Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Alexandru Neagu

On the intersection of principal fibre subbundle

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.5, p. 350-354.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_5_350_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria differenziale. - On the intersection of principal fibre subbundle. Nota di Alexandru Neagu, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Questo lavoro verte su qualche problema riguardante l'intersezione dei sottofibrati principali chiusi di uno spazio fibrato principale differenziabile.

Let $P(M, G)$ be a principal differentiable fibre bundle. We denote by π the canonical projection $\mathrm{P} \rightarrow \mathrm{M}$ and let $\mathscr{A}=\left\{\left(\mathrm{U}_{i}, \varphi_{i}\right) / i \in \mathrm{I}\right\}$ be the highest atlas of $\mathrm{P}(\mathrm{M}, \mathrm{G})$, where $\left(\mathrm{U}_{i}, \varphi_{i}\right)$ are allowable charts of P .

A principal fibre bundle $P_{1}\left(M, G_{1}\right)$ is a principal subbundle of $P(M, G)$ if:
a) P_{1} is a submanifold of P, and G_{1} is a Lie subgroup of G;
b) $\pi_{1}=\left.\pi\right|_{\mathrm{P}_{1}}$, where π_{1} is the projection $\mathrm{P}_{1} \rightarrow \mathrm{M}$;
c) $\overline{\mathrm{R}}_{g}=\left.\mathrm{R}_{g}\right|_{\mathrm{P}_{1}}$, where $\overline{\mathrm{R}}_{g}$ and R_{g} are translations on P_{1} and P respectively, defined by $g \in \mathrm{G}_{1}$.

Proposition I [1]. The subset $\mathrm{P}_{1} \subset \mathrm{P}(\mathrm{M}, \mathrm{G})$ is a principal subbundle of $\mathrm{P}(\mathrm{M}, \mathrm{G})$ if, and only if, $\pi_{1}=\left.\pi\right|_{\mathrm{P}_{1}}$ satisfies the following conditions:
a) $\pi_{1}\left(\mathrm{P}_{1}\right)=\mathrm{M}$;
b) $\pi_{1}^{-1}(x)=z \cdot \mathrm{G}_{1}$ if $z \in \pi_{1}^{-1}(x)$ and $x=\pi(z)$;
c) for every point $x \in \mathrm{M}$ there exist an open neighborhood U of x and a differentiable mapping $\sigma: \mathrm{U} \rightarrow \mathrm{P}(\mathrm{M}, \mathrm{G})$ satisfying $\sigma(\mathrm{U}) \subset \mathrm{P}_{1}$ and $\pi_{1} \circ \sigma=i d_{\mathrm{U}}$.

Proposition 2 [3]. $\mathrm{P}_{1}\left(\mathrm{M}, \mathrm{G}_{1}\right)$ is a closed subbundle of $\mathrm{P}(\mathrm{M}, \mathrm{G})$ if and only if there exists a cross section $s: M \rightarrow P / \mathrm{G}_{1}$.

Lemma I . The structure group G of $\mathrm{P}(\mathrm{M}, \mathrm{G})$ is reducible to a closed subgroup $\mathrm{G}_{1} \subset \mathrm{G}$ if, and only if, the following conditions are satisfied:
a) there exist a differentiable manifold V , a representation of G on $\mathrm{V},(g, u) \in \mathrm{G} \times \mathrm{V} \rightarrow g \cdot u \in \mathrm{~V}$, and a point $u_{0} \in \mathrm{~V}$ such that the isotropy group of u_{0} is G_{1}. The orbital mapping $\rho\left(u_{0}\right): \mathrm{G} \rightarrow \mathrm{V}$ defined by $\rho\left(u_{0}\right) \cdot a=a \cdot u_{0}$ is a subimmersion (this condition is obviously satisfied in the finite dimensional case);
b) there exists a morphism $\mathrm{A}: \mathrm{P} \rightarrow \mathrm{V}$ such that $\mathrm{A}(\mathrm{P})=\mathrm{G} u_{0}$ (the orbit of $\left.u_{0}\right)$ and $\mathrm{A}(z \cdot g)=g^{-1} \mathrm{~A}(z)$ for every $z \in \mathrm{P}$ and $g \in \mathrm{G}$.

Proof. Let us consider the map

$$
i_{u_{0}}: a / \mathrm{G} \in \mathrm{G} / \mathrm{G}_{1} \rightarrow i_{u_{0}}\left(a / \mathrm{G}_{1}\right)=a u_{0} \in \mathrm{~V}
$$

(*) Nella seduta del 14 novembre 1974.

We prove that $i_{u_{0}}$ is an immersion. If $a / \mathrm{G}_{1} \neq b / \mathrm{G}_{1}$ then $a^{-1} \cdot b \notin \mathrm{G}_{1}$. Supposing $i_{u_{0}}\left(a / \mathrm{G}_{1}\right)=i_{u_{0}}\left(b / \mathrm{G}_{1}\right)$ it results $a u_{0}=b u_{0}$ and $u_{0}=a^{-1} b u_{0}$, in other words $a^{-1} b \in \mathrm{G}_{1}$. Let λ be the canonical projection $\mathrm{G} \rightarrow \mathrm{G} / \mathrm{G}_{1}$. We have $\rho\left(u_{0}\right)=i_{u_{0}} \mathrm{o} \lambda$ and $\rho\left(u_{0}\right) \cdot a=\left(i_{u_{0}} \circ \lambda\right)(a)=i_{u_{0}}\left(a / \mathrm{G}_{1}\right)=a \cdot u_{0}$. Since $\rho\left(u_{0}\right)$ and λ are analytic it follows that $i_{u_{0}}$ is analytic. Since $g G_{1}$ is a submanifold of G then $\mathrm{T}_{g}\left(g \mathrm{G}_{1}\right)=$ Ker. $\mathrm{T}_{g}\left(\rho\left(u_{0}\right)\right)$; but Ker $\mathrm{T}_{g} \lambda=\mathrm{T}_{g}\left(g \mathrm{G}_{1}\right)$ and hence $\mathrm{T}_{\lambda(g)} i_{u_{0}}$ is injective. On the other hand, the image of $\mathrm{T}_{\lambda(g)} i_{u_{0}}$ coincides with the image of $\mathrm{T}_{g}\left(\rho\left(u_{0}\right)\right)$, and the latter has a topological supplement. Consequently $i_{u_{0}}$ is an immersion.

We shall prove now the first statement of the lemma. Let π_{1} be the restriction of π to $\mathrm{A}^{-1}\left(u_{0}\right)$. We prove that π_{1} satisfies the conditions of Proposition I. Since $\mathrm{G} u_{0}$ is the immersed submanifold of V, it results that A is a morphism of P on $\mathrm{G} u_{0}=\mathrm{G} / \mathrm{G}_{1}$. Assume $z_{1} \in \pi^{-1}(x) \subset P$. Since $\mathrm{A}\left(z_{1}\right) \in \mathrm{G} u_{0}$ there is $g \in \mathrm{G}$ such that $\mathrm{A}\left(z_{1}\right)=g u_{0}$ and:

$$
\mathrm{A}\left(z_{1} \cdot g\right)=g^{-1} \mathrm{~A}\left(z_{1}\right)=g^{-1} g u_{0}=u_{0} .
$$

It follows that $z_{1} g \in \mathrm{~A}^{-1}\left(u_{0}\right)$, so that $\pi_{1}\left(\mathrm{~A}^{-1}\left(u_{0}\right)\right)=\mathrm{M}$.
Let z_{1} and z_{2} be two points of $\mathrm{A}^{-1}\left(u_{0}\right)$ satisfying $\pi_{1}\left(z_{1}\right)=\pi_{1}\left(z_{2}\right)=x$ and $g \in \mathrm{G}$ such that $z_{2}=z_{1} \cdot g$. It follows that $\mathrm{A}\left(z_{2}\right)=\mathrm{A}\left(z_{1} \cdot g\right)=g^{-1} \mathrm{~A}\left(z_{1}\right)$, hence $g^{-1} u_{0}=u_{0}$ and $g \in \mathrm{G}_{1}$. Accordingly $\pi_{1}^{-1}(x)=z_{1} \mathrm{G}$.

Let U^{\prime} be an open neighbourhood in $\mathrm{G} / \mathrm{G}_{1}$ and $\mathrm{W}=i_{u_{0}}\left(\mathrm{U}^{\prime}\right)$. Then W is an open set in $\mathrm{G} u_{0}$ equipped with the induced topology, and $\mathrm{A}^{-1}(\mathrm{~W})$ is open in P. Let $U \subset A^{-1}(W)$ be an open set of P. We have $A(U) \subset W$ and $i_{u_{0}}^{-1}(\mathrm{~A}(\mathrm{U})) \subset \mathrm{U}^{\prime}$. It is clear that for every open set U^{\prime} in $\mathrm{G} / \mathrm{G}_{1}$, there is an open set U in P such that $\left(i_{u_{0}}^{-1} \circ \mathrm{~A}\right)(\mathrm{U}) \subset \mathrm{U}^{\prime}$. Let τ be a local cross-section over U^{\prime}; we have:

$$
\mathrm{U} \subset \mathrm{M} \xrightarrow{s} \mathrm{P}(\mathrm{M}, \mathrm{G}) \xrightarrow{\mathrm{A}} \mathrm{G} u_{0} \xrightarrow{\substack{i_{u_{0}}^{-1}}} \mathrm{G} / \mathrm{G}_{1} \xrightarrow{\tau} \mathrm{G} .
$$

If λ is the canonical projection $\mathrm{G} \rightarrow \mathrm{G} / \mathrm{G}_{1}$ then $\lambda_{0} \tau=i d$. Let us denote $\sigma=i_{u_{0}}^{-1} \circ \mathrm{~A} \circ s, h=\tau \circ \sigma$ and $\eta(x)=s(x) \cdot h(x)$ (for $x \in \mathrm{U}$). Then $\lambda \circ h=$ $=\lambda \circ \tau \circ \sigma=\sigma$ and

$$
\begin{aligned}
& \mathrm{A}(\eta(x))=\mathrm{A}(s(x) \cdot h(x))=[h(x)]^{-1} \cdot \mathrm{~A}(s(x))=[h(x)]^{-1} \cdot\left(i_{u_{0}} \circ \sigma\right)(x)= \\
& =[h(x)]^{-1} \cdot i_{u_{0}}((\lambda \circ h)(x))=[h(x)]^{-1} \cdot i_{u_{0}}\left(h(x) / \mathrm{G}_{1}\right)= \\
& =[h(x)]^{-1} \cdot h(x) \cdot u_{0}=u_{0} .
\end{aligned}
$$

Hence η is a local cross-section over U , with its values in $\mathrm{A}^{\mathbf{- 1}}\left(u_{0}\right)$.
Conversely, let $P_{1}\left(M, G_{1}\right)$ be a closed principal fibred subbundle of $P(M, G)$ and $V=G / G_{1}$. Then there is a global cross-section $s: M \rightarrow P / G_{1}$. Let (U, φ) and (U, ψ) be the bundles charts of $P(M, G)$ and P / G_{1}, respectively.

One can define the morphism $\mathrm{A}: \mathrm{P} \rightarrow \mathrm{V}$ by:

$$
\mathrm{A}(z)=\left[\varphi_{x}^{-1}(x)\right]^{-1} \cdot \psi_{x}^{-1}(s(x)) \quad \text { for } z \in \pi^{-1}(x) \quad \text { and } x \in \mathrm{U}
$$

Here φ_{x} (resp. ψ_{x}) is the restriction of φ (resp. ψ) to $\{x\} \times \mathrm{G}$ (resp. $\{x\} \times \mathrm{G} / \mathrm{G}_{1}$). If $(\overline{\mathrm{U}}, \bar{\varphi})$ and $(\overline{\mathrm{U}}, \bar{\psi})$ are two associated bundles charts such that $\mathrm{U} \cap \overline{\mathrm{U}} \neq \varnothing$ then

$$
\begin{aligned}
& {\left[\bar{\varphi}_{x}^{-1}(z)\right]^{-1} \bar{\psi}_{x}^{-1}(s(x))=\left[a_{\overline{\varphi \varphi}}(x) \varphi_{x}^{-1}(z)\right]^{-1}\left[a_{\bar{\psi} \psi}(x) \psi_{x}^{-1}\right](s(x))=} \\
& =\left[\varphi_{x}^{-1}(z)\right]^{-1}\left[a_{\bar{\varphi}}(x)\right]^{-1} a_{\bar{\psi}}(x) \psi_{x}^{-1}(s(x))=\left[\varphi_{x}^{-1}(z)\right]^{-1} \psi_{x}^{-1}(s(x)) .
\end{aligned}
$$

Where $a_{\bar{\varphi} \varphi}\left(\right.$ resp. $\left.a_{\bar{\psi} \psi}\right)$ is the transition function subordinate of charts (U, φ) and $(\overline{\mathrm{U}}, \bar{\varphi})(\operatorname{resp} .(\mathrm{U}, \bar{\psi})$ and $(\overline{\mathrm{U}}, \psi))$. Here we have used the property: $a_{\bar{\varphi} \varphi}(x)=$ $=a_{\bar{\psi} \psi}(x)$ for the associated bundles charts. Assume $z \in \mathrm{P}$ and $g \in \mathrm{G}$. Thus

$$
\begin{aligned}
& \mathrm{A}(z \cdot g)=\mathrm{A}\left[\varphi_{x}\left(\varphi_{x}^{-1}(z) \cdot g\right)\right]=\left[\varphi_{x}^{-1}\left(\varphi_{x}\left(\varphi_{x}^{-1}(z)\right) \cdot g\right]^{-1} \cdot \psi_{x}^{-1}(s(x))=\right. \\
& =g^{-1} \cdot\left[\varphi_{x}^{-1}(z)\right]^{-1} \varphi_{x}^{-1}(s(x))=g^{-1} \mathrm{~A}(z) . \quad \text { q.e.d. }
\end{aligned}
$$

Consequence I. In the conditions of the Lemma 1 , if $u_{1}, u_{2} \in \mathrm{G} u_{0}$ are the isotropy groups G_{1} and G_{2} respectively, then $A^{-1}\left(u_{1}\right)$ and $A^{-1}\left(u_{2}\right)$ are conjugated subbundles; more precisely there is $g \in G$ such that $\mathrm{A}^{-1}\left(u_{1}\right) \cdot g=$ $=\mathrm{A}^{-1}\left(u_{2}\right)$ and $\mathrm{G}_{2}=g^{-1} \mathrm{G}_{1}$.

Indeed, let a be the element of G such that $u_{2}=a \cdot u_{1}$; we have $\mathrm{A}\left(z \cdot a^{-1}\right)=$ $=a \cdot \mathrm{~A}(z)=a u_{1}=u_{2}$ for every $z \in \mathrm{~A}^{-1}\left(u_{1}\right)$. Then $\mathrm{A}^{-1}\left(u_{1}\right) \cdot a^{-1}=\mathrm{A}^{-1}\left(u_{2}\right)$, and so the assertion is true for $g=a^{-1}$.

Consequence 2. In the conditions of the Consequence $\mathrm{I}, \mathrm{G}=\mathrm{G}_{1}$ if and only if $g \in \mathscr{N}\left(\mathrm{G}_{1}\right)$ (the normalizer of G_{1} in G) or $g \in \mathscr{N}\left(\mathrm{G}_{2}\right)$ (the normalizer of G_{2} in G).

Theorem i. Let $\mathrm{P}(\mathrm{M}, \mathrm{G})$ be a principal fibred bundle and $\mathrm{P}_{1}\left(\mathrm{M}, \mathrm{G}_{1}\right)$, $\mathrm{P}_{2}\left(\mathrm{M}, \mathrm{G}_{2}\right)$ two closed subbundles of $\mathrm{P}(\mathrm{M}, \mathrm{G})$ such that $\mathrm{G}_{1} \cap \mathrm{G}_{2}$ is a Lie subgroup of G . The intersection $\mathrm{P}_{1} \cap \mathrm{P}_{2}$ is a subbundle of P if and only if, $\pi\left(\mathrm{P}_{1} \cap \mathrm{P}_{2}\right)=\mathrm{M}$, where π is the projection of $\mathrm{P}(\mathrm{M}, \mathrm{G})$.

Proof. We have the morphism $\mathrm{A}_{1}: \mathrm{P} \rightarrow \mathrm{G} / \mathrm{G}_{1}$, which satisfies the conditions a) and b) of Lemma I , and $\mathrm{A}_{1}^{-1}\left(e / \mathrm{G}_{1}\right)=\mathrm{P}_{1}\left(\mathrm{M}, \mathrm{G}_{1}\right)$. The group G_{2} acts on G / G_{1} and the isotropy group of $u_{0}=e / \mathrm{G}_{1}$ is $\mathrm{G}_{1} \cap \mathrm{G}_{2}$. Let A be the restriction of A_{1} to P_{2}. Let π_{1} and π_{2} be the restrictions of π to P_{1} and P_{2} respectively. Let α be the fixed point of $\pi_{1}^{-1}(x) \cap \pi_{2}^{-1}(x)$ for any $x \in \mathrm{M}$; then for every $\beta \in \mathrm{P}$ there is $g \in \mathrm{G}_{2}$ such that $\beta=\alpha \cdot g$. We have:

$$
\mathrm{A}(\beta)=\mathrm{A}(\alpha \cdot g)=g^{-1} \mathrm{~A}(\alpha)=g^{-1} \cdot e / \mathrm{G}_{1}=g^{-1} u_{0} \in \mathrm{G}_{2} u_{0} .
$$

Then the morphism A takes its values in the orbit $G_{2} u_{0}$. It follows that $P_{2}\left(M, G_{2}\right)$ is reducible to a subgroup $G_{2} \cap G_{1}$, and the reduced bundle is $\mathrm{A}^{-1}\left(u_{0}\right)=\mathrm{P}_{1} \cap \mathrm{P}_{2}$.

Example I. Let Δ^{1} and Δ^{2} be two distributions on a manifold M, where $\operatorname{dim} \mathrm{M}=n, \operatorname{dim} \Delta^{1} \equiv p_{1}$ and $\operatorname{dim} \Delta^{2}=p_{2} . \quad$ Let G_{α} be the subgroups of
$\mathrm{GL}(n, \mathrm{R})$ defined by:

$$
\begin{aligned}
& \mathrm{G}_{\alpha}=\left\{\left\|a_{j}^{i}\right\| \in \mathrm{GL}(n, \mathrm{R}) / a_{b_{\alpha}}^{i_{\alpha}^{\prime}}=\mathrm{o}\right\} \\
& b_{\alpha}=\mathrm{I}, 2, \cdots, p_{\alpha} \quad ; \quad i_{\alpha}^{\prime}=p_{\alpha}+\mathrm{I}, \cdots, n \quad ; \quad \alpha=\mathrm{I}, 2 .
\end{aligned}
$$

Let $\mathscr{F}(\mathrm{M})$ denote the principal fibred bundle of all linear frames of M and let $\mathscr{G}^{p_{\alpha}}(\mathrm{M})=\mathscr{F}(\mathrm{M}) / \mathrm{G}_{\alpha}$ be the Grassmann bundle of all tangent p_{α}-planes of M. $\mathscr{F}(\mathrm{M})$ and $\mathscr{G}^{{ }^{\propto}} \boldsymbol{\alpha}(\mathrm{M})$ are the associated fibred bundles. The distribution Δ^{α} on M defines a global cross-section:

$$
\Delta^{\alpha}: x \in \mathrm{M} \rightarrow \Delta^{\alpha}(x)=\Delta_{x}^{\alpha} \in \mathscr{G}^{p_{\alpha}}(\mathrm{M})
$$

Let (U, φ) and (U, ψ) be the associated allowable charts on $\mathscr{F}(\mathrm{M})$ and $\mathscr{G}^{\boldsymbol{p}}{ }^{\boldsymbol{\alpha}}(\mathrm{M})$, respectively. Thus we can define the morphism:

$$
\mathrm{A}_{\alpha}: \mathscr{F}(\mathrm{M}) \rightarrow \mathrm{G}^{p_{\alpha}}(n)=\mathrm{GL}(n, \mathrm{R}) / \mathrm{G}_{\alpha}
$$

by

$$
\mathrm{A}_{\alpha}(z)=\left[\varphi_{x}^{-1}(z)\right]^{-1} \cdot \psi_{x}^{-1}\left(\Delta_{x}^{\alpha}\right)
$$

for $z \in \pi^{-1}(x)$ and $x \in \mathrm{U}$, where φ_{x} (resp. ψ_{x}) is the restriction of φ (resp. ψ) to $\{x\} \times \mathrm{GL}(n, \mathrm{R})$ (resp. $\{x\} \times \mathrm{G}^{p_{\alpha}}(n)$). If $(\overline{\mathrm{U}}, \bar{\varphi})$ and $(\overline{\mathrm{U}}, \bar{\psi})$ are the other associated charts such that $x \in \mathrm{U} \cap \overline{\mathrm{U}}$ then:

$$
\begin{aligned}
& {\left[\bar{\varphi}_{x}^{-1}(z)\right]^{-1} \cdot \bar{\psi}_{x}^{-1}\left(\Delta_{x}^{\alpha}\right)=\left[a_{\overline{\varphi \varphi}}(x) \varphi_{x}^{-1}(z)\right]^{-1}\left(a_{\bar{\psi} \psi}(x) \cdot \psi_{x}^{-1}\right)\left(\Delta_{x}^{\alpha}\right)=} \\
& =\left[\varphi_{x}^{-1}(z)\right]^{-1}\left[a_{\bar{\varphi} \varphi}(x)\right]^{-1} \cdot a_{\bar{\psi} \psi}(x) \psi_{x}^{-1}\left(\Delta_{x}^{\alpha}\right)=\left[\varphi_{x}^{-1}(z)\right]^{-1} \cdot \psi_{x}^{-1}\left(\Delta_{x}^{\alpha}\right)
\end{aligned}
$$

where $a_{\bar{\varphi} \varphi}\left(\right.$ resp. $\left.a_{\bar{\psi} \psi}\right)$ is the transition function of $\mathscr{F}(\mathrm{M})$ (resp. $\mathscr{G}^{{ }^{\phi}} \alpha(\mathrm{M})$) corresponding to the charts (U, φ) and ($\overline{\mathrm{U}}, \bar{\varphi}$), (resp. (U, ψ) and $(\overline{\mathrm{U}}, \bar{\psi})$) and we have used the propriety $a_{\bar{\varphi} \varphi}(x)=a_{\bar{\psi} \psi}(x)$ which holds for associated charts.

It follows that A_{α} does not depend on the associated allowable charts. Since $\mathrm{GL}(n, \mathrm{R})$ acts transitively on $\mathrm{G}^{p_{\alpha}}(n)$ and the isotropy group of e / G_{α} is G_{α} then $\mathrm{B}_{\mathrm{G}_{\alpha}}(\mathrm{M})=\mathrm{A}_{\alpha}^{-1}\left(e / \mathrm{G}_{\alpha}\right)$ is a principal fibre subbundle.

It follows that $\mathrm{B}_{\mathrm{G}_{1}}(\mathrm{M}) \cap \mathrm{B}_{\mathrm{G}_{2}}(\mathrm{M})$ is a principal fibre subbundle if, and only if, for every $x \in M, \pi_{1}^{-1}(x) \cap \pi_{2}^{-1}(x) \neq \varnothing$, where π_{1} and π_{2} are the projections of $\mathrm{B}_{\mathrm{G}_{1}}(\mathrm{M})$ and $\mathrm{B}_{\mathrm{G}_{2}}(\mathrm{M})$, respectively.

Example 2. Let $\mathrm{G}(n)$ be the Grassmann manifold of all subspaces of R^{n}. It is well known [2], that $\mathrm{G}(n)$ is a compact manifold and $\mathrm{G}^{p}(n)$ (the Grassmann manifold of p-subspaces of R^{n}) $p=\mathrm{I}, 2, \cdots, n$, is a connexe, open and closed submanifold. The group GL (n, R) acts differentiably on $\mathrm{G}(n)$, and $\mathrm{G}^{p}(n)$ are its orbits.

Let $B_{H}(M)$ be a closed principal subbundle of a G-structure $B_{G}(M)$. If the homogeneous space G / H is isomorphic with an orbit of G with respect to the representation of G on $G(n)$, then $\mathrm{B}_{\mathrm{H}}(\mathrm{M})$ is defined by a distribution Δ
on M (there exists a G-structure $\mathrm{B}_{\mathrm{G}_{1}}(\mathrm{M})$, as in Example I , such that $\left.\mathrm{B}_{\mathrm{H}}(\mathrm{M})=\mathrm{B}_{\mathrm{G}} \cap \mathrm{B}_{\mathrm{G}_{1}}\right)$.

Indeed, since G is reducible to H there is a morphism $A_{0}: B_{G} \rightarrow G / H$ (Lemma i) such that $\mathrm{A}_{0}(z \cdot g)=g^{-1} \mathrm{~A}_{0}(z)$ for all $z \in \mathrm{~B}_{\mathrm{G}}$ and $g \in \mathrm{G}$. Let us choose $\mathrm{G}^{p}(n)$ such that $\mathrm{G} u_{0} \subset \mathrm{G}^{p}(n)$, and let p by the projection of $\mathrm{B}_{\mathrm{G}}(\mathrm{M})$. If $z_{1} \in \pi^{-1}(x)$ (π is the projection of $\mathscr{F}(\mathrm{M})$) and $z_{0} \in p^{-1}(x)$ then there exists $g \in \mathrm{GL}(n, \mathrm{R})$ such that $z_{1}=z_{0} g$. We define the morphism A : $\mathscr{F}(\mathrm{M}) \rightarrow \mathrm{G}^{p}(n)$ by $\mathrm{A}\left(z_{1}\right)=g^{-1} \mathrm{~A}_{0}\left(z_{0}\right)$.

Since $\mathrm{A}_{0}\left(z_{0}\right) \in \mathrm{G}^{p}(n)$, and $\mathrm{G}^{p}(n)$ is an orbit of $\mathrm{GL}(n, \mathrm{R})$, then $g^{-1} \mathrm{~A}_{0}\left(z_{0}\right) \subset \mathrm{G}^{p}(n)$. Hence A takes its values in $\mathrm{G}^{p}(n)$. If $z_{1}=z_{0} g$ with $z_{0} \in p^{-1}(x)$, and $g \in \mathrm{G}$, then $z_{0}=z_{0} g g^{-1}$ and hence

$$
\mathrm{A}\left(z_{1}\right)=g^{-1} \mathrm{~A}_{0}\left(z_{0}\right)=g^{-1} \mathrm{~A}_{0}\left(z_{0} g g^{-1}\right)=g^{-1}\left(g g^{-1}\right) \mathrm{A}_{0}\left(z_{0}\right)=g^{-1} \mathrm{~A}_{0}\left(z_{0}\right)
$$

It follows that A is well defined. The statements of Lemma I are fulfilled and so $\mathscr{F}(\mathrm{M})$ is reducible to G_{1}. We obtain a global cross-section of the fibred bundle $\mathscr{F}(\mathrm{M}) / \mathrm{G}_{1}$. Let $\mathrm{B}_{\mathrm{G}_{1}}(\mathrm{M})$ be the reduced fibre bundle; it follows that $\mathrm{B}_{\mathrm{H}}(\mathrm{M})=\mathrm{B}_{\mathrm{G}} \cap \mathrm{B}_{\mathrm{G}_{1}}$.

References

[I] D. Bernard (1960) - Thése, «Ann. Inst. Fourier», io, 15 1-270.
[2] N. Bourbaki (1967) - Variétés différentielles et analytiques»-Résultats, Hermann, Paris.
[3] S. Kobayashi and K. Nomizu (1965) - Foundations of Differential Geometry, Interscience, New York, vol. I.

