Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Leonede de Michele, Paolo Soardi

Symbolic calculus in $A_{p}(G)$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.1-2, p. 24-30.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_1-2_24_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi matematica. -- Symbolic calculus in $\mathrm{A}_{p}(\mathrm{G})$. Nota $\mathrm{I}^{(*)}$ di Leonede de Michele e Paolo Soardi, presentata dal Corrisp. L. Amerio.

Riassunto. - Si dimostra che solo le funzioni reali analitiche operano nell'algebra $A_{p}(G)$ se G è un gruppo compatto.

I. INTRODUCTION

Let G be a locally compact group and $L^{p}(G)$ the Lebesgue space corresponding to the left-invariant Haar measure on G; we denote by $\|\cdot\|_{p}$ the norm in $L^{p}(\mathrm{G})$ and by p^{\prime} the conjugate exponent of p. It is well known [io] that the set $A_{p}(G)(\mathrm{I}<p<\infty)$ of all functions u on G of the form

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} f_{n} * \check{g}_{n} \tag{I.I}
\end{equation*}
$$

$\left(f_{n} \in \mathrm{~L}^{p}(\mathrm{G}), g_{n} \in \mathrm{~L}^{p^{\prime}}(\mathrm{G}), \check{g}_{n}(x)=g_{n}\left(x^{-1}\right), \sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}\left\|g_{n}\right\|_{p^{\prime}}<\infty\right)$ is a Banach
algebra under pointwise multiplication with the norm:

$$
\|u\|_{\mathrm{A}_{p}(\mathrm{G})}=\inf \sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}\left\|g_{n}\right\|_{p^{\prime}}
$$

where the infimum is taken over all possible representations (I.I) of u. When $p=2, A_{p}(G)=A(G)$, the Fourier algebra of G (see [4]). If $L^{p} \widehat{\otimes} L^{p^{\prime}}$ is the Banach space tensor product of L^{p} and $\mathrm{L}^{p^{\prime}}$, and if P is the application of $\mathrm{L}^{p} \widehat{\otimes} \mathrm{~L}^{p^{\prime}}$ into $\mathrm{C}_{0}(\mathrm{G})$ defined by $\mathrm{P}(f \otimes g)=f * \check{g}, \mathrm{~A}_{p}(\mathrm{G})$ may be identified to the quotient space $L^{p} \widehat{\otimes} \mathrm{~L}^{p^{\prime}} / \operatorname{Ker} \mathrm{P}$, and the norm $\|\cdot\|_{A_{p}}$ is the quotient norm.

As first proved A. Figà-Talamanca ([6], [7]), $\mathrm{A}_{p}(\mathrm{G})$ is related by duality to the convolutors of $L^{p}(G)$; if G is amenable, the dual space of $A_{p}(G)$ is isometrically isomorphic to $\mathrm{C} v_{p}(\mathrm{G})$, the L^{p}-convolutors space, by the relation:

$$
\langle u, \mathrm{~T}\rangle=\sum_{n=1}^{\infty}\left\langle\mathrm{T} f_{n}, g_{n}\right\rangle
$$

where $\mathrm{T} \in \mathrm{C} v_{p}(\mathrm{G})$ and u is as in (I.I) (see [4], [6], [7], [13]). If $p=2$, according to Eymard's notations [4], C $v_{2}(\mathrm{G})$ will be denoted by VN (G).

Let $\mathrm{B}_{p}(\mathrm{G})$ denote the set of all bounded, continuous, complex-valued functions on G which are multipliers of $A_{p}(G) . B_{p}(G)$ is a Banach algebra for the pointwise multiplication wih the usual operator norm. If G is amenable
(*) Pervenuta all'Accademia il i9 luglio 1974.
$\mathrm{A}_{p}(\mathrm{G})$ has a bounded approximate unit (see [5], theorem 3), and the injection of $A_{p}(G)$ in $B_{p}(G)$ is actually an isometry; $B_{p}(G)$ may also be viewed as the dual space of $L^{1}(G)$ with the L^{ϕ}-convolutors norm. The duality is given (see Herz [12]) by

$$
\langle u, f\rangle=\int_{G} f(x) u(x) \mathrm{d} x
$$

for all $f \in \mathrm{~L}^{1}(\mathrm{G})$ and $u \in \mathrm{~B}_{p}(\mathrm{G})$.
When G is amenable $B_{2}(G)=B(G)$, the Fourier-Stieltjes algebra of G; moreover one gets the following continuous injections (see [13]):

$$
\begin{aligned}
& \mathrm{M}(\mathrm{G}) \mathrm{GC} v_{r}(\mathrm{G}) G \mathrm{C} v_{p}(\mathrm{G}) \mathrm{G} \mathrm{VN}(\mathrm{G}) \\
& \mathrm{A}(\mathrm{G}) \mathrm{G} \mathrm{~A}_{r}(\mathrm{G}) \mathrm{G} \mathrm{~A}_{p}(\mathrm{G}) \mathrm{G} \mathrm{C}_{0}(\mathrm{G})
\end{aligned}
$$

if $\mathrm{I}<p \leq r \leq 2$ or $2 \leq r \leq p$.
In this paper we shall often use the following result due to C. Herz [I I]: if H is a closed subgroup of a locally compact group G , then the restriction $\left.\mathrm{A}_{p}(\mathrm{G})\right|_{\mathrm{H}}$ of $\mathrm{A}_{p}(\mathrm{G})$ to H is exactly $\mathrm{A}_{p}(\mathrm{H})$; moreover $\left\|\left.f\right|_{\mathrm{H}}\right\|_{\mathrm{A}_{p}(\mathrm{H})} \leq\|f\|_{\mathrm{A}_{p}(\mathrm{G})}$. If $p=2$, for all $g \in \mathrm{~A}(\mathrm{H})$ there is $f \in \mathrm{~A}(\mathrm{G})$ such that $\left.f\right|_{\mathrm{H}}=g$ and $\|f\|_{\mathrm{A}(\mathrm{G})}=$ $=\|g\|_{\mathrm{A}(\mathrm{H})}$.

We say that a complex-valued function F, defined on a subset E of the complex plane \mathbf{C}, operates in $\mathrm{A}_{p}(\mathrm{G})$ if the composition $\mathrm{F}(f)$ belongs to $\mathrm{A}_{p}(\mathrm{G})$ whenever $f \in \mathrm{~A}_{p}(\mathrm{G})$ and the range of f is in E . If $p=2, \mathrm{E}$ is closed and convex and G is an infinite nondiscrete abelian group it is well known [9] that F operates in $A(G)$ if and orly if F is real analytic in E (and $F(o)=0$ if G is noncompact). If G is an infinite discrete abelian group and E is a neighborhood of the origin, F operates in $A(G)$ if and only if F is real analytic in a neighborhood of zero and $\mathrm{F}(\mathrm{o})=0$. These results have been extended to a large class of noncommutative locally compact groups (see [r], [3], [I6]). If $p \neq 2$, the only results the authors know on this subject are due to Drury [2] and Fisher [8]. Drury proved that only real-analytic functions operate in $A_{p}(G)$ when G is the I-dimensional torus \mathbf{T} or the Cantor group; Fisher proved, by different techniques, the same result for any compact abelian group. In this paper we start from the works of Drury and Rider [I6]; by sharpening their techniques we are able to prove that only real-analytic functions operate in A_{p} (G) if:
I) G is an infinite abelian group,
2) G is an infinite compact group,
3) G is an infinite discrete amenable group containing arbitrarily large abelian subgroups;
4) G is a nondiscrete Lie group (see also [15]).

Therefore the results obtained for $p=2$ in [9] and [16] are extended to the general case. The result 3) is new also for $p=2$.

2. THE COMPACT CASE: PRELIMINARY LEMMAS

Let p be a fixed number, $\mathrm{I}<p<\infty$. Then
Lemma i. Let G be a locally compact amenable group with the following property: there exists $b>0$ such that for some positive number r there is a compact subgroup $\mathrm{G}_{r} \subseteq \mathrm{G}$ and a real-valued function $f_{r} \in \mathrm{~A}_{p}(\mathrm{G})$ such that:

$$
\begin{aligned}
& \left\|f_{r}\right\|_{A_{p}(\mathrm{G})} \leq r \\
& \left\|e^{-i f_{r} \mid \mathbf{G}_{r}}\right\|_{\mathrm{C}_{p}\left(\mathrm{G}_{r}\right)} \leq e^{-b r}
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{Sup}_{f \in \mathrm{~S}_{r}}\left\|e^{i f}\right\|_{\mathrm{B}_{p}(\mathrm{G})} \geq e^{b r} \tag{2.1}
\end{equation*}
$$

where S_{r} is the set of all real-valued functions $f \in \mathrm{~A}_{p}(\mathrm{G})$ of norm not larger than r.
Proof. Since the application $\mathrm{B}_{p}(\mathrm{G}) \rightarrow \mathrm{A}_{p}\left(\mathrm{G}_{r}\right)$ is norm-decreasing (see [5], p. 59. Remark 2) we have, by duality:

$$
\mathrm{I}=\left\langle e^{i f_{r} \mid \mathrm{G}_{r}}, e^{-i f_{r}| |_{\mathrm{G}_{r}}}\right\rangle \leq\left\|e^{i f_{r} \mid \mathrm{G}_{r}}\right\|_{\mathrm{A}_{p}\left(\mathrm{G}_{r}\right)}\left\|e^{-i f_{r} \mid \mathbf{c}_{r}}\right\|_{\mathrm{C}_{v_{p}}\left(\mathrm{G}_{r}\right)} \leq\left\|e^{i f_{r}}\right\|_{\mathrm{B}_{p}(\mathrm{G})} \cdot e^{-b r} .
$$

Hence $\left\|e^{i f_{r}}\right\|_{\mathrm{B}_{p}(\mathrm{G})} \geq e^{b r}$, and (2.1) follows.
Lemma 2. Let G be a compact group and μ a Radon measure on G of norm I. Then

$$
\begin{equation*}
\|\mu\|_{\mathrm{C}_{v_{p}}(\mathrm{G})} \leq\|\mu\|_{\mathrm{VN}(\mathrm{G})}^{\sigma} \tag{2.2}
\end{equation*}
$$

where $\sigma=2 / p^{\prime}$ if $\mathrm{I}<p \leq 2$, and $\sigma=2 / p$ if $2 \leq p<\infty$.
Proof. The inequality (2.2) is a straightforward consequence of the Riesz-Thorin theorem, by interpolating between $\mathrm{L}^{1}(\mathrm{G})$ and $\mathrm{L}^{2}(\mathrm{G})$ if $\mathrm{I}<p \leq 2$, and between $L^{2}(G)$ and $L^{\infty}(G)$ if $2 \leq p<\infty$.

Lemma 3. Let H be a finite abelian group of order q^{α} and exponent q^{β} where q is a prime number. If $\alpha>\beta \mathrm{N}$ for some integer N , then H contains at least N independent elements of order q.

Proof. On account of a well known theorem (see, for instance, [14] I.I3.12) there are n cyclic subgroups H_{i} of order $\left.q^{\gamma_{i}(i=1}, \cdots, n\right)$ with $\mathrm{I} \leq \gamma_{i} \leq \beta$, such that H is isomorphic to the direct product of $\mathrm{H}_{1}, \cdots, \mathrm{H}_{n}$. Since

$$
q^{\alpha}=q^{\sum_{i=1}^{n} \gamma_{i}} \leq q^{n \beta}
$$

it follows $n>\mathrm{N}$. If h_{i} is a generator of H_{i}, the elements $h_{i}^{\gamma_{i}^{\gamma_{i}-1}}$ are n independent elements of order q.

3. The compact case: the main result

Theorem I . Let G be an infinite compact group and F a complex-valued function defined in a closed convex subset E of \mathbf{C}. Then F operates in $\mathrm{A}_{p}(\mathrm{G})$ if and only if F is real-analytic in E .

Proof. Since $\mathrm{A}_{\phi}(\mathrm{G})$ is a regular symmetric algebra, we have only to show, in order to apply the classical proof of Helson, Kahane, Katznelson and Rudin ([9]; see also [17] ch. 6), that there is $b>0$ such that (2.1) holds when r is sufficiently large. We divide the proof into several steps.
I) G has no bounded exponent. Then either of two is true:
a) for every positive integer S there is a cyclic finite subgroup H of order larger than S and, consequently, there is a character on H of order larger than S ;
b) G contains a closed infinite monothetic subgroup H and so the dual of H has not bounded exponent ([17], 2.33).

In both cases there are closed abelian subgroups of G with continuous characters of arbitrarily large order. This allows us to generalize an argument of Drury.

Let $\mathrm{J}_{n}(x)$ be the n-th Bessel function (n relative integer); there is a real number a such that

$$
\begin{equation*}
\mathrm{o}<a<\mathrm{I} / 2 \tag{3.I}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \neq 0}\left|\mathrm{~J}_{n}(a)\right|<\mathrm{J}_{0}(a)<\mathrm{I} \tag{3.2}
\end{equation*}
$$

(see, for instance [18], p. 16).
Let us set $j_{n}=\mathrm{J}_{n}(a)$; there exists $n_{0}>0$ such that

$$
\sum_{|n| \geq n_{0}}\left|j_{n}\right| \leqq\left(\mathrm{I}-j_{0}\right) / 2
$$

Let $\left\{\lambda_{n}\right\}$ be a sequence of positive integers such that

$$
\begin{equation*}
\lambda_{n+1}=2 n_{0} \lambda_{n} \quad n=\mathrm{o}, \mathrm{I}, \cdots ; \tag{3.3}
\end{equation*}
$$

for every $r \geq \mathrm{I}$ Let $\mathrm{N}=[r]+\mathrm{I}$ and

$$
\begin{equation*}
\mathrm{S}=\sum_{n=0}^{\mathrm{N}} n_{0} \lambda_{n}=2 \lambda_{0} n_{0} \sum_{n=0}^{\mathrm{N}}\left(2 n_{0}\right)^{n} \tag{3.4}
\end{equation*}
$$

By the foregoing remark, there exists an abelian closed subgroup $\mathrm{G}_{r} \subseteq \mathrm{G}$ with a continuous character φ_{r} of order larger than S. Since $\varphi_{r} \in A\left(G_{r}\right) \subseteq$ $\subseteq \mathrm{A}_{p}\left(\mathrm{G}_{r}\right)$, there exists $h_{r} \in \mathrm{~A}(\mathrm{G})$ such that $\varphi_{r}=\left.h_{r}\right|_{\mathrm{G}_{r}}$ and $\left\|\varphi_{r}\right\|_{\mathrm{A}\left(\mathrm{G}_{r}\right)}=\left\|h_{r}\right\|_{\mathrm{A}(\mathrm{G})}$.

Hence

$$
\begin{equation*}
\left\|h_{r}\right\|_{A_{p}(\mathrm{G})} \leq\left\|h_{r}\right\|_{\mathrm{A}(\mathrm{G})}=\left\|\varphi_{r}\right\|_{\mathrm{A}\left(\mathrm{G}_{r}\right)}=\mathrm{I} \tag{3.5}
\end{equation*}
$$

Let

$$
g_{r}=\frac{a}{2 i} \sum_{s=1}^{\mathbb{N}}\left(\varphi_{r}^{\lambda_{s}}-\varphi_{r}^{-\lambda_{s}}\right) .
$$

Denote by f_{r} the real-valued function

$$
f_{r}=\frac{a}{2 i} \sum_{s=1}^{\mathrm{N}}\left(h_{r}^{\lambda_{s}}-\bar{h}_{r}^{\lambda_{s}}\right) .
$$

Then $\left.f_{r}\right|_{\mathrm{G}_{r}}=g_{r}$ and, by (3.1) and (3.5),

$$
\left\|f_{r}\right\|_{\mathrm{A}_{p}(\mathrm{G})} \leq\left\|f_{r}\right\|_{\mathrm{A}(\mathrm{G})} \leq r .
$$

We have $e^{\frac{a}{2}\left(\varphi_{r}^{\lambda_{s}}-\varphi_{r}^{-\lambda_{s}}\right)}=\mathrm{U}_{\mathrm{S}}+\mathrm{V}_{\mathrm{S}}$, where

$$
\begin{align*}
& \mathrm{U}_{\mathrm{S}}=\sum_{|n|<n_{0}} j_{n} \varphi_{r}^{n \lambda_{s}} \tag{3.6}\\
& \mathrm{~V}_{\mathrm{S}}=\sum_{|n| \geq n_{0}} j_{n} \varphi_{r}^{n \lambda_{s}} . \tag{3.7}
\end{align*}
$$

For every subset A of $\{1,2, \cdots, N\}$ let us consider the product $\prod_{s \in A} U_{S}$; its Fourier coefficients are, by (3.3) and (3.4), products of the form $\prod_{s \in A} j_{n_{s}}^{s \in A}$; consequently, if $|\mathrm{A}|$ denotes the cardinality of A , one gets

$$
\left\|\prod_{s \in \mathrm{~A}} \mathrm{U}_{\mathrm{S}}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)} \leq j_{0}^{|\mathrm{A}|}
$$

Since $e^{i g_{r}}=\prod_{l=1}^{\mathrm{N}}\left(\mathrm{U}_{l}+\mathrm{V}_{l}\right)$, it follows

$$
\begin{aligned}
\left\|e^{i g_{r}}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)} & \leq \sum_{\mathrm{A}}\left\|\prod_{s \in \mathrm{~A}} \mathrm{U}_{s} \cdot \prod_{s \in \mathrm{~A}} \mathrm{~V}_{s}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)} \leq \sum_{\mathrm{A}}\left\|\prod_{s \in \mathrm{~A}} \mathrm{U}_{s}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)} \cdot \prod_{s \notin \mathrm{~A}}\left\|\mathrm{~V}_{s}\right\|_{\mathrm{A}\left(\mathrm{G}_{r}\right)} \leq \\
& \leq \sum_{l=1}^{\mathrm{N}}\binom{\mathrm{~N}}{l}\left(\frac{\mathrm{I}-\mathrm{J}_{0}}{2}\right)^{\mathrm{N}-l}\left(\mathrm{~J}_{0}\right)^{l}=\left(\frac{\mathrm{I}+\mathrm{J}_{0}}{2}\right)^{\mathrm{N}} .
\end{aligned}
$$

Therefore, by lemma 2

$$
\left\|\partial^{i f_{\gamma}| |_{r}}\right\|_{C_{v_{p}}\left(G_{r}\right)} \leq\left(\frac{\mathrm{I}+j_{j}}{2}\right)^{\mathrm{N} \sigma} .
$$

Thus lemma I applies with $b=\sigma \log \left(\frac{2}{1+j_{0}}\right)$.
2) G has bounded exponent. As proved in [16], proposition 4, there exists a prime number q such that the continuous homomorphic images of G contain abelian subgroups of order q^{α}, with α arbitrarily large.

Therefore by Lemma 3, if $r \geq \mathrm{I}$ and $\mathrm{N}=[r]+\mathrm{I}$, there exists an abelian group H_{r}, contained in some homomorphic image of G , with N independent characters. We denote by $\varphi_{1}, \cdots, \varphi_{N}$, these characters. They can be viewed as coordinate functions on the preimage G_{r} of H_{r} in G (see [16]). Let $h_{s}(s=$ $=\mathrm{I}, \cdots, \mathrm{N})$ be the extension preserving the $\mathrm{A}\left(\mathrm{G}_{r}\right)$-norm (as in the foregoing case) of φ_{s} to the whole of G. We shall distinguish two subcases.

$$
\text { a) } q \geq 3 \text {. }
$$

By (3.1), (3.2) and elementary properties of Bessel functions one gets the following inequalities;

$$
\begin{align*}
& c_{q}=\sum_{k=-\infty}^{+\infty} j_{k q}<\sum_{k=-\infty}^{+\infty} j_{2 k}=\mathrm{I} \tag{3.8}\\
& c_{q}>\sum_{k \neq 0} j_{k} \tag{3.9}
\end{align*}
$$

Let $g_{r}=\frac{a}{2 i} \sum_{s=1}^{\mathrm{N}}\left(\varphi_{s}-\bar{\varphi}_{s}\right)$ and $f_{r}=\frac{a}{2 i} \sum_{s=1}^{\mathrm{N}}\left(h_{s}-\bar{h}_{s}\right)$; as before f_{r} is real-valued and $\left\|f_{r}\right\|_{A_{p}\left(G_{r}\right)} \leq r$.

One gets:

$$
\begin{equation*}
e^{i g_{r}}=\prod_{s=1}^{\mathrm{N}}\left(\sum_{n=-\infty}^{+\infty} j_{n} \varphi_{s}^{n}\right)=\prod_{s=1}^{\mathrm{N}}\left(\sum_{l=0}^{q-1}\left(\varphi_{s}^{l} \sum_{k=-\infty}^{+\infty} j_{k q+l}\right)\right) \tag{3.10}
\end{equation*}
$$

and by (3.9)

$$
\begin{equation*}
\left|\sum_{k=-\infty}^{+\infty} j_{k q+l}\right| \leq \sum_{k \neq 0}\left|j_{k}\right|<c_{q} \quad(l=\mathrm{I}, \cdots, q-\mathrm{I}) . \tag{3.1I}
\end{equation*}
$$

Because of (3.IO) and the independence of the $\varphi_{s},\left\|e^{i g_{r}}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)}$ is the maximum of the numbers

$$
\left|\prod_{s=1}^{\mathrm{N}}\left(\sum_{k=-\infty}^{+\infty} j_{k q+l_{i}}\right)\right|
$$

where l_{i} is any integer between o and $q-\mathrm{I}$. By (3.II)

$$
\left\|e^{i g_{r}}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)} \leq\left(c_{q}\right)^{\mathrm{N}}
$$

Therefore the theorem follows, by (3.8), from Lemmas I and 2 with $b=-\sigma \log \left(c_{q}\right)$.
b) $q=2$.

In this case the theorem follows by a straightforward computation. Let $g_{r}=\frac{a}{2} \sum_{s=1}^{N}\left(\varphi_{s}+\bar{\varphi}_{s}\right)$. Since $\varphi_{s}(x)= \pm \mathrm{I}$ for every $x \in \mathrm{G}_{r}, g_{r}$ may be written as $a \sum_{s=1}^{\mathrm{N}} \varphi_{s}$, and it can be extended as before to a real-valued function f_{r} on

G with $\mathrm{A}_{p}(\mathrm{G})$-norm not larger than r. Therefore

$$
\begin{aligned}
e^{i g_{r}} & =\prod_{s=1}^{\mathrm{N}}\left(\cos \left(a \varphi_{s}\right)+i \sin \left(a \varphi_{s}\right)\right)= \\
& =\prod_{s=1}^{\mathrm{N}}\left(\cos a+i \varphi_{s} \sin a\right)
\end{aligned}
$$

By independence:

$$
\left\|e^{i g_{r}}\right\|_{\mathrm{VN}\left(\mathrm{G}_{r}\right)} \leq \max \left((\cos a)^{\mathrm{N}} \quad, \quad(\sin a)^{\mathrm{N}}\right)
$$

Let $c=\max (\cos a, \sin a)$; then, by Lemma 2

$$
\left\|e^{i f_{r}}\right\|_{\mathrm{CV}_{p}(\mathrm{G})} \leq(c)^{\mathrm{N} \sigma}
$$

By applying again Lemma I , with $b=-\sigma \log (c)$, the theorem is completely proved.

References

[I] De Michele L. and Soardi P. M. - Functions which operate in the Fourier algebra of a discrete group, «Proc. Amer. Math. Soc.», to appear.
[2] Drury S. W. (1969) - Studies in regular algebras, Doctoral dissertation, Cambridge University.
[3] Dunkl C. F. (1969) -.Functions that operate in the Fourier algebra of a compact group, "Proc. Amer. Math. Soc.», 2I, 540-544.
[4] Eymard P. (1964) - L'algèbre de Fourier d'un groupe localement compact, "Bull. Soc. Math. France », 92, 181-236.
[5] Eymard P. (1969) - Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki, n. 367.
[6] FigÀ-Talamanca A. (1964) - Multipliers of p-integrable functions, «Bull. Amer. Math. Soc.», 70, 666-669.
[7] FigÀ-Talamanca A. (1965) - Translations invariant operators in Lp, "Duke Math. J.», 32, 495-50I.
[8] Fisher M. J. - Multipliers and p-Fourier algebras, submitted to Studia Math.
[9] Helson H., Kahane J. P. Katznelson Y. and Rudin W. (1959) - The functions which operate on Fourier transforms, "Acta Math.", IO2, 135-1 57.
[io] Herz C. S. (1965) - Remarques sur la Note précédente de M. Varopoulos, "C. R. Acad. Sci. Paris », 260, 600I-6004.
[II] Herz C. S. (1970) - Le rapport entre l'algèbre A_{p} d'un groupe et d'un sous-groupe, «C. R. Acad. Sci. Paris», 27I, 49I-493.
[12] Herz C. S. (1971) - Une généralization de la notion de transformée de Fourier Stieltjes, McGill University, Montréal.
[13] Herz C. S. (197I) - The theory of p-spaces with an application to the convolution operators, «Trans. Amer. Math. Soc.》, I54, 69-82.
[14] Huppert B. (1967) - Endliche gruppen, Springer Verlag, Berlin.
[15] Malliavin M. P. and Malliavin P. (1972) - Calcul symbolique sur l'algèbre de Wiener centrale $d u \mathrm{SU}_{3}$, Conference on harmonic analysis, lecture notes n. 266, Springer Verlag, Berlin.
[I6] RIDER D. (1971) - Functions which operate in the Fourier algebra of compactgroup, "Proc. Amer. Math. Soc.》, 28, 525-530.
[17] RUDIN W. (1962) - Fourier analysis on groups, Interscience, New York.
[18] Watson G. N. (1922) - A treatise on the theory of Bessel functions, Cambridge.

