ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

JOSEPH W. LORIMER, NORMAN D. LANE

Morphisms of affine Hjelmslev planes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.6, p. 880–885. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_6_880_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Morphisms of affine Hjelmslev planes. Nota di Joseph W. Lorimer e Norman D. Lane, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Si stabiliscono varie proprietà dei morfismi fra piani affini di Hjelmslev e caratterizzazioni degli isomorfismi fra quelli.

i. Introduction

If **P** and **L** are sets and $I \subseteq \mathbf{P} \times \mathbf{L}$ ($\| \subseteq \mathbf{L} \times \mathbf{L}$ is an equivalence relation), then $\mathscr{S} = \langle \mathbf{P}, \mathbf{L}, I \rangle$ ($\langle \mathbf{P}, \mathbf{L}, I, | \rangle$) is an incidence structure (with parallelism). If \mathscr{S}_1 and \mathscr{S}_2 are two incidence structures (with parallelism), then a morphism from \mathscr{S}_1 to \mathscr{S}_2 is a pair (Φ , Ψ), where Φ maps \mathbf{P}_1 to \mathbf{P}_2 , Ψ maps \mathbf{L}_1 to \mathbf{L}_2 , and incidence (and parallelism) is preserved.

Various authors have considered the conditions under which these morphisms are isomorphisms in special classes of incidence structures; cfr. André [1], Satz 3.1; Artmann [2], 1.1; Cronheim [5], p. 2; Dembowski [6]; and Corbas [4].

In this paper, we examine the above problem for affine Hjelmslev planes.

I.I. NOTATION. Let $\langle \mathbf{P}, \mathbf{L}, \mathbf{I}, \parallel \rangle$ be an incidence structure with parallelism. The elements of $\mathbf{P}[\mathbf{L}]$ are points [lines] and are denoted by $P, Q, \dots [l, m, \dots]$. We write $l \parallel m$ for $(l, m) \in \mathbb{I}$ and PIl for $(P, l) \in I$. P, QIl shall mean PIl and QIl. We put $g \wedge h = \{P \in \mathbf{P} \mid PIg, h\}$. If $A \subset \mathbf{P}, |A|$ is the cardinality of the set A. Define $(P, Q) \in \sim_{\mathbf{P}}$ if there exist $l, m \in \mathbf{L}, l \neq m$, such that P, QIl, m. We usually write $P \sim Q$ for $(P, Q) \in \sim_{\mathbf{P}}$. Define $(l, m) \in \sim_{\mathbf{L}}$ (or $l \sim m$) if for every PIl there exists QIm such that $P \sim Q$ and for every QIm there exists PIl such that $Q \sim P$. If $P \sim Q$ $[l \sim m]$ we call P and Q[l and m] neighbours. If P and Q[l and m] are not neighbours, we write $P \sim Q[l \sim m]$.

An affine Hjelmslev plane $\mathcal{H} = \langle \mathbf{P}, \mathbf{L}, \mathbf{I}, || \rangle$, is an incidence structure with parallelism, which satisfies the following system of axioms.

- (A 1) For any two points P and Q there exists $l \in \mathbf{L}$ such that P, QIl. We write l = PQ if $P \sim Q$;
- (A 2) There exist P_1 , P_2 , $P_3 \in \mathbf{P}$ such that $P_i P_j \sim P_i P_k$; $i \neq j \neq k \neq i$; i, j, k = 1, 2, 3;
- (A 3) $\sim_{\mathbf{P}}$ is transitive on \mathbf{P} ;
- (A 4) If PIg, h, then $g \sim h$ iff $|g \wedge h| = 1$;
- (A 5) If $g \sim h$; P, RIg; Q, RIh; and P \sim Q, then R \sim P, Q;

^(*) Nella seduta del 29 giugno 1974.

- (A 6) If $g \sim h$; $j \sim g$; PIg, j; and QIh, j; then $P \sim Q$;
- (A 7) If $g \parallel h$; PIj, g; and $g \nsim j$; then $j \rightsquigarrow h$ and there exists Q such that QIh, j;
- (A 8) For every $P \in \mathbf{P}$ and every $l \in \mathbf{L}$, there exists a unique line L(P, l) such that PIL (P, l) and $l \parallel L(P, l)$.

Let $\mathscr{H} = \langle \mathbf{P}, \mathbf{L}, \mathbf{I}, || \rangle$ be an affine Hjelmslev plane, henceforth called an A. H. plane. If Π and Π' are pencils of parallel lines, we define $\Pi \sim \Pi'$ if each line of Π is a neighbour of some line of Π' . This is an equivalence relation. Let Π_l be the pencil of lines parallel to l. Then $\Pi_l \sim \Pi_m$ if and only if $|l \wedge m| = 1$; cfr. [9], Satz 2.9.

With each A. H. plane \mathscr{H} there is associated an ordinary affine plane $\overline{\mathscr{H}} = \langle \overline{\mathbf{P}}, \overline{\mathbf{L}}, \overline{\mathbb{I}} \rangle$. Here, $\overline{\mathbf{P}}$ and $\overline{\mathbf{L}}$ are the quotient spaces of $\sim_{\mathbf{P}}$ and $\sim_{\mathbf{L}}$, respectively, and $\overline{\mathrm{PI}}l$ if there exists SIl such that $\mathrm{S} \sim \mathrm{P}$. Let $\chi_{\mathbf{P}}$ and $\chi_{\mathbf{L}}$ be the quotient maps of $\sim_{\mathbf{L}}$ and $\sim_{\mathbf{P}}$, respectively: cfr. [9], Satz 2.6.

If $l \in \mathbf{L}$, there exist P, QIl such that P \sim Q, and if P \in P, there exist l, $m \in \mathbf{L}$ such that PIl, m and $l \sim m$; cfr. [9], Satz 2.3 and 2.4.

- I.2. MORPHISMS (cfr. [7], I.2, I.3). Let \mathcal{H}_1 and \mathcal{H}_2 be A. H. planes.
- (a) $f = (\Phi, \Psi) : \mathcal{H}_1 \to \mathcal{H}_2$ is a morphism from \mathcal{H}_1 to \mathcal{H}_2 if the following conditions hold.
 - (i) $\Phi: \mathbf{P}_1 \to \mathbf{P}_2$ and $\Psi: \mathbf{L}_1 \to \mathbf{L}_2$ are maps;
 - (ii) Φ (P₁) I₂ Ψ (l_1) whenever P₁ I₁ l_1 ;
 - (iii) $\Psi(l)_1 \parallel_2 \Psi(m_1)$ whenever $l_1 \parallel_1 m_1$.

In general, we shall write I, \parallel , and L for I_i, \parallel _i and L_i, respectively, for i = 1, 2, unless ambiguity arises.

If f satisfies only (i) and (ii) we shall call f an incidence morphism, or an I-morphism. f is a neighbour-preserving I-morphism if $P \sim Q$ implies $\Phi P \sim \Phi Q$ and $l \sim m$ implies $\Psi l \sim \Psi m$; cfr. [8], p. 136.

- (b) $f = (\Phi, \Psi)$ is an *epimorphism* if Φ and Ψ are both surjective.
- (c) $f = (\Phi, \Psi)$ is a monomorphism if Φ and Ψ are both injective.
- $(d) f = (\Phi, \Psi)$ is an I-isomorphism if f is an I-morphism such that Φ and Ψ are bijective and $P_1 I_1 l_1 \Longleftrightarrow \Phi(P_1) I_2 \Psi(l_1)$. If, in addition, $l_1 \parallel_1 m_1 \Longleftrightarrow \Psi l_1 \parallel_2 \Psi m_1$ then f is an isomorphism. If $\mathcal{H}_1 = \mathcal{H}_2$, then f is an automorphism.

Remark. For ordinary affine planes, the concepts of an I-isomorphism and an isomorphism are identical; cfr. 2.3. However, P. Bacon has constructed an I-isomorphism between two A. H. planes which is not an isomorphism; cfr. [3], Corollaries 3.11 and 3.12.

2. Morphisms of ordinary affine planes

We shall first consider the special case where $\mathscr{H}_1 = \mathscr{A}_1$ and $\mathscr{H}_2 = \mathscr{A}_2$ are ordinary affine planes, and $f = (\Phi, \Psi)$ is an-morphism. In this case, the analysis of morphisms is made easier due to fact that parallelism is defined in terms of incidence. Let I.P. denote the property PII if and only if $\Phi(P)$ I $\Psi(I)$. By using the methods of V. Corbas in [4], one can easily verify the following statements.

- 2.1. LEMMA. (1) If Ψ is injective, then $l \parallel m$ whenever $\Psi(l) \parallel \Psi(m)$;
 - (2) If f is a morphism and Ψ is surjective, then Φ is surjective;
 - (3) If Φ is surjective and f has I.P., then f is a morphism;
 - (4) f has I.P if and only if f is an I-monomorphism;
 - (5) If Φ surjective, then Ψ is surjective.
- 2.2. The main result of Corbas in [4] is the following assertion. If f is an I-epimorphism, then Φ and Ψ are both injective.
- 2.3. From 2.1 and 2.2, we readily obtain the following characterizations of an isomorphism.

Theorem. Let $f=(\Phi\,,\Psi):\mathcal{A}_1\to\mathcal{A}_2$ be an I-morphism. Then the following are equivalent:

- (I) f is an isomorphism;
- (2) f is an I-isomorphism;
- (3) f is an I-epimorphism;
- (4) Φ is surjective;
- (5) Ψ is surjective and f is a morphism.

3. Morphisms of A. H. Planes

3.1. The objective of our paper is the proof of the following result. THEOREM. Let $f = (\Phi, \Psi): \mathcal{H}_1 \to \mathcal{H}_2$ be a morphism. The the following

Theorem. Let $f = (\Phi, \Psi) : \mathcal{H}_1 \to \mathcal{H}_2$ be a morphism. The the following statements are equivalent:

- (1) f is an isomorphism;
- (2) Φ and Ψ are bijective;
- (3) Φ is surjective and Ψ is injective;
- (4) Φ is surjective, $l \parallel m$ whenever $\Psi(l) \parallel \Psi(m)$, and f is neighbour-preserving.

For the proof of our theorem, we first establish some preliminary lemmas.

3.2. Lemma. Let $f = (\Phi, \Psi) : \mathcal{H}_1 \to \mathcal{H}_2$ be an I-morphism. If Φ is surjective then ψ is surjective.

Proof. Let l_2 in \mathscr{H}_2 . Choose P_2 and Q_2 on l_2 such that $P_2 \nsim Q_2$. Then there exist distinct points P_1 and Q_1 in \mathscr{H}_1 such that $\Phi\left(P_1\right) = P_2$ and $\Phi\left(Q_1\right) = Q_2$. Select any line l_1 through P_1 and Q_1 . Since P_1 , Q_1 Il_1 , we have P_2 , Q_2 $I\Psi'\left(l_1\right)$. Hence $\Psi\left(l_1\right) = l_2$.

- 3.3. Lemma. Let $f=(\Phi,\Psi):\mathcal{H}_1\to\mathcal{H}_2$ be a morphism. The the following statements are valid:
 - (1) If Ψ is injective, then $P \sim Q$ implies $\Phi(P) \sim \Phi(Q)$;
 - (2) $\Psi (L(P, l)) = L(\Phi(P), \Psi(l));$
 - (3) If $P \sim Q$ and $\Phi(P) \sim \Phi(Q)$, then $\Psi(PQ) = \Phi(P) \Phi(Q)$;
 - (4) If $\Pi_{l} \sim \Pi_{m}$ and $\Pi_{\Psi(l)} \sim \Pi_{\Psi(m)}$, then $\Phi(l \wedge m) = \Psi(l) \wedge \Psi(m)$.
- 3.4. Lemma. Let $f=(\Phi,\Psi):\mathcal{H}_1\to\mathcal{H}_2$ be a morphism such that Φ is surjective and Ψ is injective. Then
 - (1) $\{Q \mid QI\Psi(l)\} = \{\Phi(P) \mid PIl\};$
 - (2) If $l \sim m$, then $\Psi(l) \sim \Psi(m)$.
- *Proof.* (I) Since f is a morphism, $\{\Phi(P) \mid PII\} \subseteq \{Q \mid QI\Psi(l)\}$. Now take $QI\Psi(l)$. Then there exists P such that $\Phi(P) = Q$. Now $\Psi(l) = L(\Phi(P), \Psi(l)) = \Psi(L(P, l))$, by Lemma 3.3. Since Ψ is injective, l = L(P, l) and so PII.
- (2) Let $l \sim m$. Choose RIY (l). By (1), $R = \Phi(P)$ for some point PIl. Then there exists QIm such that $P \sim Q$. By Lemma 3.2, $\Phi(P) \sim \Phi(Q)$. Hence $\Psi(l) \sim \Psi(m)$.

Similarly, every point of $\Psi(m)$ is a neighbour of some point of $\Psi(l)$.

- 3.5. Lemma. Let $f = (\Phi, \Psi) : \mathcal{H}_1 \to \mathcal{H}_2$ be a morphism. Then the following statements are equivalent:
 - (1) PIl if and only if Φ (P) I Ψ (l);
 - (2) f is a monomorphism;
 - (3) Ψ is injective.

Proof. To show that (I) implies (2), we shall first prove that Φ is injective. Suppose that $P \neq Q$. Then we may choose l such that PIl but QIl. By (I), $\Phi(P)I\Psi(l)$ but $\Phi(Q)I\Psi(l)$. Hence $\Phi(P) \neq \Phi(Q)$. Similarly, we can verify that Ψ is injective.

It is obvious that (2) implies (3). Finally, we shall show that (3) implies (1). Let Ψ be injective. Suppose that $\Phi(P)$ I $\Psi(l)$. Then $\Phi(l) = L(\Phi(P), \Psi(l)) = \Psi(L(P, l))$, by Lemma 3.3. Since Ψ is injective, l = L(P, l) and so PIl.

3.6. Lemma. Let $f = (\Phi, \Psi) : \mathcal{H}_1 \to \mathcal{H}_2$ be a morphism such that Ψ is injective. Then $l \parallel m$ whenever $\Psi(l) \parallel \Psi(m)$.

Proof. Assume that $\Psi(l) \parallel \Psi(m)$. If $l \neq m$, then there exists PII such that PIm. Put j = L(P, m); thus $j \parallel m$. Then $\Psi(j) \parallel \Psi(m)$ and so $\Psi(j) \parallel \Psi(l)$. But PIj, l implies $\Phi(P)$ I $\Psi(j)$, $\Psi(l)$, and so $\Psi(j) = \Psi(l)$. Since Ψ is injective, j = l and so $l \parallel m$.

3.7. Remark. In 1.2, we require an isomorphism to have the properties $\operatorname{PI}{\ell} \Longleftrightarrow \Phi \ (\operatorname{P}) \ \operatorname{I}\Psi \ (\ell) \ \text{ and } \ \ell \parallel m \Longleftrightarrow \Psi \ (\ell) \parallel \Psi \ (m) \ .$

Lemmas 3.5 and 3.6 show that this definition is redundant with respect to both incidence and parallelism.

3.8. Let Aut \mathscr{H} and Aut $\overline{\mathscr{H}}$ denote the groups of automorphisms of \mathscr{H} and $\overline{\mathscr{H}}$; cfr. 1.1.

We call an automorphism $f = (\Phi, \Psi)$ of Aut \mathcal{H} a neighbouring automorphism if $\Phi(P) \sim P$ and $\Psi(l) \sim l$ for each P and l. The set of neighbouring automorphisms shall be denoted by N Aut \mathcal{H} .

In view of Lemma 3.4, if $f \in \text{Aut } \mathcal{H}$, we may put f = (f, f). We shall establish a relationship between Aut \mathcal{H} and Aut $\overline{\mathcal{H}}$.

3.9. THEOREM. The map $h: \operatorname{Aut} \mathcal{H} \to \operatorname{Aut} \overline{\mathcal{H}}(f \to \overline{f})$, where $\overline{f}(\overline{P}) = \overline{f(P)}$ and $\overline{f}(\overline{l}) = \overline{f(l)}$ for any $P \in \mathbf{P}$ and any $l \in \mathbf{L}$, is a group homomorphism and $\chi \circ f = \overline{f} \circ \chi$. Moreover, N Aut \mathcal{H} is the kernel of h and

Aut
$$\mathcal{H}/N$$
 Aut $\mathcal{H} \cong h$ [Aut \mathcal{H}].

Proof. We first show that \overline{f} is well-defined on \mathbf{P} . Let $\overline{P} = \overline{\mathbb{Q}}$. Then $P \sim \mathbb{Q}$, and so $f(P) \sim f(\mathbb{Q})$, by Lemma 3.3. Hence $\overline{f}(\overline{\mathbb{Q}}) = \overline{f(\mathbb{Q})} = \overline{f(P)} = \overline{f(P)} = \overline{f(P)}$. Similarly, Lemma 3.4 shows that \overline{f} is well-defined on \mathbf{L} . Now we show that $\overline{f} \in \operatorname{Aut}$. $\overline{\mathscr{H}}$. Let $\overline{\mathbb{P}}\overline{\mathbb{I}}l$. Then there exists $\operatorname{SI}l$ such that $S \sim P$. Hence f(S) I f(l) and $f(S) \sim f(P)$ and so $\overline{f(P)}$ $\overline{\mathbb{I}}f(\overline{l})$. By definition, \overline{f} is surjective. Then by 2.3, $\overline{f} \in \operatorname{Aut}$ $\overline{\mathscr{H}}$. Next.

$$(\chi \circ f)(P) = \chi(f(P)) = \overline{f(P)} = \overline{f}(\overline{P}) = (\overline{f} \circ \chi)(P)$$

and

$$(\overline{f \circ g}) \, (\overline{P}) = (\overline{f \circ g) \, (P)} = \overline{f} \, (\overline{g \, (P)}) = (\overline{f} \circ \overline{g}) \, (\overline{P}).$$

Hence h is a homomorphism. Finally, $f \in \operatorname{Ker} h$ if and only if $\overline{f(P)} = \overline{P}$ and $\overline{f(l)} = \overline{l}$ if and only if $f(P) \sim P$ and $f(l) \sim l$.

3.10. LEMMA. If $f: \mathcal{H}_1 \to \mathcal{H}_2$ is a neighbour-preserving I-epimorphism, then $\overline{f}: \overline{\mathcal{H}_1} \to \overline{\mathcal{H}_2}$, well-defined as in 3.9 by $\overline{\Phi}(\overline{\mathbb{P}_1}) = \overline{\Phi}(\overline{\mathbb{P}_1})$ and $\overline{\Psi}(\overline{l_1}) = \overline{\Psi}(\overline{l_1})$, is also an I-epimorphism. Hence by 2.3, \overline{f} is an isomorphism.

Proof. Let $\overline{P}_2 \in \overline{\mathscr{H}}_2$; thus $\underline{P}_2 \in \mathscr{H}_2$. Since Φ is surjective, there exists $\underline{P}_1 \in \mathscr{H}_1$ such that $\Phi(P_1) = P_2$. Then $\overline{\Phi}(\overline{P}_1) = \overline{\Phi(P_1)} = \overline{P}_2$. Similarly, $\overline{\Psi}$ is surjective. Finally, let \overline{P}_1 $\overline{l}l_1$; thus there exists $S_1 \in \mathscr{H}_1$ such that S_1 Il_1 and $S_1 \sim P_1$. Then $\Phi(S_1)$ $\underline{I\Psi}(l_1)$ and so $\overline{\Phi(S_1)}$ $\overline{I\Psi}(l_1)$; i.e., $\overline{\Phi}(\overline{S}_1)$ $\overline{I\Psi}(\overline{l}_1)$. Since $\overline{P}_1 = \overline{S}_1$, we have $\overline{\Phi}(\overline{P}_1)$ $\overline{I\Psi}(l_1)$.

- 3.11. LEMMA. If $f: \mathcal{H}_1 \to \mathcal{H}_2$ is a neighbour-preserving I-epimorphism, then
 - (1) $P \sim Q \Longleftrightarrow \Phi(P) \sim \Phi(Q)$;
 - (2) $l \sim m \Longleftrightarrow \Psi(l) \sim \Psi(m)$.

Proof. (1) By 3.10, \overline{f} is an isomorphism, and so

 $P \nsim Q \Longleftrightarrow \overline{P} + \overline{Q} \Longleftrightarrow \overline{\Phi}(\overline{P}) + \overline{\Phi}(\overline{Q}) \Longleftrightarrow \overline{\Phi(P)} + \overline{\Phi(Q)} \Longleftrightarrow \Phi(P) \nsim \Phi(Q).$ We can verify (2) in a similar fashion.

3.12. Proof of Theorem 3.1. Clearly, (I) implies (3). To show that (3) implies (2), we need only to verify that Ψ is surjective, since Φ is injective by Lemma 3.5. Choose $l_2 \in \mathbf{L}_2$. By I.I, we can choose P_2 , Q_2 I l_2 such that $P_2 \nsim Q_2$. Then there exist P_1 and P_2 such that $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$. By Lemma 3.3, $P_1 \leadsto P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ by Lemma 3.3, again $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ implies (4), by 3.3, 3.4 and 3.6. Finally we show that (4) implies (1). By 3.2, $P_2 \bowtie P_2$ is an epimorphism. Let $P_2 \bowtie P_2 \bowtie P_2$ if $P_2 \bowtie P_2$ and $P_2 \bowtie P_2$ is an epimorphism. Let $P_2 \bowtie P_3$ if $P_2 \bowtie P_4$ and $P_2 \bowtie P_4$ but $P_2 \bowtie P_4$ but $P_3 \bowtie P_4$ but $P_4 \bowtie P_4$ but $P_4 \bowtie P_4$ by (A3), and by 3.11, $P_4 \bowtie P_4$ by (A3), and by 3.3, $P_4 \bowtie P_4$ by (A4). Hence $P_4 \bowtie P_4$ by (A5), and by 3.11, and by 3.3, $P_4 \bowtie P_4$ by (A6).

Next we wish to show that Ψ is injective. Let $l, m \in \mathcal{X}_1, l \neq m$. If $l \neq m$, then $\Psi l \neq \Psi m$, and $\Psi l \neq \Psi m$. Next, suppose $l \neq m$ and $l \parallel m$. Choose PIl and $j \sim l$ such that PIj. By (A7), $j \sim m$, and there is a point QIm, j; and Q \neq P. Since Φ is injective Φ P \neq Φ Q. By 3.11, $\Psi j \sim \Psi l$, Ψm . Since Φ PI Ψl , Ψj ; and Φ QI Ψm , Ψj , we obtain $\Psi l \neq \Psi m$, otherwise Ψl would be a neighbour of Ψj .

Assertion (I) of Theorem 3.1 now follows from 3.5.

Remark. The Authors have show that an automorphism of a Desarguesian A.H. plane \mathscr{H} with a coordinate ring H can be represented by a non-singular semi-linear transformation of the left module structure on $H \times H$. This result can also be derived by embedding \mathscr{H} in the projective Hielmslev space over the free module $H \times H \times H$: cfr. ([8], 2 and 8).

BIBLIOGRAPHY

- [1] J. André (1969) Über Homorphismen projektiver Ebenen, «Abh. Math. Sem. Univ. Hamburg», 34, 98–114.
- [2] B. ARTMANN (1971) Dessarguessche Hjelmslev-Ebenen n-ter Stufe, «Mitt. Math. Sem. Univ. Giessen », 1-19.
- [3] P. BACON (1971) Hjelmslev planes with small invariants, Master's thesis, University of Florida, Gainsville.
- [4] V. CORBAS (1965) La non esistenza di omomorfismi propri fra piani affini, « Rend. Mat. e Appl. », 24, 373-376.
- [5] A. CRONHEIM (1965) T-groups and their geometry, « Illinois J. Math. », 9, 1-30.
- [6] P. DEMBOWSKI (1959) Homomorphismen von λ-Ebenen, «Arch. Math. », 10, 46-50.
- [7] D. DRAKE (1973) The structure of n-uniform translation Hjelmslev planes, «Trans. Amer. Math. Soc. », 175, 249-282.
- [8] H. H. LÜCK (1970) Projective Hjelmslevräume, « J. Reine Angew. Math. », 243, 121-158.
- [9] H. LÜNEBURG (1962) Affine Hielmslev-Ebenen mit transitiver Translationgruppe, «Math. Z.», 79, 260-288.