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Topologia. — Some applications of Darbo’s theorem. Nota di 
K a n h a y a  L a l  S i n g h , presentata <#) dal Socio B. S e g r e .

RIASSUNTO. — Usufruendo di un teorema di Darbo [2 ], vengono dimostrati due 
teoremi concernenti le contrazioni di ^-insiemi. Più precisamente, il Teorema 2.1 stabilisce 
una proprietà di surgettività simile a quella del teorema di Browder [3], ed il Teorema 2.2 
assicura resistenza di punti fissi per la somma di due applicazioni. Come corollari di quest’ul
timo teorema si ottengono fra l’altro i risultati di Nashed e Wong [4], Sing [io], Riener- 
mann [8], Edmund [5], Kachuraskii, Krasnoselskii e Zabreico [11].

The notion of measure of noncompactness was introduced by C. Kura- 
towski [1] as follows:

DEFINITION i . i .  Let X be a (real) Banach space. Let D be a bounded 
subset of X. Then the measure of noncompactness of D, denoted by y (D) 
is defined as

y (D) =  inf {e >  o/D can be covered by a finite number of subsets of 
diameter <  s}.

y (D) has the following properties:

(1) o <  y (D) <  d  (D) , where d  (D) denotes the diameter of D ,

(2) y (D) — o if and only if D is precompact ,

(3) T (C U D ) =  max {y (C) , y (D)} ,

(4) y (C (D , e)) <  y (D) +  2 s , where C (D , e) =  {x in X /d  (x , D) <  e} ,

(5) C C D  implies y (C) <  y (D) ,

(6) y (C +  D) <  y (C) +  y (D) , where C +  D =  {c +  d\c in C and d  in D}.

Closely related to the notion of measure of noncompactness is the concept 
of k-set contraction first defined by Darbo [2] as follows.

D efinition 2.1. Let X be a Banach space. Let D be a bounded subset 
of X. Let T : D - > X  be a continuous mapping. T is said to be k-set con
traction if y (T (D)) <  ky  (D) for some k >  o. If k <  1, i.e.

y (T (D)) <  y (D) ,

T  is called densifying (Furi and Vignoli [6]).

Theorem A (Darbo). Let D be a closed, bounded and convex subset of 
a Banach space X. Let T : D D be a k-set contraction with k <  1. Then T 
has a fixed point. (*)

(*) Nella seduta dell’i i  giugno 1975.
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T heorem  i . i .  Let X be a reflexive Banach space and X* be its dual 
space. Let T be a nonlinear operator (or not necessarily linear') that maps X 
into X . Suppose that T  is strictly positive ((T (x) , x) >  o fo r  all x  in X) 
and a k-set contraction with k <  i. Then T is surjective.

Proof. It is enough to show that T (x) =  x  has a solution or equiv
alently W (x) =  x  — T (x) has a fixed point. First we note that W is an 
a-set contraction with oc< i. Indeed, let D be any bounded but not pre
compact subset of X, then by definition of W we have

W (D) =  I (D) — T( D)  .
Hence

y (W (D)) =  Y (I (D) — T (D)) <  y (D) -  h f  (D) =

=  a y (D) , where a =  i — k < i .

Since T is strictly positive, therefore there exists an r >  o such that 
(T (x) }x) > o for all ^  in Sn  where Sr =  {x in X/|| # || =  r}. Now using 
the definition of W we have

(i) (W (x) , x) =  (x — T (x) , x) =  (x , x) — (T (x) , x) <

<  Il x  ||2 (since (T (x) , x ) >  6) .
Now define

W (x) if y W (x) Il <  r

W H T  i f l | W W | | > » - .

Then F (x) is densifying. Inded, setting/j (x) =  W (x) , / 2 (x) =  o , \  (x) =  
=  for llW WII >  r  and X, (x) =  i fo r ||W (^ )|| <  r  and X2 (x) =  i — X^.r)
we have

F (x) — \  (x) f x (x) +  X2 (x) f 2 (pc) .

F : X -> X* as follows: F (pc) — I

Hence by Theorem [9, Theorem 9, p. 17] F (x) is a-set contraction 
with a <  I. Moreover, clearly F (Br) C B r , where ~Br is the ball of radius r  
around the origin. Thus by Darbo’s Theorem [2] F has a fixed point x 0. 
Now we have two possibilities, either x 0 belongs to the interior of Br or x 0 
is on the, boundary Sr .

Case I.  Suppose x 0 belongs to the interior of Br. Then F (x0) =  x 0 =  
=  W (x0), i.e. x 0 is a fixed point of W as was claimed.

Case 2. 
Then

or

Suppose x 0 belongs to the boundary of Br, i.e. x r lies on Sr.

F (x0) =  x 0 =
r W(x0) 
I W ( * 0) I

(x0 , x 0) = r(W(x0),*o)
IW (̂ 0) II •
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Hence

(2) Il W (x0) y y x 01|2 =  r  (W (#0) , x 0) .

Using (1) we can write (2) as

l |W (* 0) || |k o l|2< ^ lk o l |2-

This implies || W (x0) || <  r, a contradiction to the fact that || W (x0) || >  r. 
Thus Theorem 2.1.

Remark 2.1. Theorem 2.1 remains true even if we assume T to be 
either densifying or i-set contraction. But in both cases the auxiliary 
mapping W turns out to be o-set contraction.

Remark 2.2. A theorem similar to 2.1 has been proved by Browder [3], 
where T is assumed to satisfy the condition of monotonicity emicontinuity 
and coerciveness.

Remark 2.3. A theorem similar to 2.1 for Hilbert space with the 
assumption that I ■— T is coercive has been proved by Edmund and Webb [7]. 
At any event since every Hilbert space is reflexive, our theorem is more 
general than that of Edmund and Webb [7]. Moreover we do not require 
the coerciveness of I — T.

Theorem 2.2. Let X  be a Banach space. Let D be a closed, bounded 
and convex subset of X. Let A , B : D -> X be two mappings such that

(1) A is densifying ,
(2) B ts either weakly continuous or completely continuous. Then there 

exists a x 0 in  D such that A (x0) +  B (x0) =  x 0.

Proof. W ithout loss of generality we may assume that the origin zero 
belongs to D. Let kn be a sequence of numbers such that o <  kn <  1 for 
each n and kn-> 1 as n -> 00. Clearly kn A is a kn-set contraction with 
kn<  I. Since B is weakly continuous (completely continuous) and therefore B 
is a o-set contraction. Thus we conclude that T  =  kn (A +  B) is a y^-set- 
with kn<  I. Hence by D arbo’s Theorem [2] for each n, there exists a point x n 
in ID such that T (xn) =  kn (A (xn) +  B (*n)) =  *n .

For the sequence { x ^  thus determined we have

x n (A (xn) +  B (xn)) =  kn (A (xn) -f- B (xfj) —  (A (xn) -j- B (xn))

— — 0  [A (xn) -f B (xn)] o as n -> 0 0  .

Since kn ~~> I and {T (xn)} CD is bounded. Hence zero lies in the closure 
of ( I — T) (D). But since I — T is closed (9, Lemma 1, pp. 80), therefore T 
has; a fixed point in D i.e. A +  B has a fixed point D. Thus there exists 
sonde x 0 in D such that A (x0) +  B (x0) =  x 0.

Remark 2.4. If  in Theorem 2.2 instead of assuming A to be densifying 
one assumes A to be i-set contraction, then the assumption ( I — T) D is
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closed is enough to guarantee the existence of a point x 0 such that
A (#0) +  B (*o) =  *o-

D efinition 2.2. Let X be a Banach space. A mapping T : X -> X 
is said to be demiclosed if for any sequence x n such that x n -> x  (i.e. x n 
converges weakly to x) and T {xf) -> y.  Then T (x) =  y.

LEMMA 2.1. Let X be a uniform ly convex Banach space. Let D be a 
closed, bounded and convex subset of X. Let T : D - > X  be nonexpansive 
mapping. Then the set (I —- T) D is closed.

Proof. By the Theorem [14 Theorem, pp. 660] it follows that ( I — T) 
is demiclosed. To show that ( I — T) D is closed, let x n be a sequence in D 
such that ( I — T) ( x f ) X q. We need to show that x 0 lies in ( I — T) D. 
Since X is uniformly convex, therefore it is reflexive. Now D being closed, 
bounded and convex is weakly compact. Since X is reflexive we can 
replace { x ^  by some subsequence, which for bravity we denote by {xn} 
such that x n -> y0 for some y 0 in X. But D is weakly compact, therefore y 0
belongs to D. Hence by demiclosedness of ( I — T) we infer that
(I — T ) x 0 =  y 0.

Corollary 2.1 ([8] Rienermann). Let X be a uniformly convex Banach 
space and let D be a nonempty, closed, bounded and convex subset of X. Let

/  : D -> D , ^  : D -> D , h :  D - > D ,
be such that

(a) /  =  g  +  h,
(b) Il g  (fi) — g  (fi) II <  || # — y  II fo r  all x  , y  in  D (i.e. g  is nonexp

ansiv è),

(c) h is strongly continuous, i.e. i f  x n converges weakly to x  then h (xn) 
converges strongly to h (x). Then f  — g  -f- h has at least one fixed  point.

Proof. Since g  is nonexpansive, therefore it is i-set contraction more
over h (x) being strongly continuous is a o-set contraction. Thus f  — g  +  h 
is I-set contraction. Indeed, let A be any bounded but not precompact 
subset of D, then by definition of f ( x )  we have

/  (A) =  g  (A) +  h (A) .

Therefore

Y/ (A) =  Y [g (A) +  h (A)] <  (A) .

Furthermore g  being nonexpansive implies that (I — T) is demiclosed, 
therefore by Lemma 2.1 we conclude that ( I — T) D is closed. Thus all 
the assumptions of Remark 2.4 are satisfied, hence the Corollary 2.1 follows 
from Remark 2.4.
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COROLLARY 2.2 ([11], Kachuraskii, Krasnoselskii and Zabrieko). Let H 
be a Hilbert space. Let D be a closed, bounded and convex subset of H. 
Let T : D -> D be a nonlinear operator such that T  =  A +  B, where A is 
nonexpansive and  B is completly continuous. Then T has at least one fixed  
point in  D.

Proof. The Corollary 2.2 follows from Corollary 2.1 by using the fact 
that every Hilbert space is uniformly convex. Moreover in a Hilbert space 
if A is nonexpansive, then ( I — A) is demiclosed ([12], the proof of this 
fact may be found using monotonicity, without motononicity the proof is 
given in Opial [13]).

Corollary 2.3 ([5], Edmund). Let H be a Hilbert space. Let D be 
closed, bounded and convex subset of H . Let T : D -> D be a nonlinear
operator such that T  =  A B, where

(1) A (x) +  B (y) in D fo r  all x  , y  in  D,

(2) A is nonexpansive, and

(3) B is completely continuous.

Then T has a fixed  point.

Remark 2fi. In the proof of Lemma 2.1 infact uniformconvexity was 
just used to guarantee the fact that (I — T) was demiclosed and the rest 
of the proof was based on the property of reflexivity. Thus if X is reflexive 
and (I — T) is demiclosed, then for any bounded, closed and convex subset D 
of X, ( I — T) D is closed. Thus we have the following Corollary.

COROLLARY 2.4 ([10], Singh). Let X be a reflexive Banach space and  A 
and  B be two mappings of D into X, where D is a nonempty, closed bounded 
and convex subset of X such that

(1) A is nonexpansive and ( I — A) is demiclosed, and

(2) B is completely continuous.

Then there exists some x  in  D such that A (x) +  B (x) =  x.

COROLLARY 2.5 ([10], Singh). Let X be a reflexive Banach space and 
let A  and  B two mappings of D into X, where D is nonempty, closed bounded 
and convex subset of X. I f  A  is i-set contraction and (I-—A) is demiclosed 
and  B is completely continuous, then T =  A +  B has a fixed  point in D.

D efinition 2.3. Let X a Banach space. Let D be a bounded, closed 
and convex subset of X. A mapping T : D  ->D  is said to be a nonlinear 
contraction if

II T OO — T O ) II <  9 II x  —  y  II for all x  , y  in D ,

where 9 (f)  for r  >  o is monotone nondecreasing function with continuous 
on the right such that 9 (r) >  r  for all r  >  o.
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COROLLARY 2.6 ([4], Nashed and Wong). Let X be a Banach space, 
Let D be a bounded, closed and convex subset of X . A <2?  ̂ B two
operators on D into X that A (V) +  B (y) in D fo r  every pair of x  , y
in D. I f  A  is nonlinear contraction and B is completely continuous, then the 
equation A (x) +  B (x) =  # has a solution in D .

Proof. We first note that A is densifying. Indeed, let C be a bounded 
but not precompact subset of D, such that y ( C ) > o ,  let us take e >  y (C). 
Then there exists a finite covering {Q , Ca , C3 , • • •, Cn} of C such that 
d  (C*) <  £ (for k =  I , 2 , 3 , • • •, n). Clearly

A ( C ) =  A  A (C*).

Let I <  k <  n be fixed. Let x , y  in Ck, then clearly \ \x — y\\ <  s. 
Hence || A (x) — A (y) || <  9 || x  — y\\ < 9  (s). Therefore d  (A (Q.)) <  9 (e). 
Thus y (A (C)) <  9 (e). I / s |  y (A), then by the right continuity of 9 we 
have

T (A (C)) <  9 (y (A)) <  y (A) .

Now B being completely continuous is o-set contraction, therefore A +  B 
is densifying. Thus the result follows from Theorem 2.2.
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