Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Federico Gaeta

Geometrical theory of the vanishing of theta-functions for complex algebraic curves. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 58 (1975), n.1, p. 6-13.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1975_8_58_1_6_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Abstract

Geometria algebrica. - Geometrical theory of the vanishing of theta-functions for complex algebraic curves. Nota II di Federico Gaeta, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - La classica teoria riemanniana dell'annullamento di $\theta_{c} \mathrm{o} \int_{\mathbf{P}}: \mathbf{C} \rightarrow \mathbf{C}^{(12)}$ diventa la discussione algebrico-geometrica delle intersezioni del divisore D_{c} rappresentato da $\theta(u+c)$-o in $\mathrm{J}(\mathrm{C})$ (dipendente da $c+\mathrm{L}$ variabile nella Jacobiana duale $\overrightarrow{\mathrm{J}}_{p-1}(\mathrm{C})$) (cfr. Nota precedente ${ }^{(13)}$) con la superficie fissa $\Sigma=\alpha(\mathrm{C} \times \mathrm{C})$ dove $\alpha: \mathrm{C} \times \mathrm{C} \rightarrow \mathrm{J}(\mathrm{C})$ è definita da $\alpha(x, y)=|y-x|$. Tutta la discussione dipende dall'indice di specialità $s\left|\mathrm{~L}_{p-1}\right|$ di una classe d'equivalenza lineare $\left|\mathrm{L}_{p-1}\right|$ di grado $p-\mathrm{I}$ variabile in $\mathrm{J}_{p-1}(\mathrm{C})$ (cfr. §3); tutti i teoremi classici s'interpretano agevolmente sull'imagine $\beta_{d}(\Sigma)$ per la dilatazione β_{d} indotta da $\mathrm{J}(\mathrm{C}) \rightarrow \mathbf{P}^{\mathrm{N}}\left(\mathrm{N}=d^{p}-\mathrm{I}\right)$ definita dalle $\theta^{d}(d \geq 2)$ annullantisi in O .

Introduction

The classical vanishing theory of $\theta_{c} \int_{\mathrm{P}}: \mathrm{C} \rightarrow \mathbf{C}{ }^{(14)}$ depends on the point $c+\mathrm{L}^{(15)}$ of the torus $\mathbf{C}^{\phi} / \mathrm{L}$ but it depends also very strongly on the origin of integration $\mathrm{P}^{(16)}$. If we allow free variation of both ends of integration x, y, the theory is transformed in a standard intersection problem of two subvarieties Σ and D_{c} of the Jacobian $\mathrm{J}(\mathrm{C})$ of $\mathrm{C} . \Sigma$ is the surface image
(*) Nella seduta dell'ı I gennaio 1975.
(ip) Cfr. Enriques-Chisini, Teoria geometrica delle equazioni..., Vol. IV, Funzioni ellittiche e abeliane, Capitolo III, §3, p. 178.
(13) This paper is the continuation of our previous preparatory Note Dual Jacobians and correspondences (p, p) of valency - I . «Rend. Acc. Lincei», 58 (1), 1975. The notations, and the numeration of paragraphs, definition formulas and footnotes continue from the previous paper.
(14) $\theta \circ \int_{\mathrm{P}}$ indicates for short $\theta\left(\cdots, \int_{\mathrm{P}}^{x} \omega_{j}, \cdots\right)$ where the $\omega_{j}(j=\mathrm{I}, 2, \cdots, p)$ are a normalized basis of holomorphic differentials with normalized Riemann matrix ($\tau \mathbf{I}_{p}$) $\tau \in \mathrm{G}_{p}$ (Siegel's p-upper half-plane) and \mathbf{x}_{p} the $p \times p$ unit matrix). θ is defined in $\mathrm{H}_{1}(\mathrm{C}, \mathbf{C})$. Cfr. A. Weil, Varietés kählériennes, «Act. Sci. Ind.», I267, Hermann Paris 1958.
(15) L, the lattice of periods, is generated by the $2 p$ columns of $\left(\tau \mathrm{I}_{p}\right)$.
(16) Cfr. Lewittes' paper: Riemann surfaces and the theta function, "Acta mathematica», III (1964), $37-61$ for a careful classification of the rôle of the base point $\mathrm{P} \in \mathrm{C}$. The most recent report of the classical subject is RaUch-Farkas, Theta functions with applications to Riemann surfaces, Williams and Wilkins, Co. Baltimore 1974; cfr. also C. L. Siegel, Topics in complex function theory, Vol. II, Interscience J. Wiley, I97I, Ch. IV, § ro, where the reader can find the complete references. The «Bible» is still Krazer's, Thetafunktionen, Leipzig (1903), photocopied by Chelsea, N. Y. in 1970.
of $\mathrm{C} \times \mathrm{C}$ by the maps $\alpha, \int=\lambda_{0} \alpha$ appearing in the commutative diagram:
where $\alpha(x, y)=|y-x| \quad((x, y) \in \mathrm{C} \times \mathrm{C})$ and the vertical arrow λ is the isomorphism of $\mathrm{J}(\mathrm{C})$ with the complex torus $\mathbf{C}^{p} / \mathrm{L}$ given by Abel's Theorem (17). D_{c} is the irreducible divisor of $\mathrm{J}(\mathrm{C})$ characterized by $\theta(u+c)=0{ }^{(18)}$. The discussion has a slight complication due to the fact that Σ (the reduced model of $\mathrm{C} \times \mathrm{C}$, cfr. §4) has a singular point at the origin $\mathrm{o}=\alpha(\Delta) ; \Delta$ is recovered with a "blowing up" $\beta_{d}: \Sigma \rightarrow \mathbf{P}^{\mathrm{N}}\left(\mathrm{N}=d^{p}\right)$ with theta functions of any fixed order $d(\geq 2)$ vanishing at zero. We need to distinguish the two cases: $d \geq 3$ and $d=2$. For $d \geq 3, \beta_{d}(\Sigma)$ is a non singular model of the square $\mathrm{C} \times \mathrm{C}$. In the case $d=2 \beta_{2}(\Sigma)$ is a non singular model of the symmetric square $\mathrm{C}^{(2)}$. In both cases Δ is recovered as the diagonal (resp. as the branch curve) of $\beta_{d}(\Sigma)(d \geq 3)$ (of $\beta_{2}(\Sigma)$). Our discussion on correspondences (cfr. loc. cit. in ${ }^{(13)}$) enables us to summarize the vanishing theory in the statement of Theorem 2 below, and then to characterize geometrically the natural origin $\left|\mathrm{o}_{p-1}\right|$ of $\mathrm{J}_{p-1}(\mathrm{C})$ corresponding to the "vector of Riemann constants " (19) in terms of B. Segre's "first covariant of immersion" of the pair ($\Sigma, \mathrm{R}), \Sigma \subset \mathrm{R}{ }^{(20)}$ where R is the Riemann divisor of $\mathrm{J}(\mathrm{C})$ (cfr. §5). $\left|\mathrm{o}_{p-1}\right|$ is a well-defined distinguished half-canonical divisor class on C such that $\left|p_{1}^{-1}\left(o_{p-1}\right)+p_{2}^{-1}\right| o_{p-1}|+\Delta|$ is Severi's functional equivalence ${ }^{(21)}$ of Σ in the virtual intersection $\Sigma \cdot \mathrm{R}$. Let $\theta_{\mathrm{R}}(u)=0$ be any first order theta representing the Riemann divisor $\theta(u+\mathrm{K}(\mathrm{P}))=\mathrm{o}^{(22)} . \mathrm{R}$ is the natural
(17) The yertical map λ of the diagram (II) is defined mod. L by $\mathrm{D} \mapsto\left(\int_{\gamma} \omega_{1}, \cdots, \int_{\gamma} \omega_{p}\right)$ where γ is any differentiable I-chain on C such that ${ }_{\gamma}{ }_{\gamma}=0$. Abel's Theorem is equivalent to the exactness of the sequence $o \rightarrow \mathscr{L}_{0}(\mathrm{C}) \rightarrow \operatorname{Div}_{0}(\mathrm{C}) \rightarrow \mathbf{C}^{p} / \mathrm{L} \rightarrow 0$.
(18) Classically $\theta: \mathbf{C}^{p} \rightarrow \mathbf{C}$ is identified with the standard theta series in p complex variables attached to $\left(\tau \mathbf{I}_{p}\right)$. Later on we shall assume that the θ 's are defined deductively from the "Appell-Humbert Theorem» as a natural analytic tool to define divisors on $\mathbf{C}^{p} / \mathrm{L}$. Cfr. Weil, loc. cit. in (14).
(19) Cfr. RaUCh-Farkas' book, p. i6i. The distinction between J(C) and its dual $\widetilde{J}(\mathrm{C})$ helps to clarify the rôle of both base points. "The origin» of $\mathrm{J}_{0}(\mathrm{C})$ is clear. The natural origin for $\overrightarrow{\mathrm{J}}(\mathrm{C})$ is the Riemann theta divisor, represented by $\left\{c l\left(\mathrm{E}_{p-1}\right)-c l\left(\mathrm{H}_{p-1}\right)\right\} \cdot\left(\mathrm{E}_{p-1} \in \mathrm{C}^{p-1}\right)$ is a half-canonical class depending on the "marking of the Riemann surface C " (choice of a canonical basis in H_{1} (C; \mathbf{Z}) in J_{0} i.e. by $\mathrm{C}^{(p-1)} / \equiv$ in J_{p-1}. Cfr. §6.
(20) Cfr. B. SEgre, Dilatazioni e varietà canoniche, "Annali di Matematica», 54 (1954), I39-I 55.
(2I) This functional equivalence, originally defined by Severi using a natural limit process, can be interpreted today as the first Chern class (in the "Chow ring» of Σ) of the vector bundle obtained from Σ by blowing up of Σ in R. Cfr. B. Segre, loc. cit.
(22) Cfr. footnotes ${ }^{(16)}$, ${ }^{(18)} \mathrm{K}(\mathrm{P})$ is the vector of Riemann constants depending on the integration origin P.
origin in $\tilde{J}(\mathrm{C})$, thus in our notations $\theta_{c}(u)$ is a theta of characteristic $c+\mathrm{L} \in \mathbf{C}^{\not p} / \mathrm{L}$ representing $\theta_{\mathrm{R}}(u+c)=\mathrm{o}^{(23)}$.

Theorem 2. The intersection cycle $\mathrm{D}_{c} \cdot \Sigma$ (when it is defined) blows up (for $d \geq 3)$ as a correspondence of type $(p, p ;-1)$ of the Jacobian type (cfr. Definition 5). $\mathrm{D}_{c} \cdot \Sigma$ satisfies a linear equivalence

$$
\begin{equation*}
\beta_{d}\left(\mathrm{D}_{c} \cdot \mathrm{\Sigma}\right) \equiv p_{1}^{-1}\left(\mathrm{~L}_{p-1}\right)+p_{2}^{-1}\left(\mathrm{~L}_{p-1}\right)+\Delta \tag{15}
\end{equation*}
$$

in $\beta_{d}(\Sigma)$, where L_{p-1} corresponds bijectively to $c+\mathrm{L} \in \mathbf{C}^{p} / \mathrm{L}$, i.e. $\left|\mathrm{L}_{p-1}\right|$ belongs to our J_{p-1} model of the Jacobian J (C) (cfr. §2).

The discussion depends entirely on the specialty index s of $\left|\mathrm{L}_{p-1}\right|$. In the case $s=0,\left|\mathrm{~L}_{p-1}\right|$ is not effective and conversely. Then $\mathrm{D}_{c} \cdot \Sigma$ exists and it is a fix-point free correspondence (satisfying (15)), i.e. its graph does not meet the diagonal. For $s=1,(15)$ becomes an equality in which $\mathrm{L}_{p-1}, \stackrel{\mathrm{~L}}{p-1}$ are well determined positive divisors of C , complementary with respect to the canonical series: $\beta_{d}\left(\mathrm{D}_{c} \cdot \Sigma\right)=p_{1}^{-1}\left(\stackrel{\rightharpoonup}{\mathrm{~L}}_{p-1}\right)+p_{2}^{-1}\left(\mathrm{~L}_{p-1}\right)+\Delta$. In the case $s=\mathrm{I}, \theta_{c}(0) \neq 0$; for $s=1$

In the case $s \geq 2$ both complementary complete linear systems $\left|L_{p-1}\right|$, $\left|\mathrm{K}-\mathrm{L}_{p-1}\right|$ appearing in (15) have dimension $s-\mathrm{I}>0$. The effective divisors of the l.e.c. of the right hand side of $\left(\mathrm{I}_{5}\right)$ form a complete linear system of positive dimension. Then $\mathrm{D}_{c} \supset \Sigma$, thus $\mathrm{D}_{c} \cdot \Sigma$ does not exist in the strict sense, but Severi's functional equivalence of Σ in $\mathrm{D}_{c} \cdot \mathbf{\Sigma}$ exists and it is still given by (I 5). Moreover θ_{c} vanishes at zero with multiplicity equal to s. The leading term $\Sigma\left(\partial^{s} \theta_{c} \mid \partial u_{1}^{j_{1}} \partial u_{2}^{j_{2}} \cdots \partial u_{p}^{j_{p}}\right) \partial u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}$ of the Taylor expansion of θ at zero is not identically zero. Thus it represents a hypersurface of order s containing the infinitesimal model Γ of C at zero (24). (Cfr. §4).

If the divisor D_{c} of $\mathrm{J}(\mathrm{C})$ is symmetric with respect to the origin then everything in the previous discussion becomes symmetric, because Σ is also symmetric; e.g. for $s=0, \mathrm{I}$ the intersection cycle $\mathrm{D}_{c} \cdot \Sigma$ is a symmetric correspondence, for $s \geq 2$ the linear system of (15) is also symmetric, thus $\left|\mathrm{L}_{p-1}\right|=\left|\mathrm{K}-\mathrm{L}_{p-1}\right|$ i.e. $\left|\mathrm{L}_{p-1}\right|$ is half-canonical. If the origin of $\mathrm{J}_{p-1}(\mathrm{C})$ is chosen to be halfcanonical (for instance for the canonical choice) then the symmetry with respect to the origin is represented faithfully by the $\operatorname{map}\left|\mathrm{L}_{p-1}\right| \mapsto\left|\mathrm{K}-\mathrm{L}_{p-1}\right|$. In this way we can interpret geometrically the discussion of the first order thetas with half-integer characteristics $\left(\mathrm{D}_{c}\right.$ is symmetric iff θ_{c} is even or odd). θ_{c} is
(23) We shall prove Theorem 2 without choosing any origin and later on, as a consequence the mentioned will appear as the natural origin, for $\tilde{\mathrm{J}}_{p-1}(\mathrm{C})$.
(24) The infinitesimal neighborhood of zero in Σ can be identified naturally with a canonical model of (in the standard sense) which appears also canonically in the construction. It helps to understand Andreotti-Mayer's success in finding extra relations among the $\tau_{i j}$ of τ (cfr. footnote ${ }^{(13)}$) expressed by the vanishing of the theta nulls and their partial derivatives at the origin. Cfr. Andreotti-Mayer, On period relations for Abelian integrals on algebraic curves, "Annali della Scuola Normale Superiore di Pisa», $2 I$ (2), 1967.
even or odd according to the parity of the specialty index $s\left(\mathrm{~L}_{p-1}\right){ }^{(25)}$. For $s=\mathrm{o}, \theta_{c}(\mathrm{o}) \neq \mathrm{o}$, for $s=\mathrm{I} \theta_{c}$ vanishes simply at zero and $\beta_{d}\left(\mathrm{D}_{c} \cdot \Sigma\right)$ degenerates in the form $\Delta+p_{1}\left(\mathrm{H}_{p-1}\right)+p_{2}\left(\mathrm{H}_{p-1}\right)$ where H_{p-1} is half-canonical, effective and linearly isolated $\left(s\left(\mathrm{H}_{p-1}\right)=1\right)$.

The importance of the vanishing theory of $\theta_{c} \int_{P}$ is well-known ${ }^{(26)}$. The last updating we know is Lewittes' report (cfr. footnote ${ }^{(16)}$). The Author is preparing a new report ${ }^{(*)}$, from the previously described, algebraic geometric point of view, in which we use the projective non singular embeddings of $\mathrm{J}(\mathrm{C})$ constructed with the d^{p}-dimensional complex vector space of theta functions of order $d{ }^{(27)}$ (i.e. attached to ($\tau \mathbf{1}_{p}$), for any $d \geq 3$ and the Kummer-Wirtinger double covering of $\mathrm{J}(\mathrm{C})$ constructed with the second order theta functions ${ }^{(28)}$. In this Note we summarize the report as follows: $\S 4$ deals with the construction of Σ, showing that the infinitesimal curve Γ (cfr. Introduction) is a canonical model of C in the projective space \mathbf{P}^{p-1} of tangent lines to $\mathrm{J}_{0}(\mathrm{C})$ at zero. In $\S 5$ we outline the proof of Theorem 2. Finally in $\S 6$ we study more closely the choice of the origin in $\mathrm{J}_{p-1}(0)$ which was not needed in the proof.

4. Σ as a model of the reduced product $(\mathrm{C} \times \mathrm{C})_{\triangle}{ }^{(29)}$ and the infinitesimal model Γ on J (C)

If C is not hyperelliptic the restriction of α (or \int) to $\mathrm{C} \times \mathrm{C}-\Delta$ is injective; besides $\alpha(\Delta)=\int(\Delta)=0$; in other words: Σ is a model of the reduced product $(\mathrm{C} \times \mathrm{C})_{\Delta}$ (cfr. footnotes ${ }^{(6)}{ }^{(299)}$. As a consequence both irrational pencils of genus $p\{x \times \mathrm{C}\}_{c \in \mathrm{C}},\{\mathrm{C} \times y\}_{x \in \mathrm{C}}$ of mutually unisecant curves are represented in Σ by pencils of birational models of C all passing through zero.
(25) The use of " half integer characteristics " $\left[\begin{array}{l}\varepsilon \\ \varepsilon^{\prime}\end{array}\right]=\left[\begin{array}{cccc}\varepsilon_{1} & \varepsilon_{i} & \cdots & \varepsilon_{j} \\ \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} & \cdots & \varepsilon_{p}\end{array}\right]$ (cfr. RAUCH-FARKAS; loc. cit.) cannot be made in an intrinsic geometric discussion before establishing an isomorphism $J_{p-1} \approx \mathbf{C}^{p} / L$, equivalent to the choice of an origin in J_{p-1} (Cfr. §6). Such canonical choice will be justified after discussing the case $s \geq 2$ directly in J_{p-1} (cfr. footnote (20)).
(26) Riemann's theory on the vanishing of the theta function has not the same legendary prestige as the theory of the $\zeta(s) \ldots$ but it still inspires lyric prose as this: "... We now come to the pièce de résistance: the theorem of theorems perhaps the crowning glory of Riemann's; creations in this area (or perhaps any area of his creations) the Riemann vanishing theorem', Cfr. Rauch-Farkas, loc. cit., p. i70.
(27) For a proof cfr. Siegel, Moduln Abelscher Funk ionen Nachrichten der Akademie der Wiss. Gesammelte Abhandjungen, vol. III, Springer, 1966.
(28) Wirtinger, Untersuchungen über Thetafunttionen, Teubner (1895).
(29) We call reduced product $(\mathrm{C} \times \mathrm{C})_{\Delta}$ of C (and reduced symmetric square $\mathrm{C}_{\Delta}^{(2)}$) the surface obtained from $\mathrm{C} \times \mathrm{C}$ (resp. from $\mathrm{C}^{(2)}$) by collapsing Δ to a single point. The fact that $(\mathrm{C} \times \mathrm{C})_{\Delta}$ or $\mathrm{C}_{\Delta}^{(2)}$ are algebraic follows from the α-map itself. Another proof was given in $\S 3$ by means of a direct study of the complete linear systems of divisor in $\mathrm{C} \times \mathrm{C}$. Full details will appear in a third forthcoming Lincei Note
(*) Gaeta, Riemann's theta vanishing as a correspondence problem, to appear in the "Contributi del Centro Linceo interdisciplinare per le Scienze matematiche e loro applicazioni".

Moreover the images of $\mathrm{C}_{x}(=x \times \mathrm{C})$ and $\mathrm{C}^{x}(=\mathrm{C} \times x)$ are tangent at zero. The point zero is a singularity of Σ of a very simple type that can be removed by " blowing up " with the thetas of any order $d(\geq 3)$ vanishing at zero. We shall assume in the sequel that C is not hyperelliptic. This implies $p \geq 3$. Let us see how to construct the "infinitesimal model" Γ of C. The maps $x \mapsto|x-\mathrm{P}|, x \mapsto|\mathrm{P}-x|$ for arbitrarily fixed P are always injective. Their images are the curves $\mathrm{C}_{p}, \mathrm{C}^{p}$. Let t_{p} be the tangent line to C_{p} at zero. When we move P in C the image of C by the map $\mathrm{P} \mapsto t_{\mathrm{P}}$ is a conical algebraic surface Cone (Γ) of vertex zero in the tangent vector space $\mathrm{T}_{0}(\mathrm{~J})$. We call Γ the corresponding projection in the projective space \mathbf{P}^{p-1} of tangent lines to J at zero.
Γ is a canonical model in the standard sense ${ }^{(30)}$. It is constructed " canonically" as well in the sense that no arbitrary privileged points of C are used in the construction (31).

The non singular model of $\mathrm{J}(\mathrm{C})$ obtained with the $\theta^{d}(d \geq 3)$ contains a projective model $\Sigma^{(d)}$ of Σ in $\mathbf{P}^{\mathbb{N}}\left(\mathrm{N}=d^{p}-\mathbf{I}\right) ; \Sigma^{(d)}$ has still the same singularity at zero as Σ.

A similar fact happens for $d=2$: the Wirtinger variety contains a model $\Sigma^{(2)}$ of $\mathrm{C}_{\Delta}^{(2)}$ in ($2^{d}-\mathrm{I}$)-projective space. In both cases the "blowing up" of zero by means of all the hyperplanes through zero (which amounts to a projection from zero to a hyperplane in the ambient space) allows us to recover Δ as a subvariety of the non singular projective model $\Sigma^{(d, 0)}(d \geq 3)$ (resp. $\Sigma^{(2,0)}$) are non-singular projective models of $\mathrm{C} \times \mathrm{C}$ (respectively $\mathrm{C}^{(2)}$) containing a non singular model of the diagonal Δ (resp. of the branch curve Δ). The explicit construction can be easily described as follows: Let $\theta_{1}, \theta_{2}, \cdots, \theta_{\mathrm{M}}$ be a basis of the complex vector space of dimension $d^{p}-\mathrm{I}$ consisting of all the theta functions of order d vanishing at zero. The parametric equations

$$
\begin{equation*}
z_{j}=\theta_{j}\left(\cdots, \int_{r}^{y} \omega_{j}, \cdots\right)=f_{j}+\cdots \quad j=\mathrm{I}, 2, \cdots, \mathrm{M} \tag{i6}
\end{equation*}
$$

for $(x, y) \in \mathrm{C} \times \mathrm{C}$ describe $\Sigma^{(d, 0)}$ in ($\left.d^{p}-2\right)$-projective space $(d \geq 2)$, where the z_{j} are homogeneous coordinates of the image point of $(x, y)(d \geq 3)$ or the image point of the divisor $x+y$ in the case $d=2$. In the case $x \neq y$ the meaning of (16) (which is always well-defined) is clear. For $x=y$ the
(30) I.e. associated to a global section of the cotangent bundle. Explicity: if $v_{x} \in \mathrm{~T}_{x}$ (C) is a non zero tangent vector to C at x then $\omega_{1}\left(v_{x}\right), \omega_{2}\left(v_{x}\right), \cdots, \omega_{p}\left(v_{x}\right)$ to the homogeneous coordinates of the canonical embedding of C defined by the ω-basis: $\mathrm{C} \rightarrow \mathbf{P}^{p-1}$ is injective iff C is not hyperelliptic. The curve Γ appears also in Andreotti-Mayers's (cfr. loc. cit., p. 206) using a kind of "GAUSS map" in a particular C_{p}, i.e. by translating to zero the tangent line to C_{P} in a variable $Q \in C_{P}$ with the unique torus translation $Q \mapsto o$. It is trivial to check that Γ is identical with the curve defined in the text without fixing any P in C.
(31) On the contrary, the embeddings C_{P} depend on an embarrassing choice of the arbitrary point $\mathrm{P} \in \mathrm{C}$.
leading terms $f_{j}(j=\mathrm{I}, 2, \cdots, \mathrm{M})$ of the Taylor expansions of the thetas at zero (remember that all vanish at zero) define the image of the diagonal point (x, x) (cfr. §6). In the case $d \geq 3$ the f_{j} are linear forms which can be identified with holomorphic differentials on C , thus the image of Δ is a canonical model of C .

In the case $d=2$ the f_{j} are quadratic differentials on C , thus the image of Δ is a bicanonical model of C.

5. Outline of the proof

The "Theorem of theorems" (cfr. footnote ${ }^{(26)}$) can be updated by showing directly that R is an irreducible divisor of $J(C)$ containing O and symmetric respect to zero, such that its corresponding alternating form $\mathrm{A}: \mathrm{L} \times \mathrm{L} \rightarrow \mathbf{Z}$ (cfr. Weil, loc. cit. in (14)) has its elementary divisors equal to one). The representations of R in the models $\mathrm{J}_{0}, \mathrm{~J}_{p-1}$, were discussed in footnote ${ }^{(19)}$. We need the J_{p-1} representation (cfr. § 2). It is convenient to choose as a temporary origin any half-canonical $\mathrm{O}_{p-1}>0$. Then the isomorphism $\mathrm{J}_{p-1} \xrightarrow{j} \mathbf{C}^{\phi} / \mathrm{L}$ is uniquely defined by $\left|\mathrm{L}_{p-1}\right| \xrightarrow{j}\left(\cdots, \int_{\gamma} \omega_{j}, \cdots\right)$ where $\partial^{\gamma} \gamma=\mathrm{L}_{p-1}-\mathrm{O}_{p-1}$. Then Riemann's "Theorem of theorems" becomes $\theta_{\mathrm{R}}\left(j\left(\mathrm{~L}_{p-1}-\mathrm{O}_{p-1}\right)\right)=0$, iff L_{p-1} is effective (where $\theta_{\mathrm{R}}(u)=0$ represents R i.e. $\theta_{\mathrm{R}}\left(j\left(\mathrm{~L}_{p-1}-\mathrm{O}_{p-1}\right)\right)=\mathrm{o}$ iff there exist a positive $\mathrm{E}_{p-1} \in \mathrm{Div}_{p-1}(\mathrm{C})$ such that $\mathrm{L}_{p-1} \equiv \mathrm{E}_{p-1}$. Let $\mathrm{T}_{c}(\mathrm{R})$ be the divisor of $\mathrm{J}(\mathrm{C})$ represented by $\theta_{\mathrm{R}}(u+c)=\mathrm{o}$. The discussion on the vanishing of $\theta_{\mathrm{R}}\left(c+\int_{x}^{y}\right)=0$ can be done directly in J_{p-1} using only the "Theorem of theorems", without any further use of the " numerical torus (32)" $\mathbf{C}^{p} / \mathrm{L}$. Let us distinguish the two cases $s=s\left(\mathrm{~L}_{p-1}\right)=0, \mathrm{I}$ (the only ones where $\mathrm{D}_{c} \cdot \Sigma$ exists) from those $s \geq 2$ equivalent to $\mathrm{D}_{c} \supset \Sigma$. Case $s=\mathrm{o}$: Then $\theta_{\mathrm{R}}\left(c+\int_{x}^{y}\right)=0$ iff $\beta_{d}(x, y) \in \beta_{d}(\Sigma)$ ($d \geq 3$) is a pair of the following fix-point free correspondence Ω of indices ($p, p ;-1$) of the Jacobian type (cfr. $\S 3)(x, y) \in \Omega$ iff there exists a positive E_{p-1} such that $\mathrm{L}_{p-1}+y-x \equiv \mathrm{E}_{p-1}$. But because of Riemann-Roch's Theorem there exists at least one positive $\mathrm{D}_{p} \equiv \mathrm{~L}_{p-1}+y$ with $\mathrm{D}_{p}-y \ngtr 0$ (because $s\left(\mathrm{~L}_{p-1}\right)=0$. This D_{p} is non special (and as a consequence it is unique) because otherwise $\mathrm{L}_{p-1} \equiv \overrightarrow{\mathrm{D}}_{p}-y>0$ for some $\stackrel{\rightharpoonup}{\mathrm{D}}_{p} \equiv \mathrm{D}_{p}$. This
(32) However we cannot do that here for lack of space. We call the attention however the proof of the case $s=0$ gives an independent algebraic-geometric verification of the fact that the theta function has p zeros on the torus. The usual Riemann's original proof uses the logarithmic indicator of the theta.
shows that the correspondence $\Omega^{-1}: y \mapsto x$ is different form $\beta_{d}(\Sigma)$ thus the second index of Ω is equal to $p . \Omega$ is of the Jacobian type (cfr. $\S 3$) because if $\stackrel{\mathrm{L}}{p-1} \equiv \mathrm{~K}-\mathrm{L}_{p-1}$ we have $\left|\stackrel{\mathrm{L}}{p-1}-\mathrm{O}_{p-1}\right|+\left|\stackrel{\mathrm{L}}{p-1}-\mathrm{O}_{p-1}\right| \equiv \mathrm{o}$ and because of the symmetry of R with respect to $\theta_{\mathrm{R}}(c+u)=0 \Leftrightarrow \theta_{\mathrm{R}}(-c-u)=0$. Thus, the first index of the correspondence is also equal to p. The valency of Ω is equal to -1 because $\mathrm{D}_{p}(y)-y \equiv \mathrm{~L}_{p-1}$ for every $y \in \mathrm{C}$. Summarizing: Ω is defined by $y \mapsto \mathrm{D}_{p}(y)$ where $\mathrm{D}_{p}(y)$ is the unique positive divisor satisfying the previous linear equivalence. The graph of Ω does not meet the diagonal, otherwise we would have $\mathrm{D}_{z}=z+\mathrm{E}_{p-1}$ with $\mathrm{E}_{p-1}>0$, $\mathrm{E}_{p-1} \equiv \mathrm{~L}_{p-1}$ in contradiction with $s\left(\mathrm{~L}_{p-1}\right)=0$. Passing from $\beta_{d}(\Sigma)$ to Σ we have: in the case $s=0, \theta_{c}(0) \neq 0$.

Case $s=\mathrm{I}$. The previous discussion becomes sharper because there is a unique positive $\mathrm{E}_{p-1} \equiv \mathrm{~L}_{p-1}$ and for every y, we have $y \mapsto y+\mathrm{E}_{p-1}$. On the other hand $s\left(\mathrm{E}_{p-1}\right)=\mathrm{I}$ implies the existence of a unique positive complementary $\stackrel{\rightharpoonup}{\mathrm{E}}_{p-1}: \mathrm{E}_{p-1}+\stackrel{\rightharpoonup}{\mathrm{E}}_{p-1} \equiv \mathrm{~K}$. The previous analysis leads to the the more precise equality $\Omega=p_{1}^{-1}\left(\overrightarrow{\mathrm{E}}_{p-1}\right)+p_{2}^{-1}\left(\mathrm{E}_{p-1}\right)+\Delta$. In other words in the case $s=\mathrm{I}$, the intersection cycle still exists in $\beta_{d}(\Sigma)$ and it is a correspondence of the Jacobian type (cfr. Note I) degenerate in the diagonal and the respective projections of two linearly isolated ($p-1$)-divisors complementary with respect to the canonical series. Coming back to Σ and D_{c} we see that in the case $s=\mathrm{I}, \theta_{\mathrm{R}}(c+o)=0$ vanishes with multiplicity equal to one at zero. Moreover the differential $\left(d \theta_{\mathrm{R}}(c+u)\right)_{n=0}$ at the origin cuts Cone (Γ) in $p-1$ generators, obtained from the inverse image of E_{p-1} by the blowing up β_{d}.

The case $s \geq 2$. Then the previous discussions fail because for any pair $(x, y) \in \mathrm{C} \times \mathrm{C}$ we can find some positive $\mathrm{E}_{\not p-1}$ satisfying the previous linear equivalence, thus $\Sigma \subset D_{c}$ or equivalently: $\theta_{R}(c+u)$ vanishes identically in Σ. However a more accurate analysis shows that the, still meaningful! linear system $\left|p_{1}^{-1}\left(\mathrm{~L}_{p-1}\right)+p_{2}^{-1}\left(\mathrm{~L}_{p-1}\right)+\Delta\right|$ represents Severi's functional equivalence in the virtual intersection $\mathrm{D}_{c} \cdot \Sigma$. We shall give the lenghty details in the report.

The classical fact that the multiplicity of $\theta_{\mathrm{R}}(u+c)=\mathrm{o}$ at zero is equal to s at zero can be established also algebraic-geometrically with the following interesting complement.

The leading term φ of order s (cfr. §4), (which is not identically zero) represents a hypersurface of order sin \mathbf{P}^{p-1} containing the canonical curve $\Gamma^{(33)}$. In fact, if if we write the local expressions of the ω_{j} in a local coordinate systems $\omega_{j}=\psi_{d} d z$ and we substitute these values in the Taylor expansion of θ_{R} at the origin: $\theta_{\mathrm{R}}=\varphi_{s}+\varphi_{s+1}$ and then we divide by $d z^{s}$ we see that φ_{s} vanishes at any non zero tangent vector at zero to any C_{p} (or C^{p}): This is equivalent to the identical vanishing of φ_{s} in Γ, q.e.d.
(33) This result is stated for $s=2$ in Andreotti-Mayer, loc. cit.

6. The natural origins of $\int_{p-1}(\mathrm{C})$

The previous discussion, without fixing any particular origin (among the half-canonical $\left.\left|H_{p-1}\right|\right)$ can be applied to the case R, Σ. Since $R \supset \Sigma$ the functional equivalence of Σ in R exists and it has the type $p_{1}^{-1}\left(\mathrm{o}_{p-1}\right)+$ $+p_{2}^{-1}\left(\mathrm{o}_{p-1}\right)+\Delta$ (with $2 \mathrm{o}_{p-1} \equiv \mathrm{~K}$) and $\left|\mathrm{o}_{p-1}\right|$ well defined with speciality index $s \geq 2{ }^{(34)}$. This $\left|o_{p-1}\right|$ is the origin implicitly used in "the vector of Riemann constants '".
(34) The case $s=2$ should be considered as "generic". The $\left|o_{p-1}\right|$ is a complete g_{p-1}^{1} attached to Andreotti-Mayer's quadric of rank 4 through Γ. We shall see in the report that the apparent "uniqueness " of the origin in RiEmANn's comutations depend on the fact that we use a " marked Rifmann surface", i.e. we add a cammical homology basis in $\mathrm{H}_{1}(\mathrm{C} ; \mathbf{Z})$ as an additional structure.

