Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

William A. Webb, Calvin T. Long

Distribution modulo p^{h} of the general linear second order recurrence

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.2, p. 92-100.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_2_92_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Teoria dei numeri. - Distribution modulo p^{k} of the general linear second order recurrence. Nota di William A. Webb e Calvin T. Long, presentata ${ }^{(*)}$ dal Socio B. Segre.

RiASSUNTO. - Interessanti risultati di altri Autori, sull'argomento specificato nel titolo, vengono completati in modo esauriente.

I. Introduction

Let $\left\{u_{n}\right\}_{n \geq 0}$ be the linear second order recurrence defined by

$$
\begin{equation*}
u_{0}=c \quad, \quad u_{1}=d \quad, \quad u_{n+1}=a u_{n}+b_{n-1} \quad(\forall n \geq 1) \tag{I}
\end{equation*}
$$

where a, b, c, and d are integers. Let

$$
\begin{equation*}
\rho=\frac{a+\sqrt{a^{2}+4 b}}{2} \quad \text { and } \quad \sigma=\frac{a-\sqrt{a^{2}+4 b}}{2} . \tag{2}
\end{equation*}
$$

Then it is easily shown that

$$
\begin{equation*}
u_{n}=\frac{(d-c \sigma) \rho^{n}-(d-c \rho) \sigma^{n}}{\rho-\sigma} \tag{3}
\end{equation*}
$$

for all $n \geq 0$. Also, it is easily shown that $\left\{u_{n}\right\}$ is periodic modulo m for any positive integer m. Let $k(m)$ be the (least) period of $\left\{u_{n}\right\}$ modulo m.

In [3], Kuipers and Shiue show that the Fibonacci sequence is uniformly distributed modulo 5, is not uniformly distributed modulo p for any prime $p \neq 5$, is not uniformly distributed modulo m for any composite $m \neq 5^{k}$ for $k>\mathrm{I}$, and conjecture that the sequence is uniformly distributed modulo 5^{k} for all $k \geq \mathrm{I}$. In [5], Niederreiter proves that the conjecture of Kuipers and Shiue is correct. In [r], Bundschuh obtains the result of Niederreiter utilizing some well-known relationships between the Fibonacci and Lucas sequences. In [4], Kuipers and Shiue consider the general second order recurrence defined above and give sufficient conditions that $\left\{u_{n}\right\}$ be uniformly distributed modulo p^{h} for all integers $h \geq \mathrm{I}$ where p is an odd prime. However, the conditions of the Kuipers-Shiue result are unusually cumbersome; nothing is said about necessary conditions, and the case $p=2$ is not discussed. In [2], Bundschuh and Shiue improve on the result of Kuipers and Shiue, but again give only sufficient conditions. In [6], Shiue and Hu show that if a and b have the same parity, then $\left\{u_{n}\right\}$ is not uniformly distributed modulo 2^{h} for any integer $h \geq \mathrm{I}$. Again, however, the result is incomplete in that the cases when a and b have opposite parity are not considered and no attempt is made to find necessary conditions. In the present

[^0]paper, we settle the issue for prime power moduli by giving necessary and sufficient conditions that $\left\{u_{n}\right\}$ be uniformly distributed modulo p^{h} for any prime p and for all integers $h \geq \mathrm{I}$.

2. Preliminary Results

At the outset we observe that if $p \mid a b$, then it is easily seen that $\left\{u_{n}\right\}$ is uniformly distributed modulo p if and only if $p=2$, a is even, b is odd, and c and d are of opposite parity. Thus, except for Theorem 4, for the remainder of the paper we restrict our attention to the case $(p, a b)=\mathrm{I}$.

If $p \mid c$ and $p \mid d$, then $u_{n} \equiv 0(\bmod p)$ for all n and $\left\{u_{n}\right\}$ is not uniformly distributed modulo p, thus we may exclude this case from consideration. If $p \nmid d$, then $\left(p, u_{1}\right)=\mathrm{I}$ since $u_{1}=d$. If $p \mid d$, then $(p, a d+b c)=\mathrm{I}$. Hence, by renumbering so that $u_{0}=d$ and $u_{1}=a d+b c$, we again have $\left(p, u_{1}\right)=\mathrm{I}$. Thus, we may henceforth assume that $(p, a b d)=\mathrm{I}$ since all other cases are essentially trivial or easily reduce to this case.

From (3) it is easy to derive the following
Lemma I . If p is an odd prime, $\left(p, a^{2}+4 b\right)=\mathrm{I}$, and $-p \mid c$, then $p \mid u_{p-1} u_{p+1}$.

Theorem i. If p is an odd prime and $p \nmid\left(a^{2}+4 b\right)$, then $\left\{u_{n}\right\}$ is not uniformly distributed modulo p.

Proof. Recall that we are assuming that $(p, a b)=1$ and assume that $\left\{u_{n}\right\}$ is uniformly distributed modulo p. Since $p \nmid b$, it is easy to see that $\left\{u_{n}\right\}$ is purely periodic. Thus, $u_{k}=0$ for some k and, without loss in generality, we may assume that $u_{0}=0=c$. But then $u_{n}=d u_{n}^{*}$ where u_{n}^{*} is defined by

$$
\begin{equation*}
u_{0}^{*}=0 \quad, \quad u_{1}^{*}=\mathrm{I} \quad, \quad u_{n+1}^{*}=a u_{n}^{*}+b u_{n-1}^{*} \quad(\forall n \geq \mathrm{I}) \tag{4}
\end{equation*}
$$

and $\left\{u_{n}\right\}$ is uniformly distributed modulo p if and only if $\left\{u_{n}^{*}\right\}$ is uniformly distributed modulo p. Hence, again without loss in generality, we may assume that $u_{1}=\mathrm{I}=d$.

Let j be the least positive integer such that $p \mid u_{j}$. Let $t \equiv b u_{j-1}$ $(\bmod p)$ and let t belong to s modulo p. Then the sequence modulo p becomes $\mathrm{o}, \mathrm{I}, \cdots, u_{j-1}, \mathrm{o}, t, \cdots, t u_{j-1}, \mathrm{o}, t^{2}, \cdots, t^{2} u_{j-1}, \mathrm{o}, \cdots, \mathrm{o}, t^{s-1}, \cdots, t^{s-1} u_{j-1}, \cdots$
with the sequence repeating after the element $t^{s-1} u_{j-1}$. It follows that $j s$ is the length of the period of $\left\{u_{n}\right\}$ modulo p and hence that every residue modulo p appears s times in the period since zero does. But since there are just p residues modulo p, this implies that $p s=j s$ and hence that $p=j$. Therefore $u_{p} \equiv u_{j}=0(\bmod p)$ by definition of j. But, by Lemma I , $p \mid u_{p-1} u_{p+1}$ and so p divides two consecutive terms in $\left\{u_{n}\right\}$ and hence all terms from at least u_{p} on. Since this is a clear contradiction of the assumption that $\left\{u_{n}\right\}$ is uniformly distributed modulo p, the proof is complete.

Lemma 2. Let $p \mid\left(a^{2}+4 b\right)$. Then $p \mid u_{n}$ for some n if and only if $(p, a d+2 b c)=\mathrm{I}$.

Proof. Since we are assuming throughout that $(p, a b)=1$, the hypothesis $p \mid\left(a^{2}+4 b\right)$ clearly implies that p is odd. Observing that $\rho \sigma=-b$ and $\rho-\sigma=\sqrt{a^{2}+4 b}$, we have from (3) that

$$
\begin{align*}
u_{n} & =\frac{(d-c \sigma) \rho^{n}-(d-c \rho) \sigma^{n}}{\rho-\sigma}=\frac{d\left(\rho^{n}-\sigma^{n}\right)}{\rho-\sigma}+\frac{c b\left(\rho^{n-1}-\sigma^{n-1}\right)}{\rho-\sigma}= \tag{5}\\
& =\frac{d}{2^{n-1}} \sum_{k=0}^{[(n-1) / 2]}\binom{n}{2 k+{ }_{1}} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}+ \\
& +\frac{c b}{2^{n-2}} \sum_{k=0}^{[n-2) / 2]}\binom{n-1}{2 k+{ }_{1}} a^{n-2 k-2}\left(a^{2}+4 b\right)^{k} .
\end{align*}
$$

Since $a^{2}+4 b \equiv 0(\bmod p)$, this implies that

$$
\begin{aligned}
2^{n-1} u_{n} & \equiv d n a^{n-1}+2 b c(n-\mathrm{I}) a^{n-2} \equiv a^{n-2}[(n-\mathrm{I})(a d+2 b c)+a d] \equiv \\
& \equiv \mathrm{o}(\bmod p)
\end{aligned}
$$

for some n, if and only if the congruence

$$
(a d+2 b c) x \equiv-a d \quad(\bmod p)
$$

is solvable; i.e., if and only if $(p, a d+2 b c)=1$ since we also have that (p, d) $=\mathrm{I}$. Since p is odd, this yields the desired conclusion.

Lemma 3. Let p be odd and $p \mid\left(a^{2}+4 b\right)$, then $\left\{u_{n}\right\}$ is periodic modulo p^{h} and $k\left(p^{h}\right) \mid p^{h}(p-\mathrm{I})$ for $h \geq \mathrm{I}$.

Proof. Let m and n be integers with $0 \leq m<n$ and

$$
\begin{equation*}
n \equiv m \quad\left(\bmod p^{h}(p-\mathrm{I})\right) \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
2^{n-m} a^{m-2 k-1} \equiv a^{n-2 k-1} \quad\left(\bmod p^{k}\right) \tag{7}
\end{equation*}
$$

since $\varphi\left(p^{h}\right) \mid(n-m)$. Therefore,

$$
\begin{align*}
& 2^{n-1}\left(u_{n}-u_{m}\right)=d \sum_{k \geq 0}\binom{n}{2 k+\mathrm{I}} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}- \tag{8}\\
& \quad-d 2^{n-m} \sum_{k \geq 0}\binom{m}{2 k+1} a^{m-2 k-1}\left(a^{2}+4 b\right)^{k}+ \\
& \quad+2 c b \sum_{k \geq 0}\binom{n-\mathrm{I}}{2 k+\mathrm{I}} a^{n-2 k-2}\left(a^{2}+4 b\right)^{k}- \\
& \quad-2^{n-m} 2 c b \sum_{k \geq 0}\binom{m-\mathrm{I}}{2 k+\mathrm{I}} a^{m-2 k-2}\left(a^{2}+4 b\right)^{k}= \\
& \quad \equiv d \sum_{k \geq 0} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\left[\binom{n}{2 k+\mathrm{I}}-\binom{m}{2 k+\mathrm{I}}\right]+ \\
& \quad+2 c b \sum_{k \geq 0} a^{n-2 k-2}\left(a^{2}+4 b\right)^{k}\left[\binom{n-\mathrm{I}}{2 k+\mathrm{I}}-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right]\left(\bmod p^{k}\right)
\end{align*}
$$

At this point, let $\operatorname{ord}_{p}(n)$ denote the exponent to which p appears in the canonical representation of n. Then
(9)

$$
\begin{aligned}
& \operatorname{ord}_{p}\left\{\left[\binom{n}{2 k+\mathrm{I}}-\binom{m}{2 k+\mathrm{I}}\right] a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\right\} \geq \\
& \geq \operatorname{ord}_{p}[n(n-\mathrm{I}) \cdots(n-2 k)-m(m-\mathrm{I}) \cdots(m-2 k)]- \\
& \quad-\operatorname{ord}_{p}(2 k+\mathrm{I})!+k \geq \\
& \geq \\
& \quad h-\sum_{j \geq 1}\left[\frac{2 k+\mathrm{I}}{p^{j}}\right]+k \geq h-k+k=h
\end{aligned}
$$

and, similarly,

$$
\left.\operatorname{ord}_{p}\left\{\left[\begin{array}{c}
n-\mathrm{I} \tag{Io}\\
2 k+\mathrm{I}
\end{array}\right)-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right] a^{n-2 k-2}\left(a^{2}+4 b\right)^{k}\right\} \geq h
$$

In view of (9) and (IO) and since p is odd, it follows from (8) that

$$
u_{n} \equiv u_{m} \quad\left(\bmod p^{h}\right) .
$$

Thus, $\left\{u_{n}\right\}$ is periodic modulo p^{h} and $k\left(p^{h}\right) \mid p^{h}(p-1)$ by (6) as claimed.

3. The principal results

The following theorems give necessary and sufficient conditions that $\left\{u_{n}\right\}$ be uniformly distributed modulo p^{h} for any prime p and for all integers $h \geq \mathrm{I}$.

Theorem 2. Let $p>3$ be an odd prime and let $h \geq 1$ be an integer. Then the sequence $\left\{u_{n}\right\}$ is uniformly distributed modulo p^{h} if and only if $p \mid\left(a^{2}+4 b\right)$ and $(p, a d+2 b c)=1$.

Proof. Suppose first that $\left\{u_{n}\right\}$ is uniformly distributed modulo p^{h}. Then $\left\{u_{n}\right\}$ is uniformly distributed modulo p and we have from Theorem I that $p \mid\left(a^{2}+4 b\right)$. Also, it is immediate from Lemma 2 that $(p, a d+2 b c)=I_{1}$ since, otherwise, there does not exist n such that $u_{n} \equiv \mathrm{o}(\bmod p)$ as must be the case if $\left\{u_{n}\right\}$ is uniformly distributed modulo p.

Now suppose that $p \mid\left(a^{2}+4 b\right)$ and $(p, a d+2 b c)=\mathrm{I}$. By Lemma 2, there exists n such that $u_{n} \equiv \mathrm{o}(\bmod p)$. Hence, without loss in generality, we may take $u_{0}=0$. Now $u_{1}=d$ and $(d, p)=\mathrm{I}$ so that we may also take $d=\mathrm{I}$ without loss in generality. With these simplifications $u_{n}=u_{u}^{*}$ as defined in (4) and, by essentially the same argument as in the proof of Lemma 2,

$$
\begin{equation*}
u_{n} \equiv s^{n-1} \sum_{k=0}^{[(n-1) / 2]}\binom{n}{2 k+\mathrm{I}} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k} \equiv n(s a)^{n-1} \equiv n t^{n-1} \quad(\bmod p) \tag{II}
\end{equation*}
$$ where $2 s \equiv \mathrm{I}(\bmod p)$, and t is defined by $2 t \equiv a(\bmod p)$. Thus, it is clear that $\left\{u_{n}\right\}$ is periodic modulo p with period $p e$ where t belongs to e modulo p

and $e \mid(p-\mathrm{I})$. Therefore, $(p, e)=\mathrm{I}$ so that for each $h, 0 \leq h \leq e-\mathrm{I}$, the elements

$$
(h+r e+1) t^{h+r e}, \quad r=0, \mathrm{I}, \cdots, p-\mathrm{I}
$$

constitute a complete residue system modulo p since $t^{h+r e} \equiv t^{h}(\bmod p)$ and (p, t) $=$ I. Thus, $\left\{n t^{n-1}\right\}_{n=1}^{p e}$ runs over each residue modulo p precisely e times and the same is true for $\left\{u_{n}\right\}_{n=1}^{b e}$. Thus, $\left\{u_{n}\right\}$ is uniformly distributed modulo p.

Now assume that $\left\{u_{n}\right\}$ is uniformly distributed modulo p^{h-1} for some $h \geq 2$ and note that we no longer assume $c=0, d=\mathrm{I}$ since these simplifying assumptions were only valid for p and not for p^{h} with $h>1$. By Lemma 3, $\left\{u_{n}\right\}$ has period $k\left(p^{h-1}\right)$ where $k\left(p^{h-1}\right) \mid p^{h-1}(p-1)$ and it follows that the sequence runs over each residue modulo p^{h-1} precisely p-I times for $\mathrm{I} \leq n \leq p^{h-1}(p-\mathrm{I})$. That is to say, for a given g, the congruence

$$
u_{n} \equiv g \quad\left(\bmod p^{h-1}\right)
$$

is satisfied for precisely p - I elements in the set

$$
\mathrm{C}=\left\{\mathrm{I}, 2, \cdots, p^{h-1}(p-\mathrm{I})\right\} .
$$

The desired result will follow if we can show that the congruence

$$
\begin{equation*}
u_{n} \equiv g \quad\left(\bmod p^{h}\right) \tag{I2}
\end{equation*}
$$

is also satisfied for precisely p - 1 elements in the set

$$
\mathrm{D}=\left\{\mathrm{I}, 2, \cdots, p^{h}(h-\mathrm{I})\right\} .
$$

Let $c_{1}, c_{2}, \cdots, c_{p-1}$ be those elements of C such that

$$
u_{n} \equiv g \quad\left(\bmod p^{h-1}\right) \quad \text { iff } \quad n \equiv c_{i}\left(\bmod p^{h-1}(p-\mathrm{I})\right) .
$$

Let m and n be in D with $m \leq n$ and assume that
(13) $\quad u_{n} \equiv g \equiv u_{m}\left(\bmod p^{k}\right), \quad n \equiv c_{i} \equiv m\left(\bmod p^{h-1}(p-1)\right)$.

If we can show that $n=m$, then the number of n in D satisfying (i2) must be at most $p-\mathrm{I}$ since there are only $p-\mathrm{I}$ elements c_{i} and a unique n for each c_{i}. Since there are p^{h} different values of g modulo p^{h} and $p^{h}(p-\mathrm{I})$ elements in D , it then follows that the number of n in D satisfying (i2) is precisely $p-1$ as desired.

From (i3) and (5), we obtain

$$
\begin{align*}
& d \sum_{k \geq 0}\binom{n}{2 k+1} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}-d 2^{n-m} \sum_{k \geq 0}\binom{m}{2 k+1} a^{m-2 k-1}\left(a^{2}+4 b\right)^{k}+ \tag{14}\\
& \quad+2 c b \sum_{k \geq 0}\binom{n-1}{2 k+1} a^{n-k-2}\left(a^{2}+4 b\right)^{k}- \\
& \quad-2 c b 2^{n-m} \sum_{k \geq 0}\binom{m-1}{2 k+1} a^{m-k-2}\left(a^{2}+4 b\right)^{k} \equiv 0 \quad(\bmod p) .
\end{align*}
$$

Again,

$$
2^{n-m} a^{m-2 k-1} \equiv a^{n-2 k-1} \quad\left(\bmod p^{k}\right)
$$

since $\varphi\left(p^{k}\right) \mid(n-m)$ by (I3). Therefore, from (I4) we have

$$
\begin{align*}
& d \sum_{k \geq 0} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\left[\binom{n}{2 k+1}-\binom{m}{2 k+1}\right]+ \tag{15}\\
& \quad+2 c b \sum_{k \geq 0} a^{n-2 k-2}\left(a^{2}+4 b\right)^{k}\left[\binom{n-1}{2 k+1}-\binom{m-1}{2 k+1}\right] \equiv \mathrm{o} \quad\left(\bmod p^{k}\right) .
\end{align*}
$$

Then, for $k \geq \mathrm{I}$, it follows from (I3) that

$$
\begin{aligned}
& \operatorname{ord}_{p}\left\{\left[\binom{n}{2 k+1}-\binom{m}{2 k+\mathrm{I}}\right] a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\right\} \geq \\
& \quad \geq \operatorname{ord}_{p}[n(n-\mathrm{I}) \cdots(n-2 k)-m(m-\mathrm{I}) \cdots(m-2 k)]- \\
& \quad-\operatorname{ord}_{p}(2 k+\mathrm{I})!+k \geq \\
& \quad \geq h-\mathrm{I} \sum_{j \geq 1}\left[\frac{2 k+\mathrm{I}}{p^{j}}\right]+k \geq h-\mathrm{I}-(k-\mathrm{I})+k=h
\end{aligned}
$$

and the same thing would be true of

$$
\left.\operatorname{ord}_{p}\left\{\left[\begin{array}{c}
n-1 \\
2 k+1
\end{array}\right)-\binom{m-1}{2 k+1}\right] a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\right\} .
$$

Therefore, p^{k} divides all terms in (I5) with $k \geq \mathrm{I}$ and this implies that

$$
\begin{aligned}
\mathrm{O} & \equiv d a^{n-1}\left[\binom{n}{\mathrm{I}}-\binom{m}{\mathrm{I}}\right]+2 c b a^{n-2}\left[\binom{n-\mathrm{I}}{\mathrm{I}}-\binom{m-\mathrm{I}}{\mathrm{I}}\right] \equiv \\
& \equiv d a^{n-1}(n-m)+2 c b a^{n-2}(n-m) \equiv a^{n-2}(n-m)(a d+2 c b)\left(\bmod p^{k}\right)
\end{aligned}
$$

and hence that

$$
n \equiv m \quad\left(\bmod p^{h}\right)
$$

since $(a, p)=(a d+2 c b, p)=1$. But (13) also gives

$$
n \equiv m \quad(\bmod p-1)
$$

and so

$$
n \equiv m \quad\left(\bmod p^{h}(p-\mathrm{I})\right) .
$$

But since m and n are both in D , this implies that $n=m$ and the proof is complete.

Theorem 3. The sequence $\left\{u_{n}\right\}$ is uniformly distributed modulo 3^{h} for all $h \geq 1$ if and only if $3 \mid\left(a^{2}+4 b\right),(3, a d+2 b c)=1$ and (a, b) modulo 9 is not one of the pairs $(1,8),(8,8),(4,2),(5,2),(2,5)$, or $(7,5)$.

Proof. It is easily seen that each of the pairs (1,8), $(8,8),(4,2),(5,2)$, $(2,5)$, and $(7,5)$ modulo 9 leads to a sequence $\left\{u_{n}\right\}$ that is uniformly distributed modulo 3 but not uniformly distributed modulo 9 and hence, a fortiori, not
uniformly distributed modulo 3^{h} for any $h \geq 2$. Now the remainder of the proof exactly follows that of Theorem 2 up to (15). Modulo 3^{h}, (15) becomes

$$
\begin{align*}
& d \sum_{k \geq 0} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\left[\binom{n}{2 k+\mathrm{I}}-\binom{m}{2 k+\mathrm{I}}\right]+ \tag{I6}\\
& \quad+2 c b \sum_{k \geq 0} a^{n-2 k-2}\left(a^{2}+4 b\right)^{k}\left[\binom{n-\mathrm{I}}{2 k+\mathrm{I}}-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right] \equiv \mathrm{O} \quad\left(\bmod 3^{h}\right)
\end{align*}
$$

Now if $x \equiv y\left(\bmod 3^{h-1}\right)$ and $k \geq \mathrm{I}$,

$$
\begin{aligned}
& \operatorname{ord}_{3}\left\{\left[\binom{x}{2 k}-\binom{y}{2 k}\right]\left(a^{2}+4 b\right)^{k}\right\} \geq \\
& \quad \geq \operatorname{ord}_{3}[x(x-\mathrm{I}) \cdots(x-2 k+\mathrm{I})-y(y-\mathrm{I}) \cdots(y-2 k+\mathrm{I})]- \\
& \quad-\operatorname{ord}_{3}(2 k)!+k \geq \\
& \quad \geq h-\mathrm{I}-(k-\mathrm{I})+k=h .
\end{aligned}
$$

Thus, it follows that

$$
\begin{equation*}
\left[\binom{x}{2 k}-\binom{y}{2 k}\right]\left(a^{2}+4 b\right)^{k} \equiv \mathrm{c} \quad\left(\bmod 3^{h}\right) \tag{I7}
\end{equation*}
$$

for $k \geq \mathrm{I}$ and the result is trivially true for $k=\mathrm{o}$. Therefore, for any term in (I6) we have

$$
\begin{aligned}
& {\left[\binom{n}{2 k+\mathrm{I}}-\binom{m}{2 k+\mathrm{I}}\left(a^{2}+4 b\right)^{k}=\right.} \\
& =\left\{\left[\binom{n-\mathrm{I}}{2 k+\mathrm{I}}-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right]+\left[\binom{n-\mathrm{I}}{2 k}-\binom{m-\mathrm{I}}{2 k}\right]\right\}\left(a^{2}+4 b\right)^{k} \equiv \\
& \equiv\left[\binom{n-\mathrm{I}}{2 k+\mathrm{I}}-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right]\left(a^{2}+4 b\right)^{k} \equiv \cdots \\
& \equiv\left[\binom{n-m+2 k+\mathrm{I}}{2 k+\mathrm{I}}-\binom{2 k+\mathrm{I}}{2 k+\mathrm{I}}\right]\left(a^{2}+4 b\right)^{k}= \\
& =\left[\binom{n-m+2 k}{2 k+\mathrm{I}}+\binom{n-m+2 k}{2 k}-\binom{2 k}{2 k}\right]\left(a^{2}+4 b\right)^{k} \equiv \\
& \equiv\binom{n-m+2 k}{2 k+\mathrm{I}}\left(a^{2}+2 t\right)^{k}(\bmod 3)^{k} .
\end{aligned}
$$

Hence, equation (16) reduces to

$$
\begin{align*}
& d \sum_{k=0}^{1} a^{n-2 k-1}\left(a^{2}+4 b\right)^{k}\binom{n-m+2 k}{2 k+1}+ \tag{18}\\
& \quad+2 c b \sum_{k=0}^{1} a^{n-2 k-2}\left(a^{2}+4 b\right)^{k}\binom{n-m+2 k}{2 k+1}+ \\
& \equiv a^{n-2}(a d+2 b c)(n-m)+a^{n-4}(a d+2 c b)\binom{n-m+2}{3}\left(a^{2}+4 b\right) \equiv \\
& \equiv a^{n-4}(a d+2 b c)(n-m)\left[a^{2}+\left(a^{2}+4 b\right)(n-m+2)(n-m+\mathrm{r}) / 6\right] \equiv \\
& \equiv 0\left(\bmod 3^{h}\right) .
\end{align*}
$$

Since $3 \mid\left(a^{2}+4 b\right)$, we may define t by

$$
a^{2}+4 b \equiv 6 t \quad\left(\bmod 3^{h}\right)
$$

Also, $(n-m+2)(n-m+1) \equiv 2\left(\bmod 3^{h}\right)$ since $n \equiv m\left(\bmod 3^{h-1}\right)$ and $h \geq 2$. Using this in (18) and observing that $(a, 3)=(a d+2 b c, 3)=\mathrm{I}$, we obtain

$$
(n-m)\left(a^{2}+4 b\right) \equiv 0 \quad\left(\bmod 3^{k}\right)
$$

This implies either $n-m \equiv \mathrm{o}\left(\bmod 3^{h}\right)$ or

$$
2 t \equiv-a^{2} \equiv 2 \quad(\bmod 3)
$$

so that $t \equiv \mathrm{I}(\bmod 3) . \quad$ But $t \equiv \mathrm{I}(\bmod 3)$, implies

$$
a^{2}+4 b \equiv 6 \quad(\bmod 9)
$$

and this is so if and only if (a, b) modulo 9 is one of the pairs (1,8), $(8,8),(4,2),(5,2),(2,5)$, or $(7,5)$ since $(a, b)=\mathrm{I}$. Thus

$$
n \equiv m \quad\left(\bmod 3^{h}\right)
$$

and the remainder of the proof is the same as for Theorem 2.
THEOREM 4. The sequence $\left\{u_{n}\right\}$ is uniformly distributed modulo 2 if and only if a is even, b is odd and c and d have opposite parity. The sequence $\left\{u_{n}\right\}$ is uniformly distributed modulo 2^{h} for $h \geq 2$ if and only if $a \equiv 2$ $(\bmod 4), b \equiv 3(\bmod 4)$, and c and d have opposite parity.

Proof. The truth of the assertion modulo 2 is easily checked simply by considering the various cases. In a similar way, it is easy to see that $\left\{u_{n}\right\}$ is uniformly distributed modulo 4 if and only if $a \equiv 2(\bmod 4)$, $b \equiv 3(\bmod 4)$ and c and d have opposite parity. Since $\left\{u_{n}\right\}$ is uniformly distributed modulo 4 if is uniformly distributed modulo 2^{h} for any $h \geq 2$, it remains only to show that the given conditions are sufficient. The proof again proceeds as in Theorem 2 except that we cannot use Lemma 3 which presumes that p is odd. Using induction, we assume that $\left\{u_{n}\right\}$ is uniformly distributed modulo 2^{h-1} for some $h \geq 3$ and is periodic of period 2^{h-1} modulo 2^{h}. As in the proof of Theorem 2, it will suffice to show that

$$
\begin{equation*}
u_{n} \equiv u_{m} \quad\left(\bmod 2^{h}\right) \quad \text { and } \quad n \equiv m \quad\left(\bmod 2^{h-1}\right) \tag{19}
\end{equation*}
$$

together imply $n \equiv m\left(\bmod 2^{h}\right)$.
Since $a=2 t$ with t odd, $\rho=t+\sqrt{t^{2}+b}, \quad \sigma=t-\sqrt{t^{2}+b}$, and equation (5) becomes

$$
\begin{equation*}
u_{n}=d \sum_{k \geq 0}\binom{n}{2 k+1} t^{n-2 k-1}\left(t^{2}+b\right)^{k}+c b \sum_{k \geq 0}\binom{n-1}{2 k+1} t^{n-2 k-2}\left(t^{2}+b\right)^{k} . \tag{20}
\end{equation*}
$$

Thus, it follows from (19) that $t^{m} \equiv t^{n}\left(\bmod 2^{k}\right)$ and hence that

$$
\begin{align*}
& d \sum_{k \geq 0}\left[\binom{n}{2 k+1}-\binom{m}{2 k+1}\right] t^{n-2 k-2}\left(t^{2}+b\right)+ \tag{2I}\\
& \quad+c b \sum_{k \geq 0}\left[\binom{n-1}{2 k+1}-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right] t^{n-2 k-2}\left(t^{2}+b\right) \equiv 0\left(\bmod 2^{h}\right)
\end{align*}
$$

Since $t^{2} \equiv \mathrm{I}(\bmod 4)$ and $b \equiv 3(\bmod 4), 4 \mid\left(t^{2}+b\right)$. Thus, for $k \geq 1$,

$$
\begin{align*}
& \operatorname{ord}_{2}\left[\binom{n}{2 k+1}-\binom{m}{2 k+1}\right] t^{n-2 k-1}\left(t^{2}+b\right)^{k} \geq \tag{22}\\
& \quad \geq \operatorname{ord}_{2}[n(n-1) \cdots(n-2 k)-m(m-1) \cdots(m-2 k)]- \\
& \quad-\operatorname{ord}_{2}(2 k+1)!+2 k>(h-1)-2 k+2 k=h-1
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
\operatorname{ord}_{2}\left[\binom{n-\mathrm{I}}{2 k+\mathrm{I}}-\binom{m-\mathrm{I}}{2 k+\mathrm{I}}\right] t^{n-2 k-2}\left(t^{2}+b\right)>h-\mathrm{I} . \tag{23}
\end{equation*}
$$

With (2I), these results imply that

$$
(n-m)(d t+c b)=0 \quad\left(\bmod 2^{k}\right)
$$

and hence that

$$
n \equiv m \quad\left(\bmod 2^{k}\right)
$$

since $(t b, 2)=\mathrm{I}$ and c and d are of opposite parity. This completes the induction and the proof.

References

[1] P. Bundschun (1974) - On the distribution of Fibonacci numbers, «Tamkang J.», 5, 75-79.
[2] P. Bundschuh and J. Shiue (1973) - Solution of a problem on the iniform distribution of integers, "Atti Accad. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat.», 55, 172-177.
[3] L. Kuipers and J. Shiue (1972) - A distribution property of the sequence of Fibonacci numbers, «Fibonacci Quart. J.», то, 375-392.
[4] L. Kuipers and J. Shiue (1972) - A distribution property of a linear recurrence of the second order, "Atti Accad. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat.», 52, 6-10.
[5] H., Niederreiter (1972) - Distribution of Fibonacci numbers mod 5^{k}, «Fibonacci Quarterly», ro, 373-374.
[6] J. SHiue and M. Hu (1973) - Some remarks on the uniform distribution of a linear recurrence of the second order, "Tamkang J. Math.》, 4, IoI-Io3.

[^0]: (*) Nella seduta dell'8 febbraio 1975.

