ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Takashi Noiri

Properties of 6-continuous functions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.6, p. 887–891.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_6_887_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1975.

Topologia. — Properties of θ -continuous functions. Nota di TAKA-SHI NOIRI, presentata ^(*) dal Socio B. SEGRE.

RIASSUNTO. — Vengono stabilite varie proprietà delle funzioni θ -continue, in relazione specialmente agli insiemi θ -chiusi di uno spazio topologico.

I. INTRODUCTION

The concept of θ -continuity was introduced and investigated by S. Fomin [1]. N. Veličko [4] defined θ -closed sets in a topological space and obtained several properties concerning H-closed spaces and θ -continuous functions. It is known that the concept of θ -continuity is stronger than that of weak-continuity [3] and is weaker than that of almost-continuity in the sense of Singal [2]. The purpose of the present paper is to obtain several properties of θ -continuous functions and to investigate some relations between θ -closed sets and θ -continuous functions.

2. **DEFINITIONS**

Let X be a topological space and S a subset of X. We shall denote the closure of S and the interior of S by Cl (S) and Int (S) respectively. The following definitions are due to N. Veličko [4]. A point $x \in X$ is called the θ -cluster point of S if $S \cap Cl(U) \neq \emptyset$ for every open set U containing x. The set of all θ -cluster points of S is called the θ -closure of S and is denoted by [S]. A set S is said to be θ -closed if S = [S]. It is obvious that every θ -closed set is closed. If S is open, then [S] = Cl(S). In a regular space, closedness and θ -closedness are coincident. A filter base \mathscr{F} is said to be θ -convergent to a point $x \in X$ if for any open set U containing x, there exists an $F \in \mathscr{F}$ such that $F \subset Cl(U)$. A function $f: X \to Y$ is said to be θ -continuous [I] if for each point $x \in X$ and each open set V in Y containing f(x), there exists an open set U in X containing x such that $f(Cl(U)) \subset Cl(V)$.

3. θ -continuous functions

THEOREM 1. A function $f: X \to Y$ is θ -continuous if and only if for each point $x \in X$ and each filter base \mathcal{F} in X θ -converging to x, the filter base $f(\mathcal{F})$ is θ -convergent to f(x).

(*) Nella seduta dell'11 giugno 1975.

Proof. Necessity. Let $x \in X$ and \mathscr{F} be any filter base in X θ -converging to x. Then, for any open set V in Y containing f(x), there exists an open set U in X containing x such that $f(Cl(U)) \subset Cl(V)$ because f is θ -continuous. Since \mathscr{F} is θ -convergent to x, there exists an F $\in \mathscr{F}$ such that $F \subset Cl(U)$. Thus, we have $f(F) \subset Cl(V)$. This implies that $f(\mathscr{F})$ is θ -convergent to f(x).

Sufficiency. Let $x \in X$ and V be any open set in Y containing f(x). Put $\mathscr{F} = \{ \operatorname{Cl}(U) | U \text{ is open in } X, x \in U \}$. Then \mathscr{F} is a filter base θ -converging to x. Hence, there exists $\operatorname{Cl}(U) \in \mathscr{F}$ such that $f(\operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$. This shows that f is θ -continuous.

THEOREM 2. Let $f: X \to Y$ be a function and $g: X \to X \times Y$ be the graph function of f, given by g(x) = (x, f(x)) for every point $x \in X$. Then f is θ -continuous if and only if g is θ -continuous.

Proof. Necessity. Suppose f is θ -continuous. Let $x \in X$ and W be any open set in $X \times Y$ containing g(x). Then there exist open sets $R \subset X$ and and $V \subset Y$ such that $g(x) = (x, f(x)) \in R \times V \subset W$. Since f is θ -continuous, there exists an open set U in X containing x such that $U \subset R$ and $f(Cl(U)) \subset CCl(V)$. Thus we have $g(Cl(U)) \subset Cl(R) \times Cl(V) \subset Cl(W)$. This implies that g is θ -continuous.

Sufficiency. Suppose g is θ -continuous. Let $x \in X$ and V be any open set in Y containing f(x). Then $X \times V$ is an open set in $X \times Y$ containing g(x). Since g is θ -continuous, there exists an open set U in X containing x such that $g(\operatorname{Cl}(U)) \subset \operatorname{Cl}(X \times V) = X \times \operatorname{Cl}(V)$. It follows from the definition of g that $f(\operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$. This shows that f is θ -continuous.

4. URYSOHN SPACES AND θ -continuous functions

By a θ -continuous retraction we mean a θ -continuous function $f: X \to A$ where A is a subset of X and $f \mid A$ is the identity mapping on A. A space X is called a *Urysohn* space if for every pair of distinct points xand y in X, there exist open sets U and V in X such that $x \in U$, $y \in V$ and $Cl(U) \cap Cl(V) = \emptyset$.

THEOREM 3. Let $A \subset X$ and $f: X \to A$ be a θ -continuous retraction of X onto A. If X is Urysohn, then A is θ -closed in X.

Proof. Suppose A is not θ -closed in X. Then there exists a point $x \in [A] - A$. Since f is a θ -continuous retraction, we have $f(x) \neq x$. Since X is Urysohn, there exist open sets U and V in X such that $x \in U$, $f(x) \in V$ and $\operatorname{Cl}(U) \cap \operatorname{Cl}(V) = \emptyset$. Now, let W be any open set in X containing x. Then $U \cap W$ is an open set containing x and hence $A \cap \operatorname{Cl}(U \cap W) \neq \emptyset$ because $x \in [A]$. Therefore, there exists a point $y \in A \cap \operatorname{Cl}(U \cap W)$. Since $y \in A$, $f(y) = y \in \operatorname{Cl}(U)$ and hence $f(y) \notin \operatorname{Cl}(V)$. This shows that $f(\operatorname{Cl}(W)) \notin \operatorname{Cl}(V)$. This contradicts the hypothesis that f is θ -continuous. Thus A is θ -closed in X.

THEOREM 4. If Y is a Urysohn space and $f: X \rightarrow Y$ is a θ -continuous injection, then X is Urysohn.

Proof. Let x_1 and x_2 be any distinct points of X. Then, we have $f(x_1) \neq f(x_2)$ because f is injective. Since Y is Urysohn, there exist open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. It follows from the θ -continuity of f that there exists an open set U_j in X containing x_j such that $f(\operatorname{Cl}(U_j)) \subset \operatorname{Cl}(V_j)$, where j = 1, 2. Therefore, we obtain $\operatorname{Cl}(U_1) \cap \operatorname{Cl}(U_2) \subset f^{-1}(\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2)) = \emptyset$. This shows that X is Urysohn.

THEOREM 5. If f_1 and f_2 are θ -continuous functions of a space X into a Urysohn space Y, then the set $\{x \in X \mid f_1(x) = f_2(x)\}$ is θ -closed in X.

Proof. By A we denote the set $\{x \in X \mid f_1(x) = f_2(x)\}$. If $x \in X - A$, then we have $f_1(x) \neq f_2(x)$. Since Y is Urysohn, there exist open sets V_1 and V_2 in Y such that $f_1(x) \in V_1$, $j_2(x) \in V_2$ and $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. Since f_j is θ -continuous, there exists an open set U_j in X containing x such that $f_j(\operatorname{Cl}(U_j)) \subset \operatorname{Cl}(V_j)$, where j = I, 2. Put $U = U_1 \cap U_2$, then U is an open set in X containing x and $f_1(\operatorname{Cl}(U)) \cap f_2(\operatorname{Cl}(U)) \subset \operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. This implies that $\operatorname{Cl}(U) \cap A = \emptyset$ and hence $x \notin [A]$. Therefore, we obtain $[A] \subset A$. This shows that A is θ -closed in X.

THEOREM 6. If Y is a Urysohn space and $f: X \to Y$ is a θ -continuous function, then the set $\{(x_1, x_2) | f(x_1) = f(x_2)\}$ is θ -closed in the product space $X \times X$.

Proof. By A we denote the set $\{(x_1, x_2) | f(x_1) = f(x_2)\}$. If $(x_1, x_2) \in \mathbb{C} X \times X$ — A, then we have $f(x_1) \neq f(x_2)$. Since Y is Urysohn, there exist open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $\operatorname{Cl}(V_1) \cap \cap \operatorname{Cl}(V_2) = \emptyset$. Since f is θ -continuous, there exists an open set U_j containing x_j such that $f(\operatorname{Cl}(U_j)) \subset \operatorname{Cl}(V_j)$, where j = 1, 2. Put $U = U_1 \times U_2$, then U is an open set in $X \times X$ containing (x_1, x_2) and $A \cap \operatorname{Cl}(U) = \emptyset$. Therefore, we have $(x_1, x_2) \in X \times X - [A]$. Thus, we obtain $[A] \subset A$. This shows that A is θ -closed in $X \times X$.

For a function $f: X \to Y$, the subset $\{(x, f(x)) | x \in X\}$ of the product space $X \times Y$ is called the *graph* of f and is denoted by G(f). It is well known that if $f: X \to Y$ is continuous and Y is Hausdorff, then G(f) is closed in $X \times Y$. The following theorem is a modification of this result.

LEMMA. Let $f: X \to Y$ be a function. Then G(f) is θ -closed in $X \times Y$ if and only if for each point $(x, y) \in X \times Y - G(f)$, there exist open sets U and V containing x and y respectively such that $f(Cl(U)) \cap Cl(V) = \emptyset$.

Proof. This follows easily from that for any open sets U and V containing x and y respectively, $\operatorname{Cl}(U \times V) \cap \operatorname{G}(f) = \emptyset$ if and only if $f(\operatorname{Cl}(U)) \cap \operatorname{Cl}(V) = \emptyset$.

THEOREM 7. If Y is a Urysohn space and $f: X \rightarrow Y$ is a θ -continuous function, then G(f) is θ -closed in $X \times Y$.

Proof. (x, y) be any point of $X \times Y - G(f)$, then $y \neq f(x)$. Since Y is Urysohn, there exist open sets V and W such that $y \in V, f(x) \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is θ -continuous, there exists an open set U in X containing x such that $f(Cl(U)) \subset Cl(W)$. Therefore, we obtain $f(Cl(U)) \cap Cl(V) = \emptyset$. By Lemma, G(f) is θ -closed in $X \times Y$.

THEOREM 8. Let $f: X \to Y$ be a function with the θ -closed graph. If f is surjective (resp. injective), then Y (resp. X) is Hausdorff.

Proof. Suppose f is surjective. Let y and z be any distinct points of Y. Then there exists a point $x \in X$ such that f(x) = z, thus $(x, y) \notin G(f)$. Since G(f) is θ -closed, by Lemma, there exist open sets U and V such that $x \in U$, $y \in V$ and $f(Cl(U)) \cap Cl(V) = \emptyset$. Therefore Y - Cl(V) is an open set containing z. This implies that Y is Hausdorff. Next, suppose f is injective. Let x and w be any distinct points of X, then $f(x) \neq f(w)$ and hence $(x, f(w)) \notin G(f)$. Therefore, by Lemma, there exist open sets U and V containing x and f(w) respectively such that $f(Cl(U)) \cap Cl(V) = \emptyset$. Thus X - Cl(U) is an open set of X containing w. This implies that X is Hausdorff.

5. Product spaces and θ -continuous functions

Let $\{X_{\alpha} \mid \alpha \in \mathscr{A}\}$ and $\{Y_{\alpha} \mid \alpha \in \mathscr{A}\}$ be any families of spaces with the same set \mathscr{A} of indices. We shall simply denote the product spaces $\Pi \{X_{\alpha} \mid \alpha \in \mathscr{A}\}$ and $\Pi \{Y_{\alpha} \mid \alpha \in \mathscr{A}\}$ by ΠX_{α} and ΠY_{α} respectively.

THEOREM 9. A function $f: X \to \Pi Y_{\alpha}$ is θ -continuous if and only if $p_{\beta} \circ f: X \to Y_{\beta}$ is θ -continuous for each $\beta \in \mathcal{A}$, where p_{β} is the projection of ΠY_{α} onto Y_{β} .

Proof. Necessity. Suppose f is θ -continuous. Since p_{β} is continuous for each $\beta \in \mathscr{A}$ and the composition of θ -continuous functions is θ -continuous, $p_{\beta} \circ f$ is θ -continuous for each $\beta \in \mathscr{A}$.

Sufficiency. Suppose $p_{\beta} \circ f$ is θ -continuous for each $\beta \in \mathscr{A}$. Let $x \in X$ and V be any open set in ΠY_{α} containing f(x). Then there exists a basic open set V_0 such that $f(x) \in V_0 \subset V$ and $V_0 = \prod_{j=1}^n V_{\alpha_j} \times \prod_{\beta \neq \alpha_j} Y_{\beta}$, where V_{α_j} is an open set of Y_{α_j} for each j ($I \leq j \leq n$). Since $p_{\beta} \circ f$ is θ -continuous for each $\beta \in \mathscr{A}$, for each j there exists an open set U_j in X containing x such that $(p_{\alpha_j} \circ f)(\operatorname{Cl}(U_j)) \subset \operatorname{Cl}(V_{\alpha_j})$. Put $U = \bigcap_{j=1}^n U_j$, then U is an open set in X

containing x and

$$f(\operatorname{Cl}(\operatorname{U})) \subset f\left(\bigcap_{j=1}^{n} \operatorname{Cl}(\operatorname{U}_{j})\right) \subset \bigcap_{j=1}^{n} p_{\alpha_{j}}^{-1}(p_{\alpha_{j}} \circ f)(\operatorname{Cl}(\operatorname{U}_{j})) \subset \\ \subset \bigcap_{j=1}^{n} p_{\alpha_{j}}^{-1}(\operatorname{Cl}(\operatorname{V}_{\alpha_{j}})) = \operatorname{Cl}(\operatorname{V}_{0}).$$

This shows that f is θ -continuous.

THEOREM 10. Let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a function for each $\alpha \in \mathcal{A}$ and $f: \Pi X_{\alpha} \to \Pi Y_{\alpha}$ a function defined by $f((x_{\alpha})) = (f_{\alpha}(x_{\alpha}))$ for each point (x_{α}) in ΠX_{α} . Then f is θ -continuous if and only if f_{α} is θ -continuous for each $\alpha \in \mathcal{A}$.

Proof. Necessity. Suppose f is θ -continuous. Let α be any fixed element of \mathscr{A} . Let $x_{\alpha} \in X_{\alpha}$ and V_{α} be any open set in Y_{α} containing $f_{\alpha}(x_{\alpha})$. Then there exists a point $x \in \Pi X_{\beta}$ such that $p_{\alpha}(x) = x_{\alpha}$, where p_{α} is the projection of ΠX_{β} onto X_{α} . Since $V = V_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta}$ is an open set in ΠY_{β} containing f(x), there exists a basic open set U in ΠX_{β} containing x such that $f(Cl(U)) \subset Cl(V)$ because f is θ -continuous. Put $U_{\alpha} = p_{\alpha}(U)$, then we obtain

$$f_{\alpha}(\mathrm{Cl}(\mathrm{U}_{\alpha})) = f_{\alpha}(p_{\alpha}(\mathrm{Cl}(\mathrm{U}))) = (q_{\alpha} \circ f)(\mathrm{Cl}(\mathrm{U})) \subset q_{\alpha}(\mathrm{Cl}(\mathrm{V})) = \mathrm{Cl}(\mathrm{V}_{\alpha}),$$

where q_{α} is the projection of ΠY_{β} onto Y_{α} . This shows that f_{α} is θ -continuous.

Sufficiency. Suppose f_{α} is θ -continuous for each $\alpha \in \mathscr{A}$. Let $x = (x_{\alpha}) \in \Pi X_{\alpha}$ and V be any open set in ΠY_{α} containing f(x). Then, there exists a basic open set V_0 such that $f(x) \in V_0 \subset V$ and $V_0 = \prod_{j=1}^n V_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} Y_{\alpha}$, where V_{α_j} is open in Y_{α_j} for each $j (I \leq j \leq n)$. Since f_{α} is θ -continuous for each $\alpha \in \mathscr{A}$, there exists an open set U_{α_j} in X_{α_j} containing x_{α_j} such that $f_{\alpha_j}(\operatorname{Cl}(U_{\alpha_j})) \subset$ $\operatorname{CCl}(V_{\alpha_j})$, where j = I, 2,..., n. Put $U = \prod_{j=1}^n U_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$, then U is an open set in ΠX_{α} containing x and $f(\operatorname{Cl}(U)) \subset \operatorname{Cl}(V_0) \subset \operatorname{Cl}(V)$. This shows that f is θ -continuous.

References

- [I] S. V. FOMIN (1943) Extensions of topological spaces, «Ann. of Math.», 44, 471-480.
- [2] HONG OH KIM (1970) Notes on C-compact spaces and functionally compact spaces, «Kyungpook Math. J.», 10, 75-80.
- [3] M. K. SINGAL and A. R. SINGAL (1968) Almost-continuous mappings, «Yokohama Math. J. », 16, 63-73.
- [4] N. VELIČKO (1970) On extension of mappings of topological spaces, «Amer. Math. Soc. Transl.» (2) 92, 41-47.