) \in \bar{Q}^{\prime}$. Let ($\left.\bar{a}_{i}(m)\right)$ and $\left(\bar{a}_{i}^{\prime}(m)\right)$ be sequences of elements of A converging respectively to $\bar{\eta}_{i}(p)$ and $\bar{\eta}_{i}^{\prime}(p)$. Proceeding as in Case I , we can find for every $m \in \mathbf{N}$ elements $c_{m}, c_{m}^{\prime}, d_{m}, d_{m}^{\prime}$ of A such that $\inf \left(v_{\mathfrak{p}}\left(c_{m}\right), v_{\mathfrak{p}}\left(c_{m}^{\prime}\right)\right)=\inf \left(v_{\mathfrak{p}}\left(d_{m}\right)\right.$, $\left.v_{\mathfrak{p}}\left(d_{m}^{\prime}\right)\right)=\mathrm{o}, v_{\mathfrak{p}}\left(\left(c_{m} a_{i}(m)+c_{m}^{\prime} a_{i}^{\prime}(m)\right) \bar{a}_{j}(m)-\left(c_{m} a_{j}(m)+c_{m}^{\prime} a_{j}^{\prime}(m)\right) \bar{a}_{i}(m)\right) \geq m$ and $\quad v_{\mathfrak{p}}\left(\left(d_{m} a_{i}(m)+d_{m}^{\prime} a_{i}^{\prime}(m)\right) \bar{a}_{j}(m)-\left(d_{m} a_{j}(m)+d_{m}^{\prime} a_{j}^{\prime}(m)\right) \bar{a}_{i}(m)\right) \geq m$. Moreover, taking into account Cor. 2.2., it is easy to prove that $\inf \left(v_{\mathfrak{p}}\left(c_{m}\right), v_{\mathfrak{p}}\left(d_{m}\right)\right)=\inf \left(v_{\mathfrak{p}}\left(c_{m}^{\prime}\right), v_{\mathfrak{p}}\left(d_{m}^{\prime}\right)\right)=0$. Then, assuming for example that $v_{\mathfrak{p}}\left(c_{m}\right)=v_{\mathfrak{p}}\left(d_{m}^{\prime}\right)=\mathrm{o}$, we still have $v_{\mathfrak{p}}\left(c_{m+k}\right)=v_{\mathfrak{p}}\left(d_{m+k}^{\prime}\right)=\mathrm{o}$ for every $k \in \mathbf{N}$, and it is readily checked that c_{m} and d_{m}^{\prime} can be taken equal to I for all $m \in \mathbf{N}$. We now have $v_{p}\left(\left(a_{i}(m)+c_{m}^{\prime} a_{i}^{\prime}(m)\right) \bar{a}_{j}(m)-\left(a_{j}(m)+\right.\right.$ $\left.\left.+c_{m}^{\prime} a_{j}^{\prime}(m)\right) \bar{a}_{i}(m)\right) \geq m$ and clearly also $v_{p}\left(\left(a_{i}(m)+c_{m+1}^{\prime} a_{i}^{\prime}(m)\right) \bar{a}_{j}(m)-\right.$ $\left.-\left(a_{j}(m)+c_{m+1}^{\prime} a_{j}^{\prime}(m)\right) \overline{a_{i}}(m)\right) \geq m$. These relations imply $v_{p}\left(c_{m+1}^{\prime}-c_{m}^{\prime}\right) \geq m$, i.e. the sequence $\left(c_{m}^{\prime}\right)$ has a limit $\alpha^{\prime}(p)$ in $\overline{\mathrm{A}}_{p}$. Similarly, the sequence $\left(d_{m}\right)$ converges to an element $\beta(\mathfrak{p})$ of $\bar{A}_{\mathfrak{p}}$ and, choosing $\alpha(\mathfrak{p})=\beta^{\prime}(p)=\mathrm{r}$, we obtain

$$
\begin{aligned}
& \left(\alpha(p) \eta_{i}(p)+\alpha^{\prime}(p) \eta_{i}^{\prime}(p)\right) \bar{\eta}_{j}(p)=\left(\alpha(p) \eta_{j}(p)+\alpha^{\prime}(p) \eta_{j}^{\prime}(p)\right) \bar{\eta}_{i}(p) \\
& \left(\beta(p) \eta_{i}(p)+\beta^{\prime}(p) \eta_{i}^{\prime}(p)\right) \bar{\eta}_{j}(p)=\left(\beta(p) \eta_{j}(p)+\beta^{\prime}(p) \eta_{j}^{\prime}(p)\right) \bar{\eta}_{i}(p)
\end{aligned}
$$

2.if. Definition. We shall say that the pairs $\left(Q, Q^{\prime}\right)$ and ($\bar{Q}, \bar{Q}^{\prime}$) are equivalent if, for every $\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in Q$ and $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right) \in Q^{\prime}$, there exists a matrix $\left(\begin{array}{ll}\alpha & \alpha^{\prime} \\ \beta & \beta^{\prime}\end{array}\right)$ with coefficients in \mathscr{A} and satisfying conditions (I), (2), (3) and (4) of Lemma 2.10. It is trivial to check that this defines an equivalence relation.

With (M $, x_{1}, x_{2}, x_{3}$) are thus associated the superdivisors $\mu_{1}, \mu_{2}, \mu_{3}, \mu$ and μ^{\prime}, and a class χ of pairs $\left(Q, Q^{\prime}\right)$. We shall write $\operatorname{inv}\left(M, x_{1}, x_{2}, x_{3}\right)=$ $=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu, \mu^{\prime}, \chi\right)$.

In view of Lemmas 2.3. and 2.7., the following theorem requires no further proof:
2.12. Theorem. Let x_{1}, x_{2}, x_{3} be independent elements of E . Let $\mu_{1}, \mu_{2}, \mu_{3}, \mu$ and μ^{\prime} be superdivisors satisfying conditions $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$ and let χ be a class of pairs $\left(Q, Q^{\prime}\right)$. There exists one and only one rank three A-submodule M of E , containing x_{1}, x_{2}, x_{3} and such that inv $\left(\mathrm{M}, x_{1}, x_{2}, x_{3}\right)=$ $=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu, \mu^{\prime}, \chi\right)$.

References

[r] J. W. S. Cassels and A. Fröhlich (1967) - Algebraic number theory, Academic Press.
[2] L. De Munter-Kuyl (1974) - Primary decomposition and rank of some quotients of torsion-free modules over a Dedekind domain-Dirasat (Univ. of Jordan), I (1-2), 7-16.
[3] L. De Munter-Kuyl (1974) - Beaumont-Pierce invariants for rank two modules over a Dedekind domain-Dirasat (Univ. of Jordan), I, (1-2), 43-49.

