Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Masafumi Okumura

Submanifolds of real codimension of a complex projective space

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.4, p. 544-555.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_4_544_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Abstract

Geometria differenziale. -- Submanifolds of real codimension of a complex projective space. Nota di Masafumi Okumura, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Allo scopo di studiare una sottovarietà reale M di uno spazio proiettivo complesso, si costruisce il sistema di cerchi su M compatibile colla fibrazione di Hopf e che può venire considerato come una sottovarietà di una sfera di dimensione dispari. Così, valendosi della teoria della sommersione, condizioni imposte alla M vengono a tradursi in altre relative ad una sottovarietà di una sfera; e vari esempi al riguardo vengono approfonditi.

Introduction

It is well known that a $(2 n+1)$-dimensional sphere $S^{2 n+1}$ is a principal circle bundle over a complex projective space CP^{n} and that the Riemannian structure on CP^{n} is given by the submersion $\tilde{\pi}: S^{2 n+1} \rightarrow \mathrm{CP}^{n}[5,7]$. Thus the theory of submersion is one of the most powerful tools for studying a complex projective space and its submanifolds. From this point of view, H. B. Lawson [2] studied real hypersurfaces of a complex projective space and then Y. Maeda [3] and the present author [4] developed this method extensively.

The purpose of the present paper is to establish some relations between a submanifold of $\mathrm{CP}{ }^{n}$ and that of $\mathrm{S}^{2 n+1}$ which is a principal circle bundle of CP^{n}. We are mainly concerned with gathering information on the second fundamental tensors of these submanifolds and on the connections of their normal bundles.

In § I, we state some fundamental formulas for submanifolds of Riemannian manifold and in §2, we recall fundamental equations of a submersion which are established by B. O'Neill [5], K. Yano and S. Ishihara [7]. Then, in §3, we consider a submanifold \bar{M} of $\mathrm{S}^{2 n+1}$ which is a circle bundle over a submanifold M of CP^{n}. Here we relate fundamental tensors of the submersion $\bar{\pi}: \mathrm{S}^{2 n+1} \rightarrow \mathrm{CP}^{n}$ and of $\pi: \overline{\mathrm{M}} \rightarrow \mathrm{M}$ as well as the second fundamental tensors of the hypersurfaces $\overline{\mathrm{M}}$ and M .

Mean curvature vector fields of M and \bar{M} are discussed in $\S 4$ and a certain pinching theorem is proved in $\S 5$. In $\S 6$ we establish new definition of anti-holomorphic submanifold of a complex manifold and prove some similarities between submanifold of $\mathrm{S}^{2 n+1}$ and anti-holomorphic submanifold of CP^{n}.

§ i. Submanifolds of a Riemannian manifold

Let $i: \mathrm{M} \rightarrow \overrightarrow{\mathrm{M}}$ be an isometric immersion of an m-dimensional Riemannian manifold M into $(m+q)$-dimensional Riemannian manifold $\stackrel{\mathrm{M}}{\mathrm{M}}$. The Riemannian metrics g of M and G of $\check{\mathrm{M}}$ are related by

$$
\begin{equation*}
g(\mathrm{X}, \mathrm{Y})=\mathrm{G}(i(\mathrm{X}), i(\mathrm{Y})) \tag{I.I}
\end{equation*}
$$

where X, Y are vector fields on M and we denote also by i the differential of the immersion. The tangent space $\mathrm{T}_{p}(\mathrm{M})$ is identified with a subspace
(*) Nella seduta del 12 aprile 1975.
of $\mathrm{T}_{i(p)}(\tilde{\mathrm{M}})$. The normal space $\mathrm{N}_{p}(\mathrm{M})$ is the subspace of $\mathrm{T}_{i(p)}(\stackrel{\mathrm{M}}{\mathrm{M}})$ consisting of all $\mathrm{X} \in \mathrm{T}_{i(p)}\left(\stackrel{\mathrm{M}}{)}\right.$) which are orthogonal to $\mathrm{T}_{p}(\mathrm{M})$ with respect to the Riemannian metric G. We denote by ∇, and D the Riemannian connection of M and \check{M} respectively and by D^{N} the connection of the normal bundle of M. Let $\mathrm{N}_{1}, \cdots, \mathrm{~N}_{q}$ be an orthonormal basis of $\mathrm{N}_{p}(\mathrm{M})$ and extend them to normal vector fields in a neighborhood of p. Then, ∇, D and D^{N} are related in the following manner:

$$
\begin{gather*}
\mathrm{D}_{i(\mathrm{X})} i(\mathrm{Y})=i\left(\nabla_{\mathrm{x}} \mathrm{Y}\right)+\sum_{\mathrm{A}=1}^{q} \mathrm{G}\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}, \mathrm{Y}\right) \mathrm{N}_{\mathrm{A}} \tag{I.2}\\
\mathrm{D}_{i(\mathrm{X})} \mathrm{N}_{\mathrm{A}}=-i\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}\right)+\mathrm{D}_{\mathrm{X}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}} \tag{I.3}
\end{gather*}
$$

where H_{A} is the second fundamental tensor associated with N_{A}.
We call (1.2) and (1.3) Gauss equation and Weingarten equation respectively. Since $D_{x}^{N} N_{A}$ is normal to M, it is a linear combination of N_{A} 's and so we put

$$
\begin{equation*}
\mathrm{D}_{\mathrm{A}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{x}}=\sum_{\mathrm{B}=1}^{q} \mathrm{~L}_{\mathrm{AB}}(\mathrm{X}) \mathrm{N}_{\mathrm{B}}, \tag{1.4}
\end{equation*}
$$

and call $L_{A B}$ the third fundamental tensor of M in \breve{M}. The mean curvature vector N of M is defined by

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{I}}{m} \sum_{\mathrm{A}=1}^{q}\left(\text { trace } \mathrm{H}_{\mathrm{A}}\right) \mathrm{N}_{\mathrm{A}}, \tag{1.5}
\end{equation*}
$$

and it is well known that N is independent of the choice of N_{A} 's.
Let R, \widetilde{R} and R^{N} be the curvature tensors for ∇, D and D^{N} respectively. Then we have the following Gauss, and Ricci-Khüne equations:

$$
\begin{gather*}
\mathrm{G}(\stackrel{\rightharpoonup}{\mathrm{R}}(i(\mathrm{X}), i(\mathrm{Y})) i(\mathrm{Z}), i(\mathrm{~W}))=g(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{~W}) \tag{1.6}\\
-\sum_{\mathrm{B}=1}^{q} g\left(\mathrm{H}_{\mathrm{B}} \mathrm{Y}, \mathrm{Z}\right) g\left(\mathrm{H}_{\mathrm{B}} \mathrm{X}, \mathrm{~W}\right)+\sum_{\mathrm{B}=1}^{q} g\left(\mathrm{H}_{\mathrm{B}} \mathrm{X}, \mathrm{Z}\right) g\left(\mathrm{H}_{\mathrm{B}} \mathrm{Y}, \mathrm{~W}\right),
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{G}\left(\tilde{\mathrm{R}}(i(\mathrm{X}), i(\mathrm{Y})) \mathrm{N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right)=g\left(\left(\mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right) \mathrm{X}, \mathrm{Y}\right)+ \tag{1.7}\\
+\mathrm{G}\left(\mathrm{R}^{\mathrm{N}}(\mathrm{X}, \mathrm{Y}) \mathrm{N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right) .
\end{gather*}
$$

If the ambient manifold M is a manifold of constant curvature C, it follows that

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{R}^{\mathrm{N}}(\mathrm{X}, \mathrm{Y}) \mathrm{N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right)=g\left(\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{A}}\right) \mathrm{X}, \mathrm{Y}\right) \tag{I.8}
\end{equation*}
$$

because the curvature tensor \vec{R} of $\stackrel{M}{M}$ has the form
where X, Y and Z are any vector fields on $\breve{\mathrm{M}}$. Thus for a submanifold M of a manifold of constant curvature the connection of the normal bundle is flat if and only if any H_{A} and H_{B} commute.

§ 2. RIEMANNIAN SUBMERSION

Let \bar{M} and M be differentiable manifolds of dimension $m+\mathrm{I}$ and m respectively and assume that there exists a submersion $\pi: \bar{M} \rightarrow M$, that is, assume that π is onto and of maximum rank m everywhere on $\overline{\mathrm{M}}$. We further assume that there are given in $\overline{\mathrm{M}}$ a vector field $\overline{\mathrm{V}}$ which is everywhere tangent to the fibre and a Riemannian metric \bar{g} which satisfies for any $\bar{X}, \overline{\mathrm{Y}} \in \mathrm{T}_{\bar{p}}(\overline{\mathrm{M}})$,

$$
\begin{gather*}
\bar{g}(\overline{\mathrm{~V}}, \overline{\mathrm{~V}})=\mathrm{I} \tag{2.I}\\
(\mathrm{~L}(\overline{\mathrm{~V}}) \bar{g})(\overline{\mathrm{X}}, \overline{\mathrm{Y}})=\bar{g}(\bar{\nabla} \overline{\mathrm{X}} \overline{\mathrm{~V}}, \overline{\mathrm{Y}})+\bar{g}\left(\bar{\nabla}_{\overline{\mathrm{Y}}} \overline{\mathrm{~V}}, \overline{\mathrm{~B}}\right)=\mathrm{o} \tag{2.2}
\end{gather*}
$$

where $L(\overline{\mathrm{~V}})$ denotes the operator for Lie derivative with respect to $\overline{\mathrm{V}}$. Let $\overline{\mathrm{X}}$ be a tangent vector at $\bar{p} \in \overline{\mathrm{M}}$. Then $\overline{\mathrm{X}}$ decomposes as $\overline{\mathrm{X}}^{\mathrm{V}}+\overline{\mathrm{X}}^{\mathrm{H}}$, where $\overline{\mathrm{X}}^{\mathrm{V}}$ is tangent to the fibre through \bar{p} and $\overline{\mathrm{X}}^{\mathrm{H}}$ is perpendicular to it. If $\overline{\mathrm{X}}=\overline{\mathrm{X}}^{\mathrm{V}}$, it is called a vertical vector and if $\overline{\mathrm{X}}=\overline{\mathrm{X}}^{\mathrm{H}}$, it is called horizontal.

If a tensor field \bar{T} defined on M satisfies $L(\overline{\mathrm{~V}}) \overline{\mathrm{T}}=\mathrm{o}$, then it is called an invariant tensor field or a projectable tensor field. Such a tensor field can be regarded as a tensor field defined on M by π.

For any differentiable function f on M define a function f^{L} on $\overline{\mathrm{M}}$ by

$$
\begin{equation*}
f^{\mathrm{L}}(\bar{p})=f(\pi(\bar{p}))=(f \circ \pi)(\bar{p}) \tag{2.3}
\end{equation*}
$$

We call f^{L} the lift of f. For a vector field X defined on M there exists a unique horizontal vector field X^{L} on \bar{M} such that for all $\bar{p} \in \bar{M}$ we have

$$
\begin{equation*}
\pi \mathrm{X}_{p}^{\mathrm{L}}=\mathrm{X}_{\pi(\bar{p})} \tag{2.4}
\end{equation*}
$$

and X^{L} is called the lift of X. We further define the lift u^{L} of a r-form u on M by $u^{\mathrm{L}}=\pi^{*} u$, where π^{*} denotes the dual map of the differential map of the submersion π. Thus we can define the lift of any type of tensor fields T and S in such a way that

$$
\begin{equation*}
(\mathrm{T} \otimes \mathrm{~S})^{\mathrm{L}}=\mathrm{T}^{\mathrm{L}} \otimes \mathrm{~S}^{\mathrm{L}} \tag{2.5}
\end{equation*}
$$

where \otimes denotes the operator of the tensor product.
By definition we have easily

$$
\begin{gather*}
\pi\left(\mathrm{X}^{\mathrm{L}}\right)=\mathrm{X}, \tag{2.6}\\
\pi(\overline{\mathrm{X}})^{\mathrm{L}}=\overline{\mathrm{X}}^{\mathrm{H}}, \text { for invariant } \overline{\mathrm{X}}
\end{gather*}
$$

Since the Riemannian metric \bar{g} satisfies (2.2), we can define a Riemannian metric g on M by

$$
\begin{equation*}
g(\mathrm{X}, \mathrm{Y})(p)=\overline{\mathrm{g}}\left(\mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right)(\bar{p}), \tag{2.8}
\end{equation*}
$$

where \bar{p} is an arbitrary point of $\overline{\mathrm{M}}$ such that $\pi(\bar{p})=p$. Hence we have

$$
\begin{equation*}
g(\mathrm{X}, \mathrm{Y})^{\mathrm{L}}=\bar{g}\left(\mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \tag{2.9}
\end{equation*}
$$

The fundamental tensor F of the submersion is a skew-symmetric tensor of type (I.I) on M and is related to covariant differentiation $\bar{\nabla}$ and ∇ in \bar{M} and M, respectively, by the following formulas:

$$
\begin{gather*}
\bar{\nabla}_{\mathrm{Y}^{\mathrm{L}}} \mathrm{X}^{\mathrm{L}}=\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)^{\mathrm{L}}+\bar{g}\left(\mathrm{~F}^{\mathrm{L}} \mathrm{Y}^{\mathrm{L}}, \mathrm{X}^{\mathrm{L}}\right) \overline{\mathrm{V}}=\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)^{\mathrm{L}}+g(\mathrm{FY}, \mathrm{X})^{\mathrm{L}} \overline{\mathrm{~V}} \tag{2.10}\\
\bar{\nabla}_{\overline{\mathrm{V}}} \mathrm{X}^{\mathrm{L}}=\bar{\nabla}_{\mathrm{X}^{\mathrm{L}}} \overline{\mathrm{~V}}=-\mathrm{F}^{\mathrm{L}} \mathrm{X}^{\mathrm{L}}
\end{gather*}
$$

This, together with (2.2), implies that

$$
\begin{equation*}
\bar{\nabla}_{\overline{\mathrm{V}}} \overline{\mathrm{~V}}=-\mathrm{F}^{\mathrm{L}} \overline{\mathrm{~V}}=\mathrm{o} \tag{2.12}
\end{equation*}
$$

§ 3. Submersion and Immersion

Let $\overrightarrow{\mathrm{M}}$ and M^{\prime} be differentiable manifolds of dimension $n+p+\mathrm{I}$ and $n+p$ respectively and $\vec{\pi}$ be a submersion $\tilde{\pi}: M \rightarrow M^{\prime}$ which satifies the conditions of \S 2. Suppose that $\overline{\mathrm{M}}$ is a submanifold of dimension $n+1$ which is immersed in $\overrightarrow{\mathrm{M}}$ and respects the submersion $\tilde{\pi}$. That is, suppose that there is a submersion $\pi: \overline{\mathrm{M}} \rightarrow \mathrm{M}$, where M is a submanifold of M^{\prime} such that the diagram

commutes and the immersion \tilde{z} is a diffeomorphism on the fibres.
Let $\overline{\mathrm{V}}$ be the unit tangent vector to the fibre of $\overline{\mathrm{M}}$ which satisfies (2.2). Then by the commutativity of the diagram we easily see that $\tilde{v}(\overline{\mathrm{~V}})$ is vertical with respect to $\tilde{\pi}$. So we may put

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{V}}=\tilde{\imath}(\overline{\mathrm{V}}) . \tag{3.1}
\end{equation*}
$$

Let \vec{v} be the I-form on \ddot{M} satisfying

$$
\vec{v}(\overrightarrow{\mathrm{~V}})=\mathrm{I}
$$

and

$$
\stackrel{\tilde{v}}{ }(\tilde{\mathbf{X}})=0
$$

for any horizontal vector field $\tilde{\mathrm{X}}$ on $\check{\mathrm{M}}$. The Riemannian metric $\overline{\mathrm{G}}$ of is given by

$$
\begin{equation*}
\overline{\mathrm{G}}(\tilde{\mathrm{X}}, \tilde{\mathrm{Y}})=\mathrm{G}^{\mathrm{L}}(\tilde{\mathrm{X}}, \tilde{\mathrm{Y}})+\stackrel{\rightharpoonup}{v}(\tilde{\mathrm{X}}) \tilde{v}(\tilde{\mathrm{Y}}) \tag{3.2}
\end{equation*}
$$

from which we know that $G\left(X^{\prime}, Y^{\prime}\right)=0$ implies $\overline{\mathrm{C}}\left(\mathrm{X}^{\prime \mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right)=0$.
We denote by \bar{g} the induced Riemannian metric of $\overline{\mathrm{M}}$. Then for a vector field X on M , we have

$$
\overline{\mathrm{G}}\left(\tilde{i}\left(\mathrm{X}^{\mathrm{L}}\right), \stackrel{\rightharpoonup}{\mathrm{V}}\right)=\overline{\mathrm{G}}\left(\tilde{\mathrm{z}}\left(\mathrm{X}^{\mathrm{L}}\right), \tilde{\mathrm{z}}(\overline{\mathrm{~V}})\right)=\overline{\mathrm{g}}\left(\mathrm{X}^{\mathrm{L}}, \overrightarrow{\mathrm{~V}}\right)=0
$$

which shows that $\tilde{\imath}\left(\mathrm{X}^{\mathrm{L}}\right)$ is horizontal. On the other hand from the commutativity of the diagram we know that if $\overline{\mathrm{X}}$ is an invariant vector field on $\overline{\mathrm{M}}, \bar{i}(\overline{\mathrm{X}})$ is also an invariant vector field on $\stackrel{M}{M}$. Hence we have

$$
\dot{\pi}\left(\tilde{z}\left(\mathrm{X}^{\mathrm{L}}\right)\right)=i\left(\pi\left(\mathrm{X}^{\mathrm{L}}\right)\right)=i(\mathrm{X})
$$

which, together with (2.7) implies that

$$
\begin{equation*}
\tilde{i}\left(\mathrm{X}^{\mathrm{L}}\right)=\tilde{\imath}\left(\mathrm{X}^{\mathrm{L}}\right)^{\mathrm{H}}=\vec{\pi}\left(\tilde{\imath}\left(\mathrm{X}^{\mathrm{L}}\right)\right)^{\mathrm{L}}=i(\mathrm{X})^{\mathrm{L}} \tag{3.3}
\end{equation*}
$$

Let $\mathrm{N}_{\mathrm{A}}(\mathrm{A}=\mathrm{I}, 2, \cdots, p)$ be normal vector fields to M which are mutually orthonormal at a point $x \in \mathrm{M}$ and put $\overline{\mathrm{N}}_{\mathrm{A}}=\mathrm{N}_{\mathrm{A}}^{\mathrm{L}}$. Then $\overline{\mathrm{N}}_{\mathrm{A}}$'s are also normal vector fields to $\overline{\mathrm{M}}$ which are mutually orthonormal at any point $y \in \bar{M}$ satisfying $\pi(y)=x$. In fact, by (3.2), it follows that

$$
\begin{aligned}
& \overline{\mathrm{G}}\left(\overline{\mathrm{~N}}_{\mathrm{A}}, \tilde{v}\left(\mathrm{X}^{\mathrm{L}}\right)\right)=\overline{\mathrm{G}}\left(\bar{N}_{\mathrm{A}}, i(\mathrm{X})^{\mathrm{L}}\right)=\mathrm{G}^{\mathrm{L}}\left(\mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}, i(\mathrm{X})^{\mathrm{L}}\right)+ \\
& +\stackrel{\rightharpoonup}{v}\left(\mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}\right) \stackrel{\rightharpoonup}{v}\left(i(\mathrm{X})^{\mathrm{L}}\right)=\mathrm{G}\left(\mathrm{~N}_{\mathrm{A}}, i(\mathrm{X})\right)^{\mathrm{L}}=0, \\
& \overline{\mathrm{G}}\left(\overline{\mathrm{~N}}_{\mathrm{A}}, \overline{\mathrm{~N}}_{\mathrm{B}}\right)=\overline{\mathrm{G}}\left(\mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}, \mathrm{~N}_{\mathrm{B}}^{\mathrm{L}}\right)=\mathrm{G}^{\mathrm{L}}\left(\mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}, \mathrm{~N}_{\mathrm{B}}^{\mathrm{L}}\right)+\vec{v}\left(\mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}\right) \stackrel{v}{v}\left(\mathrm{~N}_{\mathrm{B}}^{\mathrm{L}}\right)= \\
& =\mathrm{G}\left(\mathrm{~N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right)^{\mathrm{L}}=\delta_{\mathrm{AB}} .
\end{aligned}
$$

Let $\overline{\mathrm{D}}, \bar{\nabla}, \mathrm{D}$ and ∇ be respectively the Riemannian connections of $\stackrel{\mathrm{M}}{\mathrm{M}}$, $\bar{M}, \mathrm{M}^{\prime}$ and M . By means of the Gauss equation for submanifold, we have

$$
\begin{aligned}
\overline{\mathrm{D}}_{\tilde{\imath}\left(\mathrm{X}^{\mathrm{L}}\right)} \tilde{\imath}\left(\mathrm{Y}^{\mathrm{L}}\right) & =\tilde{\imath}\left(\bar{\nabla}_{\mathrm{X}^{\mathrm{L}}} \mathrm{Y}^{\mathrm{L}}\right)+\Sigma_{\mathrm{A}=1}^{p} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}= \\
& =\tilde{\imath}\left(\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)^{\mathrm{L}}+\bar{g}\left(\mathrm{~F}^{\mathrm{L}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \overline{\mathrm{V}}\right)+\Sigma_{\mathrm{A}=1}^{p} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}
\end{aligned}
$$

from which

$$
\begin{aligned}
\left(\mathrm{D}_{i(\mathrm{X})} i(\mathrm{Y})\right)^{\mathrm{L}} & +\overline{\mathrm{G}}\left({ }^{\prime} \mathrm{F}^{\mathrm{L}} i(\mathrm{X})^{\mathrm{L}}, i(\mathrm{Y})^{\mathrm{L}}\right) \stackrel{\Im}{\mathrm{V}}=\tilde{\imath}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)^{\mathrm{L}}+ \\
& +\bar{g}\left(\mathrm{~F}^{\mathrm{L}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \tilde{\imath}(\overline{\mathrm{V}})+\Sigma_{\mathrm{A}=1}^{p} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}
\end{aligned}
$$

Comparing the vertical parts and horizontal parts, we have

$$
\begin{align*}
& \overline{\mathrm{G}}\left({ }^{\prime} \mathrm{F}^{\mathrm{L}} i(\mathrm{X})^{\mathrm{L}}, i(\mathrm{Y})^{\mathrm{L}}\right)=\bar{g}\left(\mathrm{~F}^{\mathrm{L}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \\
& \left(\mathrm{D}_{i(\mathrm{X})} i(\mathrm{Y})\right)^{\mathrm{L}}=\tilde{\imath}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)^{\mathrm{L}}+\Sigma_{\mathrm{A}=\mathbf{1}}^{p} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right) \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}
\end{align*}
$$

Using the Gauss equation again, we get

$$
\begin{equation*}
\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right)=g\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}, \mathrm{Y}\right)^{\mathrm{L}} \tag{3.5}
\end{equation*}
$$

From (2.9) and (3.4), we have also

$$
\begin{equation*}
\mathrm{G}\left({ }^{\prime} \mathrm{F} i(\mathrm{X}), i(\mathrm{Y})\right)=g(\mathrm{FX}, \mathrm{Y}) \tag{3.6}
\end{equation*}
$$

Next we consider the transforms ${ }^{\prime} \mathrm{Fi}(\mathrm{X})$ and ${ }^{\prime} \mathrm{FN}_{\mathrm{A}}$ of $i(\mathrm{X})$ and N_{A} by the fundamental tensor ${ }^{\prime} \mathrm{F}$ of the submersion $\tilde{\pi}$. By means of (3.6) they
can be written as

$$
\begin{gather*}
\prime \mathrm{F} i(\mathrm{X})=i(\mathrm{FX})+\sum_{\mathrm{A}=1}^{p} u_{\mathrm{A}}(\mathrm{X}) \mathrm{N}_{\mathrm{A}}, \tag{3.7}\\
\prime \mathrm{FN}_{\mathrm{A}}=-i\left(\mathrm{U}_{\mathrm{A}}\right)+\sum_{\mathrm{B}=1}^{p} \lambda_{\mathrm{AB}} \mathrm{~N}_{\mathrm{B}}, \tag{3.8}
\end{gather*}
$$

and we easily see that

$$
\begin{equation*}
g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{X}\right)=u_{\mathrm{A}}(\mathrm{X}) \tag{3.9}
\end{equation*}
$$

We denote by D^{N} and \bar{D}^{N} the connections of the normal bundle of M in M^{\prime} and \bar{M} in $\stackrel{M}{M}$ respectively. By definition of \bar{D}^{N}, we have

$$
\overline{\mathrm{D}}_{\mathrm{X}^{\mathrm{L}}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}=\overline{\mathrm{D}}_{\tilde{\imath}\left(\mathrm{X}^{\mathrm{L}}\right)} \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}+\tilde{\imath}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}\right)
$$

from which

$$
\begin{aligned}
\overline{\mathrm{D}}_{\mathrm{x}^{\mathrm{L}} \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}} & =\left(\mathrm{D}_{i(\mathrm{X})} \mathrm{N}_{\mathrm{A}}\right)^{\mathrm{L}}+\overline{\mathrm{G}}\left({ }^{\prime} \mathrm{F}^{\mathrm{L}} i(\mathrm{X})^{\mathrm{L}}, \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}\right) \stackrel{\rightharpoonup}{\mathrm{V}}+\tilde{\imath}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}\right) \\
& =-i\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}\right)^{\mathrm{L}}+\left(\mathrm{D}_{\mathrm{X}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}\right)^{\mathrm{L}}+\mathrm{G}\left({ }^{\prime} \mathrm{F} i(\mathrm{X}), \mathrm{N}_{\mathrm{A}}\right)^{\mathrm{L}} \stackrel{\mathrm{~V}}{ }+\tilde{\imath}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}\right) .
\end{aligned}
$$

Comparing the horizontal parts and vertical parts and using (3.I), we get

$$
\begin{equation*}
\overline{\mathrm{D}}_{\mathrm{X}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}=\left(\mathrm{D}_{\mathrm{X}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}\right)^{\mathrm{L}} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{X}\right)^{\mathrm{L}}=\mathrm{G}\left({ }^{\prime} \mathrm{F} i(\mathrm{X}), \mathrm{N}_{\mathrm{A}}\right)^{\mathrm{L}}=-\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \overline{\mathrm{~V}}\right), \tag{3.1I}
\end{equation*}
$$

because of (3.7) and (3.9). The normal connection being expressed by the third fundamental tensor L_{AB} as (1.4), (3.10) is nothing but

$$
\begin{equation*}
\mathrm{L}_{\mathrm{AB}}\left(\mathrm{X}^{\mathrm{L}}\right)=\mathrm{L}_{\mathrm{AB}}(\mathrm{X})^{\mathrm{L}} \tag{3.12}
\end{equation*}
$$

Consider the covariant differentiation of N_{A}^{L} in the direction of $\stackrel{\rightharpoonup}{V}$. By (I.2) and (3.1), it follows that

$$
\overline{\mathrm{D}}_{\sim}^{(\overline{\mathrm{V}})} \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}=-\tilde{\imath}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}\right)+\overline{\mathrm{D}}_{\overline{\mathrm{V}}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}=-\tilde{\imath}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}\right)+\Sigma_{\mathrm{B}=1}^{p} \overline{\mathrm{~L}}_{\mathrm{AB}}(\overline{\mathrm{~V}}) \mathrm{N}_{\mathrm{B}}^{\mathrm{L}} .
$$

Substituting (2.1I) into the above equation, we have

$$
-{ }^{\prime} \mathrm{F}^{\mathrm{L}} \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}=-\tilde{\imath}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}\right)+\Sigma_{\mathrm{B}=1}^{p} \overline{\mathrm{~L}}_{\mathrm{AB}}(\overline{\mathrm{~V}}) \mathrm{N}_{\mathrm{B}}^{\mathrm{L}},
$$

from which

$$
\begin{equation*}
\lambda_{\mathrm{AB}}^{\mathrm{L}}=\overline{\mathrm{G}}\left(\mathrm{~F}^{\mathrm{L}} \mathrm{~N}_{\mathrm{A}}^{\mathrm{L}}, \mathrm{~N}_{\mathrm{B}}^{\mathrm{L}}\right)=-\overline{\mathrm{L}}_{\mathrm{AB}}(\overline{\mathrm{~V}}), \tag{3.13}
\end{equation*}
$$

because of (3.8).

§ 4. Mean curvature vector fields

In this section we want to relate the conditions imposed on the mean curvature vectors of M and \bar{M}. First of all we prove the

Lemma 4.i. For any point $\bar{p} \in \bar{M}$, we have
(4.I) $\quad\left(\operatorname{trace} \bar{H}_{A}\right)(\bar{p})=\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right)(\pi(\bar{p}))=\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right)^{\mathrm{L}}(\bar{p})$.

Proof. Let $\left\{\mathrm{E}_{1}, \cdots, \mathrm{E}_{n}\right\}$ be an orthonormal basis at $\mathrm{T}_{\pi(\bar{\phi})}(\mathrm{M})$ and choose an orthonormal basis $\left\{\overline{\mathrm{E}}_{1}, \cdots, \overline{\mathrm{E}}_{n+1}\right\}$ at $\mathrm{T}_{\bar{p}}(\overline{\mathrm{M}})$ in such a way that $\overline{\mathrm{E}}_{i}=\mathrm{E}_{i}^{\mathrm{L}}$ for $i=1, \cdots, n$ and $\overline{\mathrm{E}}_{n+1}=\overline{\mathrm{V}}$. Then we get

$$
\begin{aligned}
\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}} & =\Sigma_{\alpha=1}^{n+1} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{E}}_{\alpha}, \overline{\mathrm{E}}_{\alpha}\right)=\Sigma_{i=1}^{n} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{E}_{i}^{\mathrm{L}}, \mathrm{E}_{i}^{\mathrm{L}}\right)+\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{~V}}\right) \\
& =\sum_{i=1}^{n} g\left(\mathrm{H}_{\mathrm{A}} \mathrm{E}_{i}, \mathrm{E}_{i}\right)^{\mathrm{L}}+\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{~V}}\right)=\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right)^{\mathrm{L}}+\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{~V}}\right),
\end{aligned}
$$

because of (3.5). On the other hand, from (i.2), we have

$$
\overline{\mathrm{D}}_{\stackrel{\mathrm{V}}{\mathrm{~V}}} \stackrel{\rightharpoonup}{\mathrm{~V}}=\overline{\mathrm{D}}_{\stackrel{\imath}{\imath}(\overline{\mathrm{v}})} i(\overline{\mathrm{~V}})=i\left(\bar{\nabla}_{\overline{\mathrm{V}}} \overline{\mathrm{~V}}\right)+\Sigma_{\mathrm{A}=1}^{p} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{~V}}\right) \mathrm{N}_{\mathrm{A}}=\mathrm{o},
$$

which, together with (2.I2), implies that

$$
\begin{equation*}
\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{~V}}\right)=0, \tag{4.2}
\end{equation*}
$$

$$
\mathrm{A}=\mathrm{I}, 2, \cdots, p
$$

Thus we have (4.I). This completes the proof.
Let N and $\overline{\mathrm{N}}$ be the mean curvature vector field of M and $\overline{\mathrm{M}}$ respectively. Then, by Lemma 4.I, it follows that
(4.3) $\quad \overline{\mathrm{N}}=\frac{\mathrm{I}}{n+\mathrm{I}} \sum_{\mathrm{A}=1}^{p}\left(\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}\right) \overline{\mathrm{N}}_{\mathrm{A}}=\frac{\mathrm{I}}{n+\mathrm{I}} \sum_{\mathrm{A}=1}^{p}\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right)^{\mathrm{L}} \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}=\frac{n}{n+\mathrm{I}} \mathrm{N}^{\mathrm{L}}$.

Lemma 4.2 If the mean curvature vector field $\overline{\mathrm{N}}$ of $\overline{\mathrm{M}}$ is parallel with respect to the induced connection of the normal bundle so is the mean curvature vector field N of M .

Proof. Letting $\overline{\mathrm{D}}_{\mathrm{X}^{L}}^{\mathrm{N}}$ act on $\overline{\mathrm{N}}$, we get
(4.4) $\quad(n+1) \overline{\mathrm{D}}_{\mathrm{X}^{L}}^{\mathrm{N}} \overline{\mathrm{N}}=\sum_{\mathrm{A}=1}^{p}\left\{\mathrm{X}^{\mathrm{L}}\left(\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}\right) \overline{\mathrm{N}}_{\mathrm{A}}+\left(\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}\right) \overline{\mathrm{D}}_{\mathrm{X}^{L}}^{\mathrm{N}} \overline{\mathrm{N}}_{\mathrm{A}}\right\}$
$=\Sigma_{\mathrm{A}=1}^{p}\left\{\mathrm{X}^{\mathrm{L}}\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right)^{\mathrm{L}} \mathrm{N}_{\mathrm{A}}^{\mathrm{L}}+\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right)^{\mathrm{L}}\left(\mathrm{D}_{\mathrm{X}}^{\mathrm{N}} \mathrm{N}_{\mathrm{A}}\right)^{\mathrm{L}}\right\}$
$=\Sigma_{\mathrm{A}=1}^{p}\left\{\mathrm{X}\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right) \mathrm{N}_{\mathrm{A}}+\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}\right) \mathrm{D}_{\mathrm{X}}^{\mathrm{N}} \mathrm{N}_{\mathrm{A}}\right\}^{\mathrm{L}}$
$=n\left(\mathrm{D}_{\mathrm{X}}^{\mathrm{N}} \mathrm{N}\right)^{\mathrm{L}}$,
because of (3.10). Thus $\overline{\mathrm{D}}_{\mathrm{X}^{L}}^{N} \overline{\mathrm{~N}}=\mathrm{o}$ implies that $\mathrm{D}_{\mathrm{X}}^{N} \mathrm{~N}=\mathrm{o}$. This completes the proof.

Next we relate the length of the second fundamental tensors of M and $\overline{\mathrm{M}}$. From (3.5) and

$$
g\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}, \mathrm{Y}\right)^{\mathrm{L}}=g\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}, \mathrm{Y}\right) \circ \pi=\bar{g}\left(\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}\right)^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right),
$$

we obtain

$$
\begin{equation*}
\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}=\left(\mathrm{H}_{\mathrm{A}} \mathrm{X}\right)^{\mathrm{L}}+\overline{\mathrm{g}}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{X}^{\mathrm{L}}, \overline{\mathrm{~V}}\right) \overline{\mathrm{V}} . \tag{4.5}
\end{equation*}
$$

We choose an orthonormal basis $\overline{\mathrm{E}}_{\alpha}$ such as the one we have chosen in the proof of Lemma 4.I, and we have

$$
\begin{aligned}
\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2} & =\sum_{\alpha=1}^{n+1} \overline{\mathrm{~g}}\left(\overline{\mathrm{H}}_{\mathrm{A}}^{2} \overline{\mathrm{E}}_{\alpha}, \overline{\mathrm{E}}_{\alpha}\right)=\sum_{i=1}^{n} \overline{\mathrm{~g}}\left(\overline{\mathrm{H}}_{\mathrm{A}}^{2} \mathrm{E}_{i}^{\mathrm{L}}, \mathrm{E}_{i}^{\mathrm{L}}\right)+\bar{g}\left(\overline{\mathrm{H}}^{2} \overline{\mathrm{~V}}, \overline{\mathrm{~V}}\right) \\
& =\sum_{i=1}^{n} \overline{\mathrm{~g}}\left(\overline{\mathrm{H}}_{\mathrm{A}}\left(\left(\mathrm{H}_{\mathrm{A}} \mathrm{E}_{i}\right)^{\mathrm{L}}+\overline{\mathrm{g}}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{E}_{i}^{\mathrm{L}}, \overline{\mathrm{~V}}\right) \overline{\mathrm{V}}\right), \mathrm{E}_{i}^{\mathrm{L}}\right)+\bar{g}\left(\overline{\mathrm{H}} \mathrm{~A} \overline{\mathrm{~V}}, \overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}\right) \\
& =\sum_{i=1}^{n} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}}\left(\mathrm{H}_{\mathrm{A}} \mathrm{E}_{i}\right)^{\mathrm{L}}, \mathrm{E}_{i}^{\mathrm{L}}\right)+\sum_{i=1}^{n} \overline{\mathrm{~g}}\left(\overline{\mathrm{H}}_{\mathrm{A}} \mathrm{E}_{i}^{L}, \overline{\mathrm{~V}}\right) \overline{\bar{g}}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \mathrm{E}_{i}^{\mathrm{L}}\right)+\overline{\mathrm{g}}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}\right) .
\end{aligned}
$$

Substituting (3.1I) into the last equation and making use of the fact that

$$
\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}\right)=\sum_{\alpha=1}^{n+1} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{E}}_{\alpha}\right) \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \overline{\mathrm{E}}_{\alpha}\right)=\sum_{i=1}^{n} \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \mathrm{E}_{i}^{\mathrm{L}}\right) \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \mathrm{E}_{i}^{\mathrm{L}}\right),
$$

we obtain
$\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2}=\sum_{i=1}^{n}\left\{g\left(\mathrm{H}_{\mathrm{A}}^{2} \mathrm{E}_{i}, \mathrm{E}_{i}\right)^{\mathrm{L}}+2 g\left(\mathrm{E}_{i}, \mathrm{U}_{\mathrm{A}}\right)^{\mathrm{L}} g\left(\mathrm{E}_{i}, \mathrm{U}_{\mathrm{A}}\right)^{\mathrm{L}}\right\}=\left(\operatorname{tracce} \mathrm{H}_{\mathrm{A}}^{2}\right)^{\mathrm{L}}+2 g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)^{\mathrm{L}}$, because of (4.2). Hence we have

$$
\begin{equation*}
\sum_{\mathrm{A}=1}^{p} \operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2}=\left(\sum_{A=1}^{p} \operatorname{trace} \mathrm{H}_{\mathrm{A}}^{2}\right)^{\mathrm{L}}+2 \sum_{\mathrm{A}=1}^{p} g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)^{\mathrm{L}} . \tag{4.6}
\end{equation*}
$$

THEOREM 4.I. $\quad \sum_{\mathrm{A}=1}^{p} \operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2} \geqq\left(\sum_{\mathrm{A}=1}^{p} \operatorname{trace} \mathrm{H}_{\mathrm{A}}^{2}\right)^{\mathrm{L}}$ is always valid. The equality holds if, and only if, the submanifold M is invariant under ' F .

If \tilde{i} is a totally geodesic immersion, from (4.6) we have
THEOREM 4.2 Let $\tilde{\imath}$ be a totally geodesic immersion of a Riemannian manifold $\overline{\mathrm{M}}$ in $\tilde{\mathrm{M}}$ which respects the submersion $\tilde{\mathrm{\pi}}: \stackrel{\mathrm{M}}{\mathrm{M}} \mathrm{M}^{\prime}$; then i is also totally geodesic and the tangent space of M is invariant under ' F .

§ 5. Real submanifolds of complex projective spaces

Let S^{n+p+1} be an odd-dimensional unit sphere in an $(n+p+2)$-dimensional Euclidean space $\mathrm{E}^{n+\phi+2}=\mathrm{C}^{(n+p+2) / 2}$ and $\tilde{\mathrm{J}}$ the natural almost complex structure on $\mathrm{C}^{(n+p+2) / 2}$. The image $\vec{V}=\vec{J} \tilde{N}$ of the outward unit normal vector $\widetilde{\mathrm{N}}$ to S^{n+p+1} by the almost complex structure defines a unit tangent vector field on S^{n+p+1} and the integral curves of $\tilde{\mathrm{V}}$ are great circles S^{1} in S^{n+p+1} which are fibres of the standard fibration $\tilde{\pi}$,

$$
\begin{equation*}
\mathrm{S}^{1} \rightarrow \mathrm{~S}^{n+p+1} \xrightarrow{\tilde{\pi}} \mathrm{CP}^{(n+p) / 2} \tag{5.i}
\end{equation*}
$$

onto complex projective space. The usual Riemannian structure on $\mathrm{CP}^{(n+p) / 2}$ is characterized by the fact that $\vec{\pi}$ is a submersion.

Let M^{n} be a submanifold of real codimension p of a complex projective space $\mathrm{CP}^{(n+p) / 2}$. Then the principal circle bundle $\overline{\mathrm{M}}^{n+1}$ over M^{n} is a submanifold of codimension p of S^{n+p+1} and the natural immersion $\overline{\mathrm{M}}^{n+1}$ into S^{n+p+1} respects the submersion $\vec{\pi}$. Thus S^{n+p+1} and $\mathrm{CP}^{(n+p) / 2}$ are in the same situation as $\breve{\mathrm{M}}$ and M^{\prime} respectively, so we continue to use the same notations as in the preceding sections.

In S^{n+p+1} we have the family of products

$$
\mathrm{M}_{q, r}=\mathrm{S}^{q} \times \mathrm{S}^{r}
$$

where $q+r=n+\mathrm{I}$. By choosing the spheres to lie in complex subspaces, we get fibrations $\mathrm{S}^{1} \rightarrow \mathrm{M}_{2 q+1,2 r+1} \rightarrow \mathrm{M}_{q, r}^{c}$, which are compatible with (5.I) where $q+r=(n-\mathrm{I}) / 2$. The almost complex structure J of $\mathrm{CP}^{(n+p) / 2}$ is nothing but the fundamental tensor of the submersion $\tilde{\pi}$, that is,

$$
\begin{equation*}
\mathrm{J}^{\mathrm{L}} \tilde{\mathrm{X}}=-\overline{\mathrm{D}}_{\overrightarrow{\mathrm{X}}} \stackrel{\rightharpoonup}{\mathrm{~V}} \quad, \quad \tilde{\mathrm{X}} \in \mathrm{~T}\left(\mathrm{~S}^{n+p+1}\right) \tag{5.2}
\end{equation*}
$$

and the curvature tensor of the complex projective space is given by

$$
\begin{align*}
\mathrm{R}^{\prime}\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right) \mathrm{Z}^{\prime} & =\mathrm{G}\left(\mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}\right) \mathrm{X}^{\prime}-\mathrm{G}\left(\mathrm{X}^{\prime}, \mathrm{Z}^{\prime}\right) \mathrm{Y}^{\prime}+\mathrm{G}\left(\mathrm{~J} \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}\right) \mathrm{JX} \mathrm{X}^{\prime}- \tag{5.3}\\
& -G\left(\mathrm{JX}^{\prime}, \mathrm{Z}^{\prime}\right) \mathrm{JY}-2 \mathrm{G}\left(\mathrm{JY}^{\prime}, \mathrm{Y}^{\prime}\right) \mathrm{JZ} Z^{\prime} .
\end{align*}
$$

which, together with (3.8), implies that

$$
\begin{gather*}
\mathrm{G}\left(\mathrm{R}^{\prime}(i(\mathrm{X}), i(\mathrm{Y})) \mathrm{N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right)=g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{Y}\right) g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{X}\right)- \tag{5.4}\\
\quad-g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{X}\right) g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{Y}\right)-2 g(\mathrm{FX}, \mathrm{Y}) \lambda_{\mathrm{AB}} .
\end{gather*}
$$

Combining this equation with (I.7), we have

$$
\begin{align*}
\mathrm{G}\left(\mathrm{R}^{\mathrm{N}}(\mathrm{X}, \mathrm{Y}) \mathrm{N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right) & =g\left(\left[\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}\right] \mathrm{X}, \mathrm{Y}\right)+g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{Y}\right) g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{X}\right)- \tag{5.5}\\
& -g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{X}\right) g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{Y}\right)-2 g(\mathrm{FX}, \mathrm{Y}) \lambda_{\mathrm{AB}} .
\end{align*}
$$

On the other hand, from (3.5) and (4.5), it follows that

$$
\begin{aligned}
g\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{X}, \mathrm{Y}\right)^{\mathrm{L}} & =\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}}\left(\mathrm{H}_{\mathrm{B}} \mathrm{X}\right)^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right)=\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{H}}_{\mathrm{B}} \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right)- \\
& -\bar{g}\left(\overline{\mathrm{H}}_{\mathrm{B}} \mathrm{X}^{\mathrm{L}}, \overline{\mathrm{~V}}\right) \bar{g}\left(\overline{\mathrm{H}}_{\mathrm{A}} \overline{\mathrm{~V}}, \mathrm{Y}^{\mathrm{L}}\right),
\end{aligned}
$$

from which, together with (3.1I), we get

$$
\begin{align*}
& g\left(\left[\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}\right] \mathrm{X}, \mathrm{Y}\right)^{\mathrm{L}}=\bar{g}\left(\left[\overline{\mathrm{H}}_{\mathrm{A}}, \overline{\mathrm{H}}_{\mathrm{B}}\right] \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{I}}\right)- \tag{5.6}\\
& -g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{X}\right)^{\mathrm{L}} g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{Y}\right)^{\mathrm{L}}+g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{Y}\right)^{\mathrm{L}} g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{X}\right)^{\mathrm{L}} .
\end{align*}
$$

If the normal bundle of \bar{M} of S^{n+p+1} is flat, then by (i.8),

$$
\bar{g}\left(\left[\overline{\mathrm{H}}_{\mathrm{A}}, \overline{\mathrm{H}}_{\mathrm{B}}\right] \mathrm{X}^{\mathrm{L}}, \mathrm{Y}^{\mathrm{L}}\right)=\mathrm{o}
$$

and so

$$
\begin{equation*}
g\left(\left[\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}\right] \mathrm{X}, \mathrm{Y}\right)=-g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{X}\right) g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{Y}\right)+g\left(\mathrm{U}_{\mathrm{B}}, \mathrm{Y}\right) g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{X}\right) . \tag{5.7}
\end{equation*}
$$

Substituting (5.7) into (5.5), we have

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{R}^{\mathrm{N}}(\mathrm{X}, \mathrm{Y}) \mathrm{N}_{\mathrm{A}}, \mathrm{~N}_{\mathrm{B}}\right)=-2 g^{(\mathrm{FX}, \mathrm{Y}) \lambda_{\mathrm{AB}} .} \tag{5.8}
\end{equation*}
$$

Thus we have proved
Lemma 5.I If in a submanifold $\overline{\mathrm{M}}$ of an odd-dimensional sphere S^{n+p+1} the connection of the normal bundle is flat, we have (5.8).

For totally geodesic submanifolds of a complex projective space, we have

THEOREM 5.I. A compact, totally geodesic submanifold of real codimension $p<(n+3) / 4$ of a complex projective space $\mathrm{CP}^{(n+p) / 2}$ is necessarily a complex submanifold and consequently a complex projective space $\mathrm{CP}^{n / 2}$.

Proof. Since G is the Hermitian metric of $\mathrm{CP}^{(n+p) / 2}$, it follows that

$$
\begin{aligned}
\mathrm{I}=\mathrm{G}\left(\mathrm{JN}_{\mathrm{A}}, \mathrm{JN}_{\mathrm{A}}\right) & =\mathrm{G}\left(i\left(\mathrm{U}_{\mathrm{A}}\right), i\left(\mathrm{U}_{\mathrm{A}}\right)\right)+\mathrm{G}\left(\sum_{\mathrm{B}=1}^{p} \lambda_{\mathrm{AB}} \mathrm{~N}_{\mathrm{B}}, \sum_{\mathrm{C}=1}^{p} \lambda_{\mathrm{AC}} \mathrm{~N}_{\mathrm{C}}\right)= \\
& =g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)+\sum_{\mathrm{B}} \lambda_{\mathrm{AB}} \lambda_{\mathrm{AB}}
\end{aligned}
$$

and then

$$
\begin{equation*}
\sum_{\mathrm{A}=1}^{p} g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)=p-\sum_{\mathrm{A}, \mathrm{~B}} \lambda_{\mathrm{AB}} \lambda_{\mathrm{AB}} \leqq p \tag{5.9}
\end{equation*}
$$

Thus, combining this with (4.6), we get

$$
\sum_{\mathrm{A}=1}^{p} \operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2}=2 \sum_{\mathrm{A}=1}^{p} g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right) \leqq 2 p<\frac{n+\mathrm{r}}{2-\mathrm{I} / p},
$$

because of $p<\frac{n+3}{4}$. Applying Simons' result [6], we obtain that \bar{M} is totally geodesic. By virtue of Theorem 4.2, M is a complex submanifold and consequently a complex projective space $\mathrm{CP}^{n / 2}$.

Corollary. There is no odd-dimensional, compact totally geodesic submanifold of codimension $p<\frac{n+3}{4}$ of a complex projective space.

THEOREM 5.2. If a compact minimal submanifold M of real codimension p of a complex projective space $\mathrm{CP}^{(n+p) / 2}$ satisfies

$$
\begin{equation*}
\sum_{\mathrm{A}=1}^{p} \text { traee } \mathrm{H}_{\mathrm{A}}^{2}<\frac{n+3-4 p}{2-\mathrm{I} / p} \tag{5.10}
\end{equation*}
$$

M is a totally geodesic complex projective space $\mathrm{CP}^{n / 2}$.
Proof, We note that (5.9) is still valid for any submanifold M. Combining (4.6) and (5.9), we have
(5. I I) $\quad \sum_{A=1}^{p} \operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2} \leqq \sum_{\mathrm{A}=1}^{p}\left(\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2}\right)^{\mathrm{L}}+2 p<\frac{n+3-4 p}{2-\mathrm{I} / p}+2 p=\frac{n+\mathrm{I}}{2-\mathrm{I} / p}$.

On the other hand Lemma 4.I shows that if M is minimal, \bar{M} is also minimal. Thus applying Simons' result to (5.II), we obtain that \bar{M} is totally geodesic. Thus Theorem 4.2 shows that M is totally geodesic $\mathrm{CP}^{n / 2}$.

§ 6. Anti-holomorphic submanifolds

As is well known, a complex submanifold (holomorphic submanifold) of a complex manifold is characterized by the fact that at any point of the submanifold M the tangent space is invariant under the action of the almost complex structure J of the ambient manifold, that is, for any $p \in \mathrm{M}, \mathrm{T}_{p}(\mathrm{M})=\mathrm{J}\left(\mathrm{T}_{p}(\mathrm{M})\right)$. Since $\mathrm{J}^{2}=$ - identically, this condition is equivalent to the fact that, at any point of M, the normal space is invariant
under J; that is, $N_{p}(M)=J\left(N_{p}(M)\right)$. Now we consider such a subamnifold of a complex manifold that at any point of the submanifold we have

$$
\begin{equation*}
\mathrm{JN}_{p}(\mathrm{M}) \cap \mathrm{N}_{p}(\mathrm{M})=\{\mathrm{o}\} . \tag{6.I}
\end{equation*}
$$

The author calls this submanifold an anti-holomorphic submanifold. It should be remarked that some authors call anti-holomorphic a submanifold that satisfies $J T_{p}(M) \cap T_{p}(M)=\{0\}$. But it seems to the author that our new definition is preferable being less exacting than the old definition; for example, any real hypersurface of a complex manifold is anti-holomorphic in our sense.

In this section we show that some conditions in \bar{M} of S^{n+p+1} are naturally inherited by anti-holomorphic submanifolds of M of $\mathrm{CP}^{(n+p) / 2}$.

Proposition 6.I Let M be an n-dimensional anti-holomorphic submanifold of a complex projective space $\mathrm{CP}^{(n+p) / 2}$ of real codimension p and $\pi: \overline{\mathrm{M}} \rightarrow \mathrm{M}$ the submersion which is compatible with the submersion $\dot{\pi}: \mathrm{S}^{n+p+1} \rightarrow \mathrm{CP}^{(n+p) / 2}$. Then the mean curvature vector field N of M is parallel with respect to the induced connection of the normal bundle if, and only, so is $\overline{\mathrm{N}}$ of $\overline{\mathrm{M}}$.

Proof. By definition of mean curvature vector field, it follows that

$$
\overline{\mathrm{D}}_{\overline{\mathrm{V}}}^{\mathrm{N}} \overline{\mathrm{~N}}=\sum_{\mathrm{A}=1}^{p}\left(\overline{\mathrm{~V}}\left(\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}\right) \overline{\mathrm{N}}_{\mathrm{A}}+\left(\operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}\right) \overline{\mathrm{D}}_{\overline{\mathrm{V}}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}\right)
$$

Since Lemma 4.I shows that trace $\overline{\mathrm{H}}_{\mathrm{A}}$ is an invariant function with respect to $\bar{\nabla}$ the first term of the right hand side of the last equation vanishes. Moreover, by (i.4), (3.8) and (3.13), we get

$$
\begin{equation*}
\overline{\mathrm{D}}_{\overline{\mathrm{V}}}^{\mathrm{N}} \mathrm{~N}_{\mathrm{A}}=\sum_{\mathrm{B}=1}^{p} \overline{\mathrm{~L}}_{\mathrm{AR}}(\overline{\mathrm{~V}}) \mathrm{N}_{\mathrm{B}}^{\mathrm{L}}=-\sum_{\mathrm{B}=1}^{p} \lambda_{\mathrm{AB}} \mathrm{~N}_{\mathrm{B}}^{\mathrm{L}}=0 . \tag{6.2}
\end{equation*}
$$

Combining (4.4) and (6.2), we know that N is parallel with respect to the connection of the normal bundle. Conversely if $\overline{\mathrm{N}}$ is parallel, Lemma 4.2 shows that so is N . This completes the proof.

From (3.10), we easily prove
Proposition 6.2. Let $\overline{\mathrm{M}}$ be a submanifold of S^{n+p+1} whose connection induced to the normal bundle is flat and M agrees with the submersion $\vec{\pi}: \mathrm{S}^{n+p+1} \rightarrow \mathrm{CP}^{(n+p) / 2}$. Then the induced connection of the normal bundle of the base submanifold M of $\mathrm{CP}^{(n+p) / 2}$ is flat if, and only if, M is anti-holomorphic.

We prove next the
Theorem 6.i. Let M be an n-dimensional, compact, minimal, anti-holomorphic submanifold of a complex projective space $\mathrm{CP}^{(n+p) / 2}$. If, everywhere on M , we have

$$
\begin{equation*}
\sum_{\mathrm{A}=1}^{p} \text { trace } \mathrm{H}_{\mathrm{A}}^{2} \leqq \frac{n+3-4 p}{2-\mathrm{I} / p} \tag{6.3}
\end{equation*}
$$

then M is $\mathrm{M}_{q, r}^{c}$ in $\mathrm{CP}^{(n+1) / 2}$.

Proof. Since M is anti-holomorphic, we have

$$
\begin{equation*}
\sum_{\mathrm{A}=1}^{p} g\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)=p \tag{6.4}
\end{equation*}
$$

because of (3.8) and (5.9). Thus from (4.6), we get
(6.5) $\quad \sum_{\mathrm{A}=1}^{p} \operatorname{trace} \overline{\mathrm{H}}_{\mathrm{A}}^{2}=\sum_{\mathrm{A}=1}^{p}\left(\operatorname{trace} \mathrm{H}_{\mathrm{A}}^{2}\right)^{\mathrm{L}}+2 p \leqq \frac{n+\mathrm{I}}{2-\mathrm{I} / p}$.

If the equality is not satisfied in (6.5), we see that \bar{M} is a great sphere of S^{n+p+1} and consequently M is a complex projective space. But, M being anti-holomorphic, this is impossible. Thus the equality must be satisfied.

Making use of the Chern-do Carmo-Kobayashi's result [I], we know that $\overline{\mathrm{M}}$ is isometric with $\mathrm{S}^{m}\left(\sqrt{m /(n+\mathrm{I}))} \times \mathrm{S}^{n-m+1}(\sqrt{n-m+\mathrm{I}) /(n+\mathrm{I}))}\right.$ in S^{n+1}. Since $\overline{\mathrm{M}}$ is compatible with the submersion $\tilde{\pi}, m$ must be an odd number, say $m=2 q+\mathrm{I}$. Hence $\mathrm{M}=\mathrm{M}_{q, r}^{c}$. This completes the proof.

As a special occurrence, we consider the case $p=1$. Then we have
Corollary [2]. Let M be a compact, real minimal hypersurface of $\mathrm{CP}^{(n+1) / 2}$ on which the inequality

$$
\begin{equation*}
\text { trace } \mathrm{H}^{2} \leqq n-\mathrm{I} \tag{6.6}
\end{equation*}
$$

holds. Then trace $\mathrm{H}^{2}=n-\mathrm{I}$ and M is isometric with $\mathrm{M}_{q, r}^{c}$.

Bibliography

[I] S. S. Chern, M. do Carmo and S. Kobayashi (1970) - Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Springer-Verlag, 60-75.
[2] H. B. Lawson Jr. (1970) - Rigidity theorems in rank I symmetric spaces, "Journal of Differential Geometry», 4, 349-359.
[3] Y. Meada - On real hypersurfaces of a complex projective space with certain conditions, to appear.
[4] M. Okumura - On some real hypersurfaces of a complex projective spaces, to appear.
[5] B. O'Neill (1966) - The fundamental equations of a submersion, «Michigan Math. J.», 13, 459-469.
[6] J. Simons (1968) - Minimal varieties in riemannian manifolds, "Ann. of Math.», 88, 62-105.
[7] K. Yano and S. Ishihara (1967) - Fibred spaces with invariant Riemanniun metric, «Kōdai Math. Sem. Rep.», 19, 317-360.

