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Geom etria differenziale. — Submanifolds of real codimension 
of a complex projective space. Nota di M asafumi O kumura, pre
sentata (,) dal Socio B. S eg re .

RIASSUNTO. — Allo scopo di studiare una sottovarietà reale M di uno spazio proiettivo 
complesso, si costruisce il sistema di cerchi su M compatibile colla fibrazione di Hopf e che può 
venire considerato come una sotto varietà di una sfera di dimensione dispari. Così, valendosi 
della teoria della sommersione, condizioni imposte alla M vengono a tradursi in altre relative 
ad una sottovarietà di una sfera; e vari esempi al riguardo vengono approfonditi.

Introduction

It is well known that a (2 n-\- i)-dimensional sphere S2n+1 is a principal circle bundle 
over a complex projective space CPn and that the Riemannian structure on CP72, is given by 
the submersion fc : S27l+1 CPn [5, 7]. Thus the theory of submersion is one of the most 
powerful tools for studying a complex projective space and its submanifolds. From this point 
of view, H. B. Lawson [2] studied real hypersurfaces of a complex projective space and then 
Y. Maeda [3] and the present author [4] developed this method extensively.

The purpose of the present paper is to establish some relations between a submanifold 
of CPn and that of S2n+1 which is a principal circle bundle of CPL We are mainly concerned 
with gathering information on the second fundamental tensors of these submanifolds and 
on the connections of their normal bundles.

In § I, we state some fundamental formulas for submanifolds of Riemannian manifold 
and in § 2, we recall fundamental equations of a submersion which are established by 
B. O’Neill [5], K. Yano and S. Ishihara [7]. Then, in § 3, we consider a submanifold M of 
S2n+1 which is a circle bundle over a submanifold M of CPL Here we relate fundamental 
tensors of the submersion fr : S2n+1 -> CP71 and of ïï:M  -4 Mas well as the second funda
mental tensors of the hypersurfaces M and M.

Mean curvature vector fields of M and M are discussed in § 4 and a certain pinching 
theorem is proved in § 5. In § 6 we establish new definition of anti-holomorphic subma
nifold of a complex manifold and prove some similarities between submanifold of S272,+1 
and anti-holomorphic submanifold of CPL

§ I. Submanifolds of a R iemannian manifold

Let i  : M M be an isometric immersion of an ^-d im ensional R iem an
nian m anifold M into {m +  ^-dim ensional R iem annian m anifold M. The 
R iem annian metrics g  of M and G of M are related by

O-O g ( X , Y )  =  Gj ( X) , z ( Y) ) ,

veliere X , Y are vector fields on M and we denote also by i the differential 
of the immersion. T he tangent space T p (M) is identified with a subspace (*)

(*) Nella seduta del 12 aprile 1975.
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T ^  (M). The norm al space N^(M ) is the subspace of (M) consisting 
of all X 6 T iCp) (M) which are orthogonal to T v (M) with respect to the Riem an- 
nian m etric G. W e denote by V, and D the R iem annian connection of M 
and M respectively and by D N the connection of the norm al bundle of M. 
L et Nj , • • •, N ? be an orthonorm al basis of NP(M) and extend them  to norm al 
vector fields in a neighborhood of p. Then, V, D and D N are related in the 
following m anner:

C1-2) D i(X)Z (Y) =  * (Vx Y) +  Ì  G (H a X , Y) N a ,
A = l

C1 *3) T)̂ (X) Na =  î (Ha X) T  Dx Na ,

where H A is the second fundam ental tensor associated with NA .

We call (1.2) and (1.3) Gauss equation and Weingarten equation respectively. Since 
Dx Na is normal to M, it is a linear combination of NA’s and so we put

(M ) t  Lab(X)Nb ,
B =  1

and call LAB the third fundamental tensor of M in M. The mean curvature vector N of M 
is defined by

(i-5) N =  2  (trace h a)Na ,
m  A —1

and it is well known that N is independent of the choice of NA’s.

Let R  , R  and R N be the curvature tensors for V , D and D N respectively. 
Then we have the following Gauss, and Ricci-Khüne equations:

(1.6) G (R (i (X) , /  (Y)) i (Z ) , i (W)) =  g  (R  (X , Y) Z , W)

—  Ì  g  (Hb Y , Z) g  (Hb X , W) +  2  i  (H b X - Z) i  (H b Y , W),
B = 1  B=1

(1.7) G ( R ( f ( X ) , f ( Y ) ) N A , N B) = tr ( ( H BH A — H A H B) X ,  Y) +

+  G (Rn (X , Y) N A , Nb) -

If the ambient manifold M is a manifold of constant curvature C, it follows that

(1.8) G (RN (X , Y) NA , Nb) =  g  ((Ha Hb -  Hb Ha) X , Y)

because the curvature tensor R of M has the form

R (X , Y) Z =  C { G (Y , Z) X — G (X , Z) Y } ,

where X , Y and Z are any vector fields on M. Thus for a submanifold M of a manifold 
of constant curvature the connection of the normal bundle is flat if and only if any HA 
and Hb commute.
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§ 2. R iemannian SUBMERSION

Let M and M be differentiable manifolds of dimension m  +  1 and m  
respectively and assume th a t there exists a submersion n  : M ->M , tha t is, 
assume th a t tu is onto and of m axim um  rank m  everywhere on M. W e further 
assume th a t there are given in M a vector field V which is everywhere tangent 
to the fibre and a R iem annian m etric g which satisfies for any X , Y e T^(M ),

( 2 . 1 )  £ ( V , V )  =  i ,

(2.2) (L ('V) g) (X , 7 ) =  g (Vx V , Ÿ) +  g (Vÿ V , a ) =  o ,

where L (V) denotes the operator for Lie derivative with respect to V. Let 
X be a tangent vector at p  € M. Then X decomposes as Xv +  X , where 
XV is tangent to the fibre through p  and XH is perpendicular to it. If X = X  , 
it is called a vertical vector and if X =  XH, it is called horizontal.

If a tensor field T defined on M satisfies L(V) T =  o, then it is called an invariant tensor 
field or a projectable tensor field. Such a tensor field can be regarded as a tensor field 
defined on M by ïï.

For any differentiable function /  on M define a function / L on M by

( 2 . 3 )  / L ( I )  = f  (F ( D )  =  ( f ° K )  ( / ) .

W e call / L the lift of / .  For a vector field X defined on M there exists a 
unique horizontal vector field XL on M such that for all /  € M we have

( 2 . 4 )  TcXp —  X ^ p )  ,

and XL is called the lift of X. We further define the lift uL of a i-form  u 
on M by  uL —  tu* u, where tu* denotes the dual m ap of the differential m ap 
of the subm ersion tu. Thus we can define the lift of any type of tensor fields 
T and S in such a way that

(2.5) (T ® S)L =  T L ® SL,

where ® denotes the operator of the tensor product.

By definition we have easily
(2.6) TT (XL) =  X,

(2.7) tc(X)L =  XH , for invariant X.

Since the Riemannian metric £ satisfies (2.2), we can define a Riemannian metric g 
on M by
(2.8) ^ ( X , Y )(/)  =  ö (Xl ,Y l ) ( / ) ,

where p is an arbitrary point of M such that tu (p) =  p. Hence we have

(2.9) g  (X , Y)L =  g (XL , YL).
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The fundam ental tensor F of the submersion is a skew-symmetric tensor 
of type ( i . i ) on M and is related to covariant differentiation V and V in M 
and M, respectively, by the following formulas:

(2.10) Vyl Xl  =  (VY X)L +  g  (FL Yl  , X L) V =  (VY X)L -f g  (FY , X)L V,

(2 .11) , VY X L =  Vxl V =  — f l x l .

This, together with (2.2), implies that

(2.12) Vy V =  — FL V =  o.

§ 3. Submersion and Immersion

Let M and M' be differentiable manifolds of dimension n -f p  T  1 and n T  p  re
spectively and t u  be a submersion fu : M -> M'  which satifies the conditions of § 2. Suppose 
that M is a submanifold of dimension n +  1 which is immersed in M and respects the 
submersion fu. That is, suppose that there is a submersion t u  : M -> M, where M is a subma
nifold of M' such that the diagram

M -----  — ► M

TU TU

M _________-> M'
i

commutes and the immersion ? is a diffeomorphism on the fibres.

Let V be the unit tangent vector to the fibre of M which satisfies (2.2). 
Then by the com m utativity  of the diagram  we easily see tha t ï  (V) is vertical 
with respect to ft. So we m ay put

(3.1) V  =  f (V) .

Let v be the i-form  on M satisfying

v (V) =  ï
and

v (X) =  o

for any horizontal vector field X  on M. The R iem annian m etric G of M 
is given by

(3.2) G (X , Ÿ) =  GL (X  , Ÿ) +  £ (X) v  ( Ÿ ) ,

from which we know tha t G (X ', Y ')  =  o implies G (X /L, Y^L) =  o.

We denote by r the induced Riemannian metric of M. Then for a vector field X on M,
we have

G (z (XL) , V) =  G (t (XL) , t (V)) =  2 (XL, V) =  o ,
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which shows that i (XL) is horizontal. On the other hand from the commutativity of the 
diagram we know that if X is an invariant vector field on M, i (X) is also an invariant 
vector field on M. Hence we have

£ (Ï (XL)) -  / (tu (Xl )) -  i (X) , 

which, together with (2.7) implies that

(3.3) t (XL) =  ? (X T  =  Ä (* (XL))L =  * (X)L.

Let N a (A =  I , 2 , • • •, p) be norm al vector fields to M which are m u
tually  orthonorm al at a point x  £ M and put NA =  NA. T hen NA’s are also 
norm al vector fields to M which are m utually  orthonorm al at any point 
y £  M satisfying tu (y) — x. In fact, by (3.2), it follows tha t

G (Na , ï (XL)) =  G (Na , * (X)L) =  GL (Na , * (X)L) +

+  S (Nk) 5 (* (X)1') =  G (Na , i (X))L =  o ,

G (Na , Nb) =  G (N i , Nè) =  GL (Nè , Nè) +  t  (Nè) v  (Nè) =

=  G (NA , N b)L =  8ab •

Let D, V, D and V be respectively the R iem annian connections of M, 
M, M ' and M. By m eans of the Gauss equation for submanifold, we have

D?<x*> !  (YL) =  î  (VxL YL) +  S I =1 g (Ha Xl , Yl ) N è =

=  ? ((Vx Y)L +  g (F l  Xl , Yl ) V) +  g  (Ha X l , Yl ) N è ,

from which

(Di(X) * (Y))L +  G ( 'F l  ì (X)L, /  (Y)l ) V  =  i  (Vx Y)L +

+  g (F l  X l , Yl ) f (V) +  2 I =1 g (Ha X l , Yl ) N è . 

Com paring the vertical parts and horizontal parts, we have 

(3.4) G ( 'F l  ,• (X)L, /  (Y)l ) =  g (F l  X l , Yl ) ,

(D<(X) * (Y))L =  I (Vx Y)L +  S i =1 g (H a X l , Yl ) N è . 

U sing the Gauss equation again, we get 

(3-5) S  (P a X l , Yl ) =  g (H a X , Y)l .

From  (2.9) and (3.4), we have also

(3.6) G ('F i (X) , i (Y)) =  g  (FX  , Y) .

N ext we consider the transform s 'F i (X) and ;FN A of i  (X) and NA 
by the fundam ental tensor 'F  of the submersion n. By m eans of (3.6) they
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can be w ritten as

(3-7) 'F i (X) =  7 (FX) +  S | =1 uA (X) Na ,

(3-8) 'F N A =  —  * (Ua) +  2 g_i Xab N b ,

and we easily see th a t

(3-9) * ( U A,X)  =  «A(X). '

We denote by D N and D N the connections of the norm al bundle of M 
in M and M in M respectively. By definition of DN, we have

D*l N a -  D f(xL) Nk +  t (Ha Xl ),

from which

N i  =  (D i(X) Na)l  +  G ('FL i (X)L , N i) V  +  ï  (Ha X l )

=  —  i (H a X)l  +  (E>£ Na)l  +  G (F i  (X) , N a)l  V  +  i  (Ha X l ). 

Com paring the horizontal parts and vertical parts and using (3.1), we get 

(3-IO) Dx N a =  (Dx N A)L,

(3 .11) g  (UA , X)L =  G (Ft  (X) , N a)l  =  -  g ( R A XL , V),

because of (3.7) and (3.9). The norm al connection being expressed by the 
third fundam ental tensor LAB as (1.4), (3.10) is nothing but

(3-12) Lab (X L) =  L AB (X)L

Consider the co variant differentiation of NA in the direction of V. By 
(1.2) and (3.1), it follows that

N i  =  —  ï  (Ha V) +  D - N i  =  —  f (Ha V) +  S L i  EAB (V) N Ì .

Substituting (2.11) into the above equation, we have

_  ' f l  N i  =  —  !  (Ha V) +  Lab (V) N Ì ,

from which

(3-13) x iB =  G ('F l  N i  , N i) =  -  Lab (V),

because o f (3.8).

§ 4. Mean curvature vector fields

In  this section we w ant to relate the conditions imposed on the m ean 
curvature vectors of M and M. F irst of all we prove the

Lemma 4.1. For any po in t p  € M, we have

(4.1) (trace HA) ( / )  =  (trace H A) (7z(p)) =  (trace H A)L( / ) .
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Proof. Let { E, , • • •, En } be an orthonorm al basis at T ^-) (M) and choose 
an orthonorm al basis {Ex , - - •, Ew+1} at T - (M) in such a w ay th a t E* =  
for i ~  I ,*••,?& and En+1 =  V. Then we get

trace H A =  S «ÌÌ g (HA L  , Ëa) =  g (HA +  g (HA V , V)

=  2 “=i g  (H a E j , Ej)L +  g  (Ha V , V) =  (trace H A)L 4- g (HA V , V ) ,

because of (3.5). On the other hand, from (1.2), we have

E>v V =  'Dï (v) * (V) =  * (Vÿ V) +  g (Ha V , V) NA =  o,

which, together with (2.12), implies that

(4 -2) g  (Ha V , V) =  o , A = 1 , 2

T hus we have (4.1). This completes the proof.

Let N and N be the mean curvature vector field of M and M respectively. Then, by 
Lemma 4.1, it follows that

(4.3) N =  (trace H J  NA =  - y j - y  2? . ,  (trace HA)L NA =  - y f y  Nh

LEMMA 4.2 I f  the mean curvature vector fie ld  N of M is parallel with  
respect to the induced connection o f the normal bundle so is the mean curvature 
vector fie ld  N o f M.

Proof. L etting  DxL act on N, we get

(4.4) (n +  1) Dxl N =  { XL (trace HA) NA +  (trace HA) Na }

=  s a= i {X L (trace H A)L NA +  (trace H A)L (Dx N A)L}

=  S £=1 {X (trace H A) N A +  (trace H A) D ? NA}L

=  » (  D ^ N )l ,

because of (3.10). T hus D xL N =  o implies th a t Dx N =  o. This completes 
the proof.

Next we relate the length of the second fundamental tensors of M and M. From (3.5)
and

g  (Ha X , Y)L =  g  (Ha X , Y) O TT =  I ((Ha X)l , Yl ),
we obtain

(4.5) Ha Xl =  (H a X)L +  g (H a Xl , V) V.
We choose an orthonormal basis Ea such as the one we have chosen in the proof of Lem

ma 4.1, and we have

trace HA2 =  r (H2 E* . E«) =  f (H* E ^, El) 4- g (H2 V , V)

n _
=  2  g (Ha ((Ha Ei)L +  g (Ha , V) V) , E$) +  g (Ha V , Ha V)

i== 1
n n

=  . 2  g (Ha (Ha E,)", E") +  £  g (Ha E) , V) g (Ha V . E)) +  g (Ha V , Ha V).
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Substituting (3.11) into the last equation and making use of the fact that
— _ _ _ n+1 _ fi

j ( H » V , H * V ) =  2 g (Ha V , Ë«) g (Ha V , Ëa) =  2 g (Ha V , E1:) ; ( H a V ,  E1:),a=l 1

we obtain
n

trace H* =  .2  {^(H f E,-, E,)L +  2^(E ,-, UA)V (E !-, UA)L} =  (tracce H ’)L + 2 g{\JK, UÄ)L,

because of (4.2). Hence we have

P _ / V \L p
(4.6) 2 trace HA =  2 trace H U  + 2  2 i"(UA,U A)L.

A=1 Va=1 / A = 1

P _  I  P \ L
THEOREM 4.1. 2j  trace Ha ^  I 2  trace H i )  always valid. The

A=1 \A=l /
equality holds if\ and  only i f , the submanifold  M is invariant under /F. 

If ï  is a to tally  geodesic immersion, from (4.6) we have

THEOREM 4.2 L et ï  be a totally geodesic immersion o f a R iem annian  
m anifold  M in  M which respects the submersion n  : M -> M r; then i is also 
totally geodesic and the tangent space o f M is invariant under 'F .

§ 5. Real submanifolds of complex projective spaces

Let S ^ +1 be an odd-dimensional unit sphere in an (n -f p  +  2)-dimensional Euclidean 
space ç f n+P+2̂ !2 an4 j  the natural almost complex structure on Q(n ^-P+ 2)/2^
image V =  JN of the outward unit normal vector N to Sn+P+1 by the almost complex 
structure defines a unit tangent vector field on Sn+P+1 and the integral curves of V are 
great circles S1 in which are fibres of the standard fibration £,

(5.1) s 1 -> s n+p+1 —  -> CP(n+p)/2

onto complex projective space. The usual Riemannian structure on CP(n+p)/2 is characterized 
by the fact that tt is a submersion.

Let Mn be a submanifold of real codimension p  of a complex projective space CP(n+p)l2. 
Then the principal circle bundle Mn+1 over Mn is a submanifold of codimension p  of Sn+P+1 
and the natural immersion Mn+1 into S^+i&+1 respects the submersion tt. Thus Sn+P+1 and 
Qp( +2?)/ are -n the same situation as M and M' respectively, so we continue to use the 
same notations as in the preceding sections.

In  S“‘H>+1 we have the fam ily of products

M ?>r =  S®xSr

where q -\-r  — n i . B y  choosing the spheres to lie in complex subspaces, 
we get fibrations S1 —> M24+1 ( 2r-ii ~ , which are com patible with (5.1) 
where q Hr r  =  {n — i)/2. T he almost complex structure J of C P(“+P)/2 is 
nothing but the fundam ental tensor of the submersion tc, th a t is,

(5-2) JL X  =  —  Dg i /  , X e T  (Sn+P+1),

38. — RENDICONTI 1975, Voi. LVIII, fase. 4.
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and the curvature tensor of the complex projective space is given by 

(5.3) R ' (X ', Y ') Z ' =  G (Y ', Z') X ' — G (X ', Z ') Y ' +  G (JY ', Z ') JX ' —

—  G (JX' ,  Z') JY'  — 2 G (JY' ,  Y ') JZ '.

which, together with (3.8), implies tha t

(5-4) G (R ' (*■ (X) , * (Y)) Na , Nb) =  g  (UA , Y) g  (U B , X) -

—  * (U A , X) g  (UB , Y) -  2 ^ (F X  , Y) XAB .

Com bining this equation with (1.7), we have

(5-5) G (Rn (X , Y) NA , Nb) = ^ ( [ H a , H b] X , Y) + * ( U A , Y )^ (U B , X ) —

-  ^ (U A , X) g (U B , Y) •— 2 ^ (F X  , Y) XAB .

On the other hand, from (3.5) and (4.5), it follows tha t

g  (H a H b X , Y)l  =  £  (Ha (H b X)l , Yl ) =  g  (flA HB X L, YL) —

—  g ( Hb X l , V) g (HA Ÿ , YL) ,

from which, together with (3.11), we get

(5-6) g  ([H a , H b] X , Y)l  =  g ([HA, f lB] X L, Yr ) —

—  <f(UB , X)L ^ ( U A , Y)L +  ^ (U b , Y)L ^ ( U a , X )L.

If  the norm al bundle of M of S n+P+1 is flat, then by (1.8),

g ([Ha , Hb] Xl , Yl ) =  o ,

and so

(5.7) ^([H a , Hb] X , Y) =  — *(U B , X )*(U A , Y) +  *(U B , Y)^(UA , X ) .

Substituting (5.7) into (5.5), we have

(5.8) G (R n (X , Y) Na , Nb) =  — 2g (FX  , Y) XAB .

Thus we have proved

L emma 5.1 I f  in  a submanifold  M of an odd-dimensional sphere Sn+2?+1 
the connection o f the norm al bundle is fla t, we have (5.8).

For to tally  geodesic subm anifolds of a complex projective space, we
have

THEOREM 5.1. A  compact, totally geodesic subm anifold o f real co d i
mension p  <  (n +  3)/4 o f a complex projective space CP(n+î>)/2 is necessarily 
a complex submanifold and consequently a complex projective space CPn'2.
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Proof. Since G is the H erm itian  metric of CP(w+2?)/2, it follows tha t 

I =  G (JN a , JN a) =  G (* (UA) , *• (UA)) +  G Q g  Xab Nb , | ) , AC Nc)  =  

— g  (U A , U A) +  2  ^ab XAb
B

and then
v

(5-9) 2  g  (u a , U A) =  p  — 2  XAB XAB ^  p.
A = 1  AJ?

Thus, combining this with (4.6), we get

2  trace H i  =  2 £  g  (UA , U A) ^  2 P <  J L t L .  ,
A=1 A = 1  2 — I IP

b ecau se 'o f p  <  ” ^ 3 . A pplying Sim ons’ result [6], we obtain th a t M is

totally  geodesic. By virtue of Theorem  4.2, M is a complex submanifold 
and consequently a complex projective space CPn/2.

COROLLARY. There is no odd-dimensional, compact totally geodesic 
submanifold o f codimension p  <  A_±A 0f  a comp iex projective space.

T h e o re m  5.2. 7/  æ compact m in im a l submanifold  M  of real codimension
p  of a complex projective space C F (n+p)l2 satisfies

(5,10)
p

Y  traee H A <
A=1

n +  3 — 4 P 
2 — l/f

M is a totally geodesic complex projective space C P^2.

Proofi W e note th a t (5-9) is still valid for any subm anifold M. Com
bining (4.6) and (5.9), we have

(5.1 O S  trace H i  g  £  (trace R i)L +  2P <  +  2 P =  .

On the other hand Lem m a 4.1 shows that if M is m inim al, M is also 
m inim al. Thus applying Sim ons’ result to (5.11), we obtain th a t M is 
totally  geodesic. Thus Theorem  4.2 shows that M is to tally  geodesic CPw/2.

§ 6. A n t i-h o lo m o r ph ic  su bm a n ifo ld s

As is well known, a complex submanifold (holomorphic submanifold) of a complex 
manifold is’ characterized by the fact that at any point of the submanifold M the 
tangent space is invariant under the action of the almost complex structure J of the 
ambient manifold, that is, for any p eM  ,T P (M) =  J (Tp (M)). Since J 2 =  — identically, this 
condition is equivalent to the fact that, at any point of M, the normal space is invariant
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under J; that is, N^(M) =  J (N^(M)). Now we consider such a subamnifold of a complex 
manifold that at any point of the submanifold we have

(6.1) JN^ (M) n (M) =  {0}.

The author calls this submanifold an anti-holomorphic submanifold. It should be remarked 
that some authors call anti-holomorphic a submanifold that satisfies JT^(M) OT^(M) ={o}. 
But it seems to the author that our new definition is preferable being less exacting than the 
old definition; for example, any real hypersurface of a complex manifold is anti-holomorphic 
in our sense.

In  this section we show th a t some conditions in M of Sn,+??+1 are naturally  
inherited by anti-holom orphic submanifolds of M of CP(n+î?)/2.

PROPOSITION 6. i Let M be an n-dimensional anti-holomorphic subma
nifold o f a complex projective space CP(n+3?),/2 of real codimension p  and n  : M ~>M 
the submersion which is compatible with the submersion ft : Sw+Î?+1 -> C P ^ +^ /2. 
Then the mean curvature vector fie ld  N of M is parallel w ith respect to the 
induced connection o f the normal bundle if, and only, so is N of M.

Proof. By definition of m ean curvature vector field, it follows that 

d £  N =  i ;  (V (trace HA) NA +  (trace H A) Dy N A).
A = 1

Since Lem m a 4.1 shows that trace H a is an invarian t function with respect 
to V the first term  of the right hand side of the last equation vanishes. 
M oreover, by (1.4), (3.8) and (3.13), we get

(6.2) Na =  2  Lab (V) N£ =  — £  XAB N£ =  o .
B - l  B=1

Com bining (4.4) and (6.2), we know that N is parallel with respect to 
the connection of the norm al bundle. Conversely if N is parallel, Lem m a 
4.2 shows th a t so is N. This completes the proof.

From  (3.10), we easily prove

PROPOSITION 6.2. Let M be a submanifold of Sn+V+1 whose connection 
induced to the normal bundle is f ia t  and  M agrees w ith the submersion 
ft ; s n+2?+1-^ cp ("+p)/2. Then the induced connection o f the normal bundle o f 
the base submanifold  M of CP(n+2?)/2 is fia t if, and only if, M is anti-holomorphic.

W e prove next the

THEOREM 6.1. Let M be an n-dimensional, compact, m inim al, anti-holo- 
morphic submanifold o f a complex projective space CP(n+2?)/2. If, everywhere 
on M, we have

(6.3) J ;  trac. H i  ä  ” + L - ; / ,

then M is M*>r in  C P(M+1)/2.
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Proof. Since M is anti-holom orphic, we have

(6 -4) 2  i  (U a , U A) =  p,
A = l

because of (3.8) and (5.9). Thus from (4.6), we get

(6. 5) ^  trace H |  =  2  (trace H Ì) l  + 2  p  ^  n +  1 •
A = 1  A = 1  2 — I f p

If  the equality is not satisfied in (6.5), we see that M is a great sphere of 
çÿi+p+i anc| consequently M is a complex projective space. But, M being 
anti-holom orphic, this is impossible. Thus the equality m ust be satisfied.

M aking use of the Chern-do C arm o-K obayashi’s result [1 ], we know that 
M is isometric w ith Sm (f\m\(n -J- 1)) X Sn~ m+1 (jIn — m  +  1 )j(n +  1)) in 
Sn+1. Since M is com patible with the submersion n , m  m ust be an odd num ber, 
say m =  2 q j -  1. Hence M — M cq>r. This completes the proof.

As a special occurrence, we consider the case p  — 1. T hen we have

COROLLARY [2]. Let M be a compact, real m in im a l hyper su r f ace of
Cp(n+i)/2 on ineqUality

(6.6) trace H 2 n — 1 ,

holds. Then trace H 2 — n —■ 1 and  M is isometric w ith  .
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