Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Rolf Reissig

Contractive mappings and periodically perturbed non-conservative systems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.5, p. 696-702.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_5_696_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie. - Contractive mappings and periodically perturbed non-conservative systems. Nota di Rolf Reissig, presentata ${ }^{(*)}$ dal Socio G. Sansone.

Riassunto. - Questa Nota si collega ad un'altra di J. Mawhin sui sistemi periodici conservativi perturbati.

La Nota di Mawhin si basa su un teorema di rappresentazione astratta in uno spazio di Hilbert.

L'Autore prova che con un procedimento più diretto, proprio dei problemi vibratori, si perviene ad un'estensione del risultato di Mawhin anche per sistemi non conservativi con smorzamento lineare.

Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}+c x^{\prime}+g(x)=e(t) \equiv e(t+2 \pi) \tag{I}
\end{equation*}
$$

where c is a real constant, $g(x) \in \mathrm{C}^{1}(\mathbf{R})$ and $e(t) \in \mathrm{C}^{0}(\mathbf{R})$.
Following an idea of Mawhin [8] let us prove:
Theorem I. Equation (I) admits a uniquely determined solution $x(t) \equiv$ $\equiv x(t+2 \pi)$ if

$$
\begin{equation*}
m^{2}<q \leqq g^{\prime}(x) \leqq p<(m+\mathrm{I})^{2} \quad \forall x \in \mathbf{R} \tag{2}
\end{equation*}
$$

(m a non-negative integer).
The proof is based on Banach's contractive mapping principle; it is constructive since the Picard iterative method can be applied in order to get an approximate periodic solution.

Let H be the complex function space $L^{2}[0,2 \pi]$ supplied with the inner product

$$
(x, y)=(2 \pi)^{-1} \int_{0}^{2 \pi} x(t) \bar{y}(t) \mathrm{d} t
$$

and with the corresponding norm $\|x\|=(x, x)^{1 / 2}$. It is a well-known fact that this Hilbert space is separable; the functions $\varphi_{n}(t)=e^{\text {int }}$ (n integer) form a complete ON-system. Hence each function $x(t) \in \mathrm{H}$ can be represented as a (norm convergent) Fourier series

$$
x(t)=\sum_{n=-\infty}^{+\infty} a_{n} \varphi_{n}(t), a_{n}=\left(x, \varphi_{n}\right)
$$

(*) Nella seduta del io maggio 1975.

Introduce the subspace D_{L} consisting of all functions $x(t) \in \mathrm{H}$ which possess first and second order Lebesgue derivatives in H and which satisfy periodic boundary conditions:

$$
x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi)
$$

Define the linear operator $L: D_{L} \rightarrow H$,

$$
x \mapsto \mathrm{~L} x \equiv x^{\prime \prime}+c x^{\prime} .
$$

Then differential equation (I) can be generalized as

$$
\begin{equation*}
\mathrm{L} x-\mathrm{N} x=y \tag{3}
\end{equation*}
$$

where $x \in \mathrm{D}_{\mathrm{L}}$ and $y \in \mathrm{H}$ (arbitrary). The nonlinear operator $\mathrm{N}: x \mapsto-g(x)$ maps the Hilbert space H into itself since the function g is linearly bounded, $|g(x)| \leqq p|x|+|g(0)|$. According to Mawhin a real constant $v, m^{2}<$ $<\nu<(m+1)^{2}$, is chosen, and (3) is replaced by

$$
\begin{equation*}
\mathrm{A} x-\mathrm{B} x=y \tag{4}
\end{equation*}
$$

where $\mathrm{A}=\mathrm{L}+\nu \mathrm{I}, \mathrm{B}=\mathrm{N}+\nu \mathrm{I}$ (I operator of identity in H).
Let us show that $A: D_{L} \rightarrow H$ is one-to-one, $A\left(D_{L}\right)=H$, and $A^{-\mathbf{1}}$ is completely continuous. The classical solution of equation

$$
\begin{equation*}
x^{\prime \prime}+c x^{\prime}+v x=e(t) \equiv e(t+2 \pi) \tag{5}
\end{equation*}
$$

with periodic boundary conditions can be represented in the form

$$
\begin{equation*}
x(t)=\int_{0}^{2 \pi} k(t-s) e(s) \mathrm{d} s \tag{6}
\end{equation*}
$$

by means of the Green function $k(t) \equiv k(t+2 \pi)$ which is continuous and piecewise smooth: $k^{\prime}(t) \in \mathrm{C}^{0}(0,2 \pi), g^{\prime}(\mathrm{O}+)-g^{\prime}(2 \pi-)=\mathrm{I}$. Using an arbitrary $y \in \mathrm{H}$ and introducing the functions

$$
\begin{aligned}
& x(t)=(\mathrm{K} y)(t) \equiv \int_{0}^{2 \pi} k(t-s) y(s) \mathrm{d} s \\
& v(t)=\left(\mathrm{K}^{\prime} y\right)(t) \equiv \int_{0}^{2 \pi} k^{\prime}(t-s) y(s) \mathrm{d} s \\
& w(t)=y(t)-v x(t)-c v(t)
\end{aligned}
$$

we can verify that $x(t) \in \mathrm{D}_{\mathrm{L}}, v(t) \in \mathrm{C}^{0}, w(t) \in \mathrm{L}^{2}$ and

$$
\begin{aligned}
& x(t)=x(0)+\int_{0}^{t} v(s) \mathrm{d} s[x(0)=x(2 \pi)] \\
& v(t)=v(0)+\int_{0}^{t} w(s) \mathrm{d} s[v(0)=v(2 \pi)] .
\end{aligned}
$$

Note that an approximation

$$
\left\{y_{n}\right\} \subset \mathrm{C}^{0} \subset \mathrm{H},\left\|y-y_{n}\right\| \rightarrow \mathrm{O}(n \rightarrow \infty)
$$

yields

$$
\left(\mathrm{K} y_{n}\right)(t) \rightarrow(\mathrm{K} y)(t),\left(\mathrm{K}^{\prime} y_{n}\right)(t) \rightarrow\left(\mathrm{K}^{\prime} y\right)(t)
$$

as $n \rightarrow \infty$, uniformly with respect to $t \in[0,2 \pi]$. Consequently, we obtain $\mathrm{AK} y=y \forall y \in \mathrm{H}$, i.e. AK : identity in H.

But the converse, $\mathrm{KA} x=x \forall x \in \mathrm{D}_{\mathrm{L}}$, i.e. KA : identity in D_{L}, is valid, too: When $\mathrm{A} u=0, u \in \mathrm{D}_{\mathrm{L}}$ this function can be assumed as C^{2}; but the classical homogeneous boundary value problem admits the only solution $u(t) \equiv 0$.

Summarizing we have $K=A^{-1}$, a bounded linear operator defined on H :

$$
\sup _{t}|(\mathrm{~K} y)(t)| \leqq 2 \pi\|k\|\|y\|
$$

Let λ be an eigenvalue of $\mathrm{A}^{-1}, \varphi(t)$ a (normed) corresponding eigenfunction:

$$
\mathrm{A}^{-1} \varphi=\lambda \varphi\left(\varphi \in \mathrm{D}_{\mathrm{L}}, \lambda \neq 0\right)
$$

or, equivalently:

$$
\lambda\left(\varphi^{\prime \prime}+c \varphi^{\prime}+\nu \varphi\right)=\varphi\left[\varphi(0)=\varphi(2 \pi), \varphi^{\prime}(0)=\varphi^{\prime}(2 \pi)\right] .
$$

Then we calculate:

$$
\begin{aligned}
& \varphi(t)=e^{\text {int }}(n \text { an arbitrary integer }), \\
& \lambda=\lambda_{n}=\left(\left(\nu-n^{2}\right)+\mathrm{i} n c\right)^{-1} .
\end{aligned}
$$

The normed eigenfunctions of A^{-1} form the complete ON -system mentioned above. Therefore A^{-1} can be described in the following simple way:

$$
y=\sum_{n} b_{n} \varphi_{n}, x=\mathrm{A}^{-1} y=\sum_{n} a_{n} \varphi_{n} \quad \text { where } \quad a_{n}=\lambda_{n} b_{n} .
$$

As a result,

$$
\left\|\mathrm{A}^{-1}\right\| \geqq\left\|\mathrm{A}^{-1} \varphi_{n}\right\|=\left|\lambda_{n}\right|=\left(\left(\nu-n^{2}\right)^{2}+n^{2} c^{2}\right)^{-1 / 2} \forall n \in \mathbf{N}
$$

and

$$
\left\|\mathrm{A}^{-1}\right\|=\sup \frac{\left\|\mathrm{A}^{-1} y\right\|}{\|y\|} \leqq \sup _{n \in \mathrm{~N}}\left|\lambda_{n}\right| .
$$

Hence

$$
\begin{equation*}
\left\|\mathrm{A}^{-1}\right\|=\sup _{n \in \mathrm{~N}}\left|\lambda_{n}\right| \leqq \max \left(\left(v-m^{2}\right)^{-1},\left((m+\mathrm{I})^{2}-v\right)^{-1}\right) \tag{7}
\end{equation*}
$$

(norm of A^{-1} in case $c=0$).
In order to show that A^{-1} maps each bounded subset of H into a compact set consider a sequence $\left\{y_{n}\right\} \subset \mathrm{H}\left(\left\|y_{n}\right\| \leqq \mathrm{R}\right)$ and denote $x_{n}=\mathrm{A}^{-1} y_{n}$.

Since

$$
\begin{aligned}
& \sup _{t}\left|x_{n}(t)\right| \leqq 2 \pi\|k\|\left\|y_{n}\right\| \leqq \mathrm{X} \\
& \sup _{t}\left|x_{n}^{\prime}(t)\right| \leqq 2 \pi\left\|k^{\prime}\right\|\left\|y_{n}\right\| \leqq \mathrm{X}^{\prime}
\end{aligned}
$$

the sequence $\left\{x_{n}(t)\right\}$ is equibounded and equicontinuous, and it contains a uniformly convergent subsequence. Clearly, the (continuous) limit function of this subsequence is also its limit in the H-norm.
Consider, once more, equation (4) which can be written as

$$
\begin{equation*}
x=\mathrm{A}^{-1} \mathrm{~B} x+\mathrm{A}^{-1} y \tag{8}
\end{equation*}
$$

Taking account of the estimate:

$$
\begin{aligned}
\left|\left(\mathrm{B} x_{1}\right)(t)-\left(\mathrm{B} x_{2}\right)(t)\right| & =\left|\nu\left(x_{1}(t)-x_{2}(t)\right)-\left(g\left(x_{1}(t)\right)-g\left(x_{2}(t)\right)\right)\right| \\
& \left.\leqq \gamma\left|x_{1}(t)-x_{2}(t)\right| \text { (a.e. }\right)
\end{aligned}
$$

where $\gamma=\max (|q-v|,|p-v|)$ we conclude that

$$
\begin{equation*}
\left\|\mathrm{B} x_{1}-\mathrm{B} x_{2}\right\| \leqq \gamma\left\|x_{1}-x_{2}\right\| . \tag{9}
\end{equation*}
$$

Thus, the mapping

$$
\begin{equation*}
u \mapsto \mathrm{~A}^{-1} \mathrm{~B} u+\mathrm{A}^{-1} y \tag{IO}
\end{equation*}
$$

of H into H is a contraction in case

$$
\begin{equation*}
\gamma\left\|A^{-1}\right\|<\mathrm{I} \tag{II}
\end{equation*}
$$

which is realized by a suitable choice of ν (see Mawhin [8]):

$$
p+m^{2}<2 v<q+(m+1)^{2}
$$

Now Banach's fixed point theorem is applied; replacing the arbitrary $y \in H$ by a (2π)-periodic function $e(t) \in \mathrm{C}^{0}$ the uniquely determined fixed point of (ro) becomes a periodic solution in the classical sense.

Moreover, consider the vector differential equation

$$
\begin{equation*}
x^{\prime \prime}+\mathrm{C} x^{\prime}+\operatorname{grad} \mathrm{G}(x)=e(t) \equiv e(t+2 \pi), x \in \mathbf{R}^{n} \tag{12}
\end{equation*}
$$

where $G(x) \in C^{2}\left(\mathbf{R}^{n}\right)$,

$$
\begin{aligned}
& \mathrm{H}(x)=\left(\mathrm{G}_{x_{i} x_{k}}\right)=\mathrm{H}^{*}(x) \in \mathrm{C}^{0} \\
& e(t) \in \mathrm{C}^{0}(\mathbf{R}) \\
& \mathrm{C}=\operatorname{diag}\left(c_{1}, \cdots, c_{n}\right), c_{i} \text { real constants. }
\end{aligned}
$$

The oscillation problem can be solved in the same way as in case $n=\mathrm{I}$:

In the Hilbert space $(\mathrm{H})^{n}$ with the inner product $\left(x_{1}, y_{1}\right)+\cdots+\left(x_{n}, y_{n}\right)$ the differential operator and its inverse are determined by $\operatorname{col}\left(\mathrm{A}_{1} x_{1}, \cdots, \mathrm{~A}_{n} x_{n}\right)$ and $\operatorname{col}\left(\mathrm{A}_{1}^{-1} y_{1}, \cdots, \mathrm{~A}_{n}^{-1} y_{n}\right)$, respectively. Here A_{i} denotes the operator A of Theorem I in case $c=c_{i}$.

The inverse operator has the properties discussed above; evidently, its norm is equal to $\max \left(\left\|\mathrm{A}_{1}^{-1}\right\|, \cdots,\left\|\mathrm{A}_{n}^{-1}\right\|\right)$. The operator originating in the nonlinear term of the differential equation can be shown to possess a Gâteaux derivative; an estimate analogous to (9), with the same value γ, can be derived via Lagrange's formula (see Vainberg [9], and compare Mawhin [8]) if we propose that $q \mathrm{I} \leqq \mathrm{H}(x) \leqq p \mathrm{I} \forall x \in \mathbf{R}^{n}$ (I : $n \times n$ unit matrix).

Therefore Mawhin's theorem can be generalized as follows:
ThEOREM 2. Equation (12) with an arbitrary real didgonal matrix C has one and only one (2π)-periodic solution if

$$
\begin{equation*}
m^{2} \mathrm{I}<q \mathrm{I} \leqq \mathrm{H}(x) \leqq p \mathrm{I}<(m+\mathrm{I})^{2} \mathrm{I} \tag{13}
\end{equation*}
$$

(m a nonnegative integer).
Corollary. The assertion of the theorem holds, too, in the more general case when

$$
\mathrm{C}=\mathrm{C}^{*} \quad \text { an arbitrary real } n \times n \text { matrix. }
$$

Determine an orthogonal matrix $Q\left(Q^{*}=Q^{-1}\right)$ such that

$$
\left.\mathrm{QCQ}^{*}=\mathrm{D} \quad \text { (diagonal matrix }\right)
$$

and transform

$$
y=\mathrm{Q} x .
$$

Then equation (I 2) is transformed into

$$
\begin{equation*}
y^{\prime \prime}+\mathrm{D} y^{\prime}+\operatorname{grad}_{y} \mathrm{G}\left(\mathrm{Q}^{*} y\right)=\mathrm{Q} e(t) \tag{I4}
\end{equation*}
$$

note that

$$
\begin{aligned}
& \operatorname{grad}_{y} \mathrm{G}=\mathrm{Q} \operatorname{grad}_{x} \mathrm{G} \\
& \left(\mathrm{G}_{y_{i} y_{k}}\right)=\mathrm{Q}\left(\mathrm{G}_{x_{i} x_{k}}\right) \mathrm{Q}^{*}
\end{aligned}
$$

An immediate consequence of the last formula is that the Hessian matrix of $\mathrm{G}\left(\mathrm{Q}^{*} y\right)$ satisfies condition (13). Thus, Theorem 2. is valid in case of equation (i4).

In case $c=0$ of equation (I) Mawhin has indicated an existence theorem (to be proved via Schauder's fixed point theorem) when a weaker version of condition (2) is supposed.

ThEOREM 3. Equation (1) admits at least one (2π)-periodic solution if

$$
\begin{equation*}
m^{2}<q \leqq g(x)\left|x \leqq p<(m+\mathrm{I})^{2} \quad \forall x:|x| \geqq h .\right. \tag{15}
\end{equation*}
$$

We give an outline of the proof starting from the operator equation (8) where $y \in \mathrm{H}$ is arbitrarily chosen. The equation being solved it is clear how to proceed in order to establish the assertion of Theorem 3.

To begin with define

$$
g^{*}(x)=\left\{\begin{array}{l}
g(x),|x| \geqq h \\
(x \mid h) g(h) \operatorname{sgn} x),|x| \leqq h
\end{array}\right.
$$

and

$$
\sigma(x)=g(x)-g^{*}(x)[|\sigma(x)| \leqq \delta] .
$$

Hence

$$
|v x-g(x)| \leqq \gamma|x|+\delta \quad \text { (linear boundedness), }
$$

and $x(t) \mapsto(\mathrm{B} x)(t) \equiv \nu x(t)-g(x(t))$ is a mapping of the Hilbert space H into itself for which

$$
\begin{equation*}
\|\mathrm{B} x\| \leqq \gamma\|x\|+\delta . \tag{16}
\end{equation*}
$$

This mapping is continuous. Assume that $\mathrm{B} x$ is not continuous at $x_{0} \in \mathrm{H}$. Then there is a positive number ε_{0} and a sequence $\left\{x_{k}\right\} \subset H$ such that

$$
\left\|x_{k}-x_{0}\right\| \rightarrow 0(k \rightarrow \infty),\left\|g_{k}-g_{0}\right\| \geqq \varepsilon_{0} \forall k \in \mathbf{N}
$$

where the abbreviation $g(t)=-(\mathrm{N} x)(t) \equiv g(x(t))$ is used. Without loss of generality we can assume that

$$
x_{k}(t) \rightarrow x_{0}(t) \quad(k \rightarrow \infty) \quad \text { almost everywhere on }[0,2 \pi] .
$$

The same is true with the sequence $\left\{g_{k}(t)\right\}$:

$$
g_{k}(t) \rightarrow g_{0}(t) \quad(k \rightarrow \infty) \quad \text { a.e. }
$$

Taking into account that the Lebesgue integral is absolutely continuous, and applying Egorov's theorem (see Hewitt-Stromberg [2]) as well as Lebesgue's dominated, convergence theorem we can show that $\left\|g_{k}-g_{0}\right\| \rightarrow 0(k \rightarrow \infty)$ in contrast with the assumption.

Since A^{-1} is a compact operator the mapping (IO) is completely continuous on each bounded subset of H . A closed ball $\overline{\mathrm{S}}_{r}$ is mapped into itself when r sufficiently large:

$$
r \geqq \gamma\left\|\mathrm{~A}^{-1}\right\| r+\left\|\mathrm{A}^{-1} \cdot\right\|(\|y\|+\delta), \gamma\left\|\mathrm{A}^{-1}\right\|<\mathrm{I}
$$

According to Schauder's theorem it contains at least one fixed point which is a solution of (8).

References

[I] S. Ahmad (1973) - An existence theorem for periodically perturbed conservative systems, «Michigan Math. J.», 20, 385-392.
[2] E. Hewitt and K. Stromberg (1969) - Real and abstract analysis, Berlin.
[3] R. Kannan (1974) - Periodically perturbed conservative systems, "J. Differential Equations», I6, 506-514.
[4] A. C. LAZER (1972) - Application of a lemma on bilinear forms to a problem in nonlinear oscillations, "Proc. Amer. Math. Soc.》, 33, 89-94.
[5] A. C. Lazer and D. A. Sanchez (1969) - On periodically perturbed conservative systems, «Michigan Math. J.», 16, 193-200.
[6] D. E. Leach (1970) - On Poincaré's perturbation theorem and a theorem of W. S. Loud, "J. Differential Equations», 7, 34-53.
[7] W. S. Loud (1967) - Periodic solutions of nonlinear differential equations of Duffing type, Proc. U. S., Japan Sem. on Diff. and Funct. Equations, New York, 199-224.
[8] J. MAWHIN (1974) - Contractive mappings and periodically perturbed conservative systems, Sém. de Math. Appl. et Méc. Mensuel, rapport 8o, Louvain.
[9] M. M. Vainberg (1964) - Variational methods for the study of nonlinear operators, San Francisco.

