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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI
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Seduta del 12 aprile i g j $
Presiede i l  Presidente della Classe B e n ia m in o  S e g r e

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

Matematica. — Elementary proofs of some results of engulfing 
theory. Nota di S a n d r o  B u o n c r i s t i a n o ,  presentata (#) dal Corrisp. 
E. M a r t i n e l l i .

R iassunto. ■— Il presente lavoro è una continuazione di [2]. Li si era stabilito un 
teorema di « Engulfing » (=  inghiottimento) usando la teoria dei manici. Qui faremo vedere 
come i ben noti teoremi di Engulfing di Zeeman, Stallings e Bing si possono dedurre dal 
metodo descritto in [2]. Dimostreremo anche un teorema riguardante 1’ inghiottimento di un 
poliedro contenuto nel bordo di una varietà.

§ o. In t r o d u c t io n

W e place ourselves in the PL category (polyhedra and PL maps). 
Let X be a com pact polyhedron in a m anifold V. There are two basic defi
nitions of Engulfing.

(ß) given an open subset U  of V we say that X can be engulfed into U 
if there exists an am bient isotopy ( =  continuous fam ily of homeomorphisms) 
of V  which carries X into U;

(Z) given a closed subpolyhedron C of V we say th a t X can be engulfed  
fro m  C if X is contained in a regular neighbourhood of C in V  (i.e. a compact 
neighbourhood of C which is a manifold and collapses to C).

(S) and (Z) are known as S talling’s and Zeem an’s Engulfings respectively.

T he Engulfing problem  consists in finding sufficient conditions under 
which it is possible to engulf X (into U  or from C accordingly). Engulfing

(*) Nella seduta del 12 aprile 1975.
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is one of the most useful tools in PL topology and has. been used successfully 
by Zeem an and Stallings in their proof of the generalised Poincaré Conjecture.

The m ain classical results are the following.

(ST) T h e o r e m  (Stallings). Let be a m anifold w ithout boundary, U  C V  
an open subset, X ^C V  a compact polyhedron and suppose that (V , U) is at 
least x-connected and x  < dv— 3. Then X can be engulfed into U.

(ZT) THEOREM (Zeeman). Let X*, Cc be subpolyhedra o f the compact 
m a n f o l d N , C closed and  X compact, X C V  — 3V, and suppose the fo llow ing  
hypotheses are satisfied'.

(V , C) is k-connected, k  >  o and there exists a homotopy o f X into C 
which is modulo C;

x  <  v — 3 ; c <  v — 3 ; c f  x  <Ç v -\- k  — 2 ; 2 x  <  v k  — 2.

Then X is contained in a regular neighbourhood of C in V.
There is also a th ird  type of Engulfing, called R adial Engulfing, which 

says roughly the following:

(B) Given U  (or C) as in (S) , (Z) when can X be engulfed into U 
(or from C) in such a way tha t the engulfing isotopy moves each point of V 
along “ a prescribed direction ” ? (see theorem  below for a precise statem ent).

This Engulfing has been considered by Bing in [1]. His result is the 
following

(BT) T h e o r e m  (Bing). Let {Aa} be a collection o f sets in  a m anifold  
M" without boundary, X xC M  a compact subpolyhedron x  <  n 3 , U  an open 
subset o f M.

Suppose th a t for each compact y-dim ensional polyhedron Y , y  <  x, 
there exists a hom otopy H : Y X [0 , 1] -> M such th a t

(1) H 0 =  id ; H , (Y) CU;

(2) for each point y  e Y , H (y  X [0 , 1]) lies in one element of {Aa}.

Then, for each s >  o, there is an engulfing isotopy H : M X [o , 1] -> M 
such th a t H 0 =  id , PI1(X )C U  and, for each point p  € M, there are a; +  1 
elements of {Aa} such tha t the track H (p X  [o , 1]) lies in the s-neighbourhood 
o f the sum of these x. -f  1 elements.

T he proofs of S T , ZT and BT are long and technical.
In  [2] we considered Engulfing from a slightly different point of view, 

namely:

(RS) given X^ in a cobordism fW , 3__W, W) we say tha t X can 
be engulfed fro m  3 ■— W  if X is contained in a collar of 3 •— W  in W.

T he above definition is labelled RS because it can be found in Rourke 
and Sanderson [3].

O ur m ain result of [2] was the following.
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(A) E ngulfing Theorem. Let W® be a compact cobordism, X* C W  a 
com pact subpolyhedron, X f i 3 + W  =  0  and suppose th a t the following 
hypotheses are satisfied:

X is a_ W -inessential

(W , a ■— W) is /^-connected

2 x  < w  f  k  —  2 ; x  <  w  — 3 .

T hen X can be engulfed from a_W.
The proof is very short and elem entary and uses only general position, 

handle-theory and induction.
W e also stated, w ithout proof, three corollaries of Theorem  A, correspond

ing to the well-known versions of Engulfing described above.
The purpose of the present paper is to give a short proof of these corolla

ries, which form Theorem s 2, 4, 7 below.
There are two rem arks to be m ade at this point. The first is that 

Theorem  2 im proves on ZT because it does not assume the hom otopy of X 
to be modulo any subset of C. The second is that we do not derive Theorem s 
2, 4, 7 as direct corollaries of (A); but each of the theorem s is proved inde
pendently of (A) although the proof is based on the same handle-theory 
argum ents used to establish (A).

W e also look at the engulfing of a polyhedron X contained in the 
boundary , of a m anifold W  and show that, under reasonable hypotheses, 
this engulfing is possible even if X is in codimension two in 3W (Theorem 8).

As this paper is a continuation of [2] we refer the reader to that 
paper for all the notation and term inology. We only recall a definition: 
a cobordism with boundary is a com pact manifold W ^ together with two 
disjoint (w  ■— i)-dim ensional subm anifolds a_W , a+W of 3W. We set 
M =  cl (aW —  a„W — a+W).

§ I. E n g u l f in g  th e o r e m s

We shall need the following addendum  to Theorem  [2], 1.

I. R e l a t i v e  E n g u l f i n g  T h e o r e m . The conclusion o f Theorem 1 
in  [2] remains true i f : ( W , a _ W , a + W) is a cobordism w ith boundary, 
M ^ a _ W x [ o ,  1] and  X n  (aW —  a_W ) =  0 .

Proof. L et Wq he a collar on a_W  extending a given collar-structure 
on M and consider a nice handle-decom position of W  on W 0. All the 
argum ents used in the proof of the theorem  rem ain valid in this relative 
situation and all the isotopies m ay be taken to be modulo aW. Hence the 
addendum  follows.
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2. THEOREM (Engulfing à la Zeeman). Let Ce, X x be closed subpolyhedra 
of the compact m anifold  V /  with  X compact and satisfying the follow ing  
hypotheses'.

X O aV =  0 ; x  < w  ■— 3 , c < w  —  3

C - f  X < lw  f  k ---2

2 x  <  W 4- k ---- 2

the p a ir  ( V, C)  is k-connected and there is a hornotopy of X into C. Then X 
is contained in  a regular neighbourhood of C in  W.

Proof. F irst we deal with the case C f i^ V  =  0 . Let N be a regular 
neighbourhood of C in V, with N fi 3V  -  0 ,  and consider the cobordism 
(W , a_ W  , a+ W) =  (V —  In t N , aN , aV).

Step I.  (W , 3_W) is /^-connected.

Proof o f Step 1. Consider the excision m ap (W , a_W) CZ>(V, N), and 
the induced m ap j 1 : tz± (W , a_ W) -> 7Tj (V , N) of the corresponding fun
dam ental groups. W e claim th a t j 1 is an isomorphism. This follows im m e
diately from observing th a t the track of a hornotopy of a relative loop in 
V , N has dimension <  2, so that, by general position, it can be isotoped off 
C and hence off N, because N is a m apping cylinder on C. Therefore Step 1 
follows from H urew icz’s theorem.

Step 2. We shall prove the following: suppose V — W ' u H  , N C W (  
index H 0> k  +  1. T hen there exists a regular neighbourhood, N ', of C 
in V and a hornotopy, f  : X X [— I , I ] —> V, of X into W ', such th a t f  is 
modulo N ' and N ' C N .

P roof o f Step 2. T he im portant part of this step is to obtain th a t the 
hornotopy be modulo N ' for some NT Note that, if / : X x [ o ,  i ] - > V  is 
the given hornotopy of X into C, then f  obviously throws X into W '; however 
we cannot take /  =  f '  and N =  N ' because /  m ay not be m odulo N.

In  order to construct f  we assume, first of all, f  in general position and 
let P C X  X [o , 1] be the subpolyhedron given by f  1 ( / (X X [o , i ] n C ) ) .  
By general position

dim /  (X X [o , I ] n  C <  x  +  I +  c —  w  ,

hence dim  P < ^  +  r f  c — w  because f  is non-degenerate (as usual, 
wd.o.g. we a s s u m e / ( X x [ o ,  i ] ) 0 3 W  =  0 ). Then the shadow, Op , of P 
in X x [ o , i ]  has dim ension <  x  f  2 — w. W e now look at the
dimension of / ( Q P) n D ,  where D =  fibre of H. General position gives:

dim  ( / ( Q P) nT>) <  (w  — k  — 1) +  (x  +  2 +  c ■—■w ) — w  <  —  1

because, by hypothesis, c f  x  < w  k — 2.
Therefore we can assume that ./( tip ) does not m eet D. Now let 

f +y N , M , h , g  be defined as in the Proof of [2] Theorem  1 (Step 1) after
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replacing Q , W  by D p , V respectively. It is im m ediately seen th a t 
g :  X X [—  I , i] -» V provides a hom otopy which throws X off D and is 
modulo C u j  where J is a convenient neighbourhood of X f i C  in X.  Thus, 
because C is closed, there exists a regular neighbourhood N 0 of C such that 
g  : X X [—  I , I ] ~> V is modulo N 0 .

By construction the hom otopy g  pushes X off the fibre D. Then there 
is a handle-m ove which engulfs X into W '.

T he composition of g  w ith this handJe-move provides a hom otopy 
X x  [—  I , i] -> V  which carries X into W ' and is modulo N 0. Hence we 
can take / '  to be this hom otopy and N ' to be N 0.

This concludes the proof of Step 2.

Step 3. T here exists a regular neighbourhood N ' of C in V and a hom o
topy f ’ : X X [■— I , 1] -> V  which throws X into a collar of 3_W in W  and 
is modulo N '.

Proof o f Step 3. Choose a nice handle-decomposition of W  on a_W and 
consider W (k) =  3 _ W u  {handles of index <  k } . Com bining Step 2 above 
with the inductive procedure indicated in the Proof of [2], Theorem  1 (Step 4), 
one easily deduces the existence of a hom otopy f ” : X x  [■— 1 , 1] -> V  which 
carries X into W {k) and is modulo a convenient regular neighbourhood N ' 
of C in V, N ' C l n t N .  W e know tha t W a) is a regular neighbourhood of 
3_ W u > è  where k is a /é-dimensional polyhedron. Then, because (W , 3_W) 
is /è-connected, there is a hom otopy f ”' : W {k) X [o , 1] -> V which carries 
W (£) into a collar of 3_W  and is modulo N ' C l n t N .  The composition o f f "  
and f ' n provides the required hom otopy / ' .

Step 4. Completion of the proof of the theorem  in the case C f i 3 V  — 0 .  
Consider the cobordism (W , 3_ W  , 3+W) =  (cl (V — N ') , 3N', 3V). In  step 3 
we have proved tha t X is 3_ W  inessential in W  (X — X — In t N '). Therefore 
Theorem  1 of [2] applies to give an ambient isotopy of W  which carries X 
into a collar W 0 of 3_W and is modulo 3 _ W U 9 +W.

T hen we can extend this isotopy to an isotopy of the whole V by means 
of the iden tity  on N '. As N ' u W 0 is obviously a regular neighbourhood of 
C in W, the theorem  is proved in the case C f i #  =  0 .  If, on the contrary, 
C n  dV =j= 0 ,  then the proof is quite similar, the only difference being tha t 
the cobordism (W , 3_W,  3.|_W), defined by excising a regular neighbourhood 
of C in V; is now a cobordism with boundary, so th a t this case is a conse
quence of the relative engulfing theorem.

W e om it the proof of the following addendum , which is easy.

3. Addendum . The conclusion of the above theorem  continues to hold 
if X intersects the boundary 3>V and the given hom otopy of X into C is 
m odulo d \ .

4. THEOREM (Engulfing à la Stallings). Let ÇWW, 3_W  , 3+ W) be a 
cobordism , U  D 3_ W  an open subset, XæC W  a compact sub polyhedron,
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X n  3+ W  — 0 . Suppose-. (W , U) is y-connected, y  =  2 x  f  2 — w, and  
there is a homotopy f  : X x  [o , 1] -> W  o f X into U,  which is modulo 3„ W. 
Then there exists an isotopy o f W  carrying X into U.

Proof. T he proof goes by induction on the dim ension of the poly
hedron X, the induction starting  trivially  with dim  X =  — 1 or o.

Suppose, then, we have proved the theorem  for dim  X <  x and let us 
prove it for dim  X  =  x. Choose a regular neighbourhood N x of /  (Xx) 
in U, w ith N j f i a + W  =  0 ,  and consider the cobordism (W ', 3_W ', 3+W ') =  
=  (cl (W  Nj) , 3 cl (W  —  Nj) —- 3+W  , 3+W). Because X is in codimension 
at least three, one proves, as in Theorem  2 (Step 1), th a t (W ', U ') is y-con
nected where U ' =  U n  W '. Consider, then, a handle decomposition of W  
on (a collar of) 3_W '. W e know that W w  (handles of index < y )  is a regu
lar neighbourhood of 3_ W ' ( j Y ,  where Y is a y-dim ensional polyhedron. 
Now it is im m ediately seen th a t W ', 3_ W ', 3+W ', U ', Y satisfy the same 
hypotheses as W  , 3_W  , 3+W , U  , X respectively in the statem ent of this 
theorem. Therefore, since y  <  x, we m ay assume, by induction, th a t there 
exists an am bient isotopy which engulfs Y into U ' and is modulo 3_W '. Thus 
we can extend this isotopy to the whole of W  by means of the identity  on 
Nj and so assume th a t Y j C U C W ,  where Y1 =  3 _ W u N 1( j Y .

Now, from general-position argum ents it follows at once that the pair 
(W  , Yj) is y-connected. Let Cx be the #-skelecton of Y, in a triangulation 
of W  having Yx and / ( X , )  as subcomplexes. T he quadruple (W  , 3W , X , Cx) 
satisfies the same hypotheses as (W , 3W , X , C) in Theorem  2 and A ddendum  
3 above.

Therefore, given a regular neighbourhood N of C in W  there exists an 
isotopy of W, which engulfs X into N C U  and the theorem  is proved.

Remarks.

5. T he conclusion of the above theorem  rem ains true if X p) 3+W  =(= 0  
and the hom otopy /  is m odulo dW =  3__W U 3+W.

6. T he above theorem  (and its proof) makes sense even for 3_W — 0 , 
in which case the statem ent reduces to tha t of [2], Corollary 3.

W e now hint at th a t type of engulfing nam ed ‘ radial engulfing ’ by 
Bing ([i]).

Let (W , a_.w , a+W) be a cobordism, {S,-} a collection of subpolyhedra 
of W  , s >  o a real num ber, N,- the s-neighbourhood of Sj in some fixed 
triangulation of W. If  X is a positive integer, a hom otopy in W  is defined 
to be ^-radial if the track of each point is contained in the union of at most X 
elements of {N?}; if a hom otopy is X-radial but not (X—  i)-radial, then we 
say th a t X is the degree of radiahty  of the homotopy.

W e also say ‘ r a d i a l ’ instead of 1-radial. Then the notion of radial 
k-connectedness is the obvious one.
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7. THEOREM (Engulfing à la  Bing). Let (W®, a_ W , d+W) be a cobordism , 
X T W  a sub polyhedron y z , { Ŝ -} , { N /  as above and suppose that'. (W , 3_W) 
is radially k-connected\

there is a radial homotopy of X into a collar o f 3__W, the homoiopy 
being modulo 3_W;

2 x  <._w - f  k  —  2 , x  < w  — 3

Then y given a collar W 0 on 3_ W in  W, exists an ambient isotopy, which
is kw -radi a l and engulfs X into W 0.

/afe# of proof. F irst we choose a ‘ radial ’ handle-decomposition, i.e. 
one where each handle is contained in the interior of one element of {N?}.  
Then the proof follows the same pattern  as the non-radial case [2], Theorem  1 
and it is very easy to check tha t each of the isotopies there constructed can 
now be assumed to have such a degree of radiality  tha t the final isotopy of 
W  is /èz£7-radial. W e leave the details to the reader.

T he following theorem  deals with the engulfing of a polyhedron X which 
is contained in the boundary  of a high-dim ensional m anifold W w (w  >  6). 
The result is obtained by combining the Proof of [2], Theorem  1 with the 
m ethod of [3], Theorem  7.10(1).

8. T h eo rem . L et Ç W W ,  3_W,  3+W) be a cobordism y  X^C3W , and sup
pose tha t:

X is 3_W -inessential

2 x  < w  +  k  •— 3 ; x  < w  — 3 w >  6 .

Then X can be engulfed fro m  3_W.

Proof. We distinguish the two cases: x  < lw  —  4. ; x  =  w  — 3. x  < iw  — 4. 
To prove the theorem  in this case it suffices to establish tha t X is 3_W- 
inessential by a hom otopy which takes place in aW. Then one can proceed 
exactly in the same way as in the Proof of [2], Theorem  1, tak ing  care to 
perform  all constructions in dW: this is m ade possible by the assum ption 
2 x  <  w  +  k  — 3.

W e assume, w.l.o.g., X^ C3+ W  and write W  =  W ' U H where W ' is a 
cobordism on 3_W. Let f  : X X [o , 1 ] -> W  be the given hom otopy. We 
shall replace /  by a hom otopy f ,! which makes X 3_W inessential and 
takes place in cl Ç W f  (J H — W ' n  H); the result will then follow from 
induction.

By general position /  (X X [o , 1]) f  D. Let y be a point of 
D —■/ (X X [o , 1]). There is an obvious retraction (radial projection) of 
H — q onfo g  (3P X lw 1 U B X dl™*1) , g  : P X lw~~l -> H being the characteristic 
m ap of H. The composition of /  with this retraction gives a new hom otopy 

/ ; : X X [o , I ] —> W  m aking X d_W  inessential. In general f  (X X 
will intersect the attaching tube W / H  =  g  (ßl 1x l w l). Therefore we
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need a further modification. Choose a point v € lw~l and consider the 
circle Cv =  g  (fi1 xXv) .  Because x  <  w —-4 general position in dW ' gives

/ ' ( X x [ o ,  i ] ) n c ,  =  0 .
Let r  be the obvious deform ation retraction of W ' U 3H —  Cv onto 

c l ( W ' U 3H —■ W ' n H ) .  Then one sees im m ediately that f n =  r f  is the 
required hom otopy.

I f  x  =  w  3 • F  rom  2 x  <Ç w  -fi k  ■—  3 it follows k w  —  3 . Because 
w > 6  we can proceed as in [3], Theorem  7.10 (1), i.e. first we eliminate all 
handles of index <  w  —  3 by an am bient isotopy, then we shift X off the 
fibres of the rem aining handles using general position and finally engulf by 
handle-m oves.

The above theorem  deals only with the case w  >  6. If  w  <  5, it is not 
known whether it is possible to engulf a polyhedron X C a W  which has 
*codimension two in 3W. This problem is related to the well-known conjecture 
of Zeeman: there exists a com pact 4-dimensional contractible m anifold V4 
and an S C3V such th a t S1 is essential in dV and S1 does not bound a disk 
in V  (see [5 ])- Certainly, if we assume X to have codimension three in dW, 
i.e. w  =  5 , x  — I , k ~ > 2  o r w  =  4 , r  =  o , ^ > o ,  then engulfing is possible 
by the proof of the above theorem.
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