ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Edgar Berz

Invertible convolutions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.6, p. 904–911.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_6_904_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Calcolo operazionale.** — *Invertible convolutions*. Nota di Edgar Berz, presentata ^(*) dal Socio G. SANSONE.

RIASSUNTO. — Sia D' lo spazio delle distribuzioni in R", dotato della topologia di Schwartz e sia L(D') lo spazio degli operatori lineari continui $D' \rightarrow D'$. In L(D') gli operatori che sono commutabili con tutte le traslazioni formano una sottoalgebra A(D') che è isomorfa con l'algebra di convoluzione delle distribuzioni finite. Usando questo isomorfismo e un teorema di Paley-Wiener-Schwartz si prova che gli operatori $A \in A(D')$, che sono invertibili, sono unicamente le traslazioni e multipli non nulli di esse.

As is well known, the finite distributions on \mathbb{R}^n form an algebra E' with respect to the convolution-product; Dirac's measure δ is the unit of this algebra. We propose to determine the invertible elements in this algebra.

The algebra E'(*) is isomorphic to the algebra A(D') of the continuous linear operators $A: D' \rightarrow D'$ of the distribution-space D', which commute with all translations. Therefore the knowledge of the invertible $S \in E'$ leads to the invertible operators $A \in A(D')$. It turns out that these are exactly the translations and the non-zero multiples of them.

I. BASIC CONCEPTS

Let

 $\mathbf{E} = \mathbf{C}^{\infty}(\mathbf{R})$, $\mathbf{D} = \mathbf{C}^{\infty}_{0}(\mathbf{R})$.

A sequence in E tends to zero in the sense of Schwartz, if it converges to zero uniformly on every compact set and if the same is true for every derivative of this sequence. A sequence in D tends to zero in the sense of Schwartz, if it does so as a sequence of E and if all its functions are concentrated on a fixed compact set.

The spaces D', E'.

(I)

A linear form T on D is a distribution, if

 $\lim T(\varphi_i) = 0$

for every Schwartz-sequence $\{\varphi_i\}$. The linear space of all distributions shall be denoted by D'

 $S \in D'$ is *finite*, if supp S is compact. Every finite $S \in D'$ can be extended to a linear form \tilde{S} on E in such a way, that

$$\tilde{S}(\chi_i) \rightarrow 0$$

(*) Nella seduta del 19 giugno 1973.

for every Schwartz-sequence $\{\chi_i\}$ in E. This extension is unique and it is given by

$$S(\chi) = S(\alpha\chi),$$

where α is a (fixed) test function, which equals 1 on a neighbourhood of supp S.

On the other hand, every linearform S_1 on E, which is continuous in the sense of (1), is the extension \tilde{S} of a finite $S \in D'$.

The space of all finite $S \in D'$ shall therefore be denoted by E'.

Convolutions.

For S, $T \in E'$ we define the convolution S * T by

 $(S * T) (\varphi) = S_{t_1}(T_{t_2}(\varphi(t_1 + t_2))),$

where $\varphi \in D$. S * T is again finite, we have

supp $S * T \subseteq supp S + supp T$.

The extension of S * T to R is given by

(2)
$$\widetilde{S*T}(\chi) = \widetilde{S}_{t_1}(\widetilde{T}_{t_2}(\chi(t_1+t_2)))$$

In the sequel we will drop \sim .

As is well known, the convolution \ast makes E' into a commutative algebra with unit $\delta,$ where

 $\delta(\varphi) = \varphi(o).$

Fourier-Transformation.

For $S \in E'$ the Fourier-transform $\hat{S} = \psi$ is defined by

$$\psi(s) = \mathcal{S}_t(e^{-\mathrm{ist}}) \quad \text{for} \quad s \in \mathcal{C}.$$

By virtue of the continuity of S ψ is an entire function. The '' Fourier-Transformation ''.

$$F: S \rightarrow \hat{S}$$

has the following properties:

i) F is linear,

ii) F(S*T) = F(S) F(T).

ii) is checked easily by means of (2).

In addition, the following "Inversion-Formula" holds:

iii)
$$\langle S, \varphi \rangle = \langle \hat{S}, \hat{\varphi} \rangle$$
,

where

$$\langle \mathbf{S}, \boldsymbol{\varphi} \rangle = \mathbf{S}(\boldsymbol{\varphi}) \quad , \quad \hat{\boldsymbol{\varphi}} = \frac{\mathbf{I}}{2\pi} \int_{\mathbf{R}} e^{\mathbf{i}\mathbf{s}t} \boldsymbol{\varphi}(t) \, \mathrm{d}t \, ,$$

$$\langle \hat{\mathbf{S}}, \hat{\boldsymbol{\varphi}} \rangle = \int_{\mathbf{R}} \hat{\mathbf{S}} \hat{\boldsymbol{\varphi}} \, \mathrm{d}s \, .$$

[595]

In particular iii) shows that F is injective. If we introduce the linear space Z = F(E'), F becomes a linear isomorphism of E', Z.

The functions $\psi \in Z$ can be characterized by the

Theorem of Paley-Wiener-Schwartz.

An entire function $\psi(s)$ is the Fourier-transform of some $S \in E'$, if and only if an estimation

(3)
$$|\Psi(s)| \leq C(I+|s|)^{p} e^{a|\tau|} , \quad s = \sigma + i\tau,$$

holds, where C, a are positive constants, p a nonnegative integer.

For later application we give a simple example:

For $h \in \mathbb{R}$ we define the distribution δ_h by

$$\delta_k(\varphi) = \varphi(h).$$

Clearly supp $\delta_{k} = \{h\}$. The Fourier-transform of δ_{k} is given by

$$\delta_{k}(e^{-\mathrm{ist}}) = e^{-\mathrm{ish}}$$

2. INVERTIBLE CONVOLUTIONS

Under F the convolution-algebra E' is isomorphic to the algebra Z with its natural operations. In particular this implies that E' has no divisors of zero, a statement of the Titchmarsh type. Of course, we could use this fact to imbed E' into its quotient-field, following the lines of Mikusinski.

From this point of view the question arises which elements S of the algebra E' are invertible in the sense that there exists a $T \in E'$ such that

(4)
$$S*T = \delta$$
.

Let us assume in the sequel that S is invertible, and derive necessary conditions for S.

(4) implies for the Fourier-transforms \hat{S} , \hat{T} :

$$\hat{S}\hat{T} = I.$$

Thus the entire function $\psi=\hat{S}$ has no zeros in C. It therefore can be represented in the form

(5)
$$\psi(s) = e^{h(s)},$$

where h(s) is an entire function.

On the other hand, ψ satisfies the estimation (3) of Paley-Wiener-Schwartz. In this inequality the right hand side can be enlarged by

$$e^{c|s|+d}$$

where c, d are positive constants, sufficiently large. We then obtain the condition

 $|e^{h(s)}| \leq e^{c|s|+d},$

which is equivalent to

(6) $\operatorname{Re} h(s) \leq c |s| + d.$

Information about h itself is available from

Caratheodory's Inequality.

Let f(z) be an entire function, satisfying f(o) = o, R > o,

$$M(R) = Max \{ \operatorname{Re} f(z) : |z| = R \}.$$

Then for every $z \in C$ with |z| = r < R we have

$$|f(z)| \leq M(\mathbf{R}) \frac{2r}{\mathbf{R}-r}$$
.

(See Titchmarsh [6], page 174).

If for a given z we take R = 2r, we obtain

(7)
$$|f(z)| \leq 2 \operatorname{M}(2r).$$

We apply (7) to the function h, assuming, that h(0) = 0: in view of (6) we have

$$\mathbf{M}(\mathbf{R}) \leq c\mathbf{R} + d,$$

hence by (7):

$$|h(s)| \leq 4c |s| + 2d.$$

Thus h is of linear growth at most, hence by Liouville's Theorem h is linear, say

$$h(s) = \mathbf{A}s + \mathbf{B},$$

where A, B are complex constants.

If $h(0) \neq 0$, we conclude that h - h(0) is linear and therefore h itself. There remains the question which constants A, B may really occur in (8). By (3) we have the condition that

$$\left| e^{\mathbf{A}s+\mathbf{B}} \right| \leq \mathbf{C} \left(\mathbf{I} + \left| s \right| \right)^{p} e^{a\left| \tau \right|},$$

for $s = \sigma + i\tau$. In particular, if we put $\tau = 0$, we must have

$$|e^{A\sigma+B}| \leq C(I+|\sigma|)^{p}.$$

Assuming $A = \alpha + i\beta$ this is equivalent to

$$|e^{\alpha\sigma}|e^{B}| \leq C(I+|\sigma|)^{p}$$
 for $\sigma \in \mathbb{R}$.

But this estimation can hold only, if $\alpha = 0$.

The conclusion is that h is of the form

$$h(s)=i\beta s+\mathrm{B},$$

where β is a real constant, B a complex one. Hence ψ itself has the form

$$\psi(s) = ce^{i\beta s}$$
, where $c \in \mathbb{C} - \{0\}$.

By the example, given in 1), ψ is nothing else than the Fourier-transform of

 $S = c\delta_h$, where $h = -\beta$.

Thus every invertible $S \in E'$ is of this form. Conversely, every such S is invertible, with

$$S^{-1} = c^{-1} \delta_{-h}$$
.

The result is the following

THEOREM 1. A distribution $S \in E'$ is invertible if and only if

 $S = c\delta_h$,

where $h \in \mathbb{R}$, $c \in \mathbb{C} - \{o\}$.

In the last proof it was sufficient to know that the Fourier-transform ψ of S has no zeros in C. We therefore have the following

COROLLARY 1. A distribution $S \in E'$ is invertible if and only if its Fouriertransform \hat{S} has no zeros in C.

For the space Z itself we have the following

COROLLARY 2. All functions $\psi \in \mathbb{Z}$ have zeros in C except the functions of the form

 $ce^{i\beta s}$, $c \in \mathbb{C} - \{0\}$, $\beta \in \mathbb{R}$.

3. GENERALIZATION TO SEVERAL VARIABLES

The last Theorem may be generalized to the convolution-algebra $E'(\mathbb{R}^n)$, consisting of the finite distributions S on \mathbb{R}^n , $n \ge 2$.

For such a distribution the Fourier-transform $\psi = \hat{S}$ is defined by

 $\psi(s) = \mathcal{S}(e^{-\mathrm{i}st}),$

where $s = (s_1, \dots, s_n) \in \mathbb{C}^n$, $t = (t_1, \dots, t_n) \in \mathbb{R}^n$,

$$st = \sum_{1}^{n} s_{i} t_{i}.$$

 $\psi(s)$ is an entire function in s_1, \dots, s_n .

The Fourier-transformation $F: S \to \hat{S}$ is an algebra-isomorphism of E'(*)and $Z_n = F(E'(\mathbb{R}^n))$. According to the Paley-Wiener-Schwartz Theorem in its general form, the functions $\psi \in Z_n$ are characterized by the validity of an estimation

(9)
$$|\psi(s)| \leq C(I + |s|)^{p} e^{a|\tau|}$$

where

$$|s| = \left(\sum_{1}^{n} |s_{i}|^{2}\right)^{1/2}$$
, $|\tau| = \left(\sum_{1}^{n} \tau_{i}^{2}\right)^{1/2}$.

THEOREM 2. A distribution $S \in E'(\mathbb{R}^n)$ is invertible, if and only if

$$S = c\delta_k$$
,

where $c \in \mathbb{C} - \{0\}$, $h = (h_1, \dots, h_n) \in \mathbb{R}^n$.

Proof. Let $S \in E'(\mathbb{R}^n)$ be invertible. Then $\psi = \hat{S}$ has no zeros in \mathbb{C}^n , hence

$$(10) \qquad \qquad \psi(s) = e^{h(s)} ,$$

where h is an entire function in $s = (s_1, \dots, s_n)$.

We consider the function ψ_1 in the complex variable z, defined by

$$\psi_1(z) = \psi(z, \cdots, z)$$

By virtue of (9) ψ_1 belongs to Z and by Corollary 2 ψ_1 is of the form

$$\psi_1(z) = e^{\gamma z + \delta}$$
,

where γ , δ are constants. Together with (10) it follows that h(s) is linear, say

$$h(s) = \sum_{j=1}^{n} \mathbf{A}_{j} s_{j} + \mathbf{B} .$$

Since the function

$$s_1 \rightarrow \psi(s_1, 0, \cdots, 0) = e^{A_1 s_1 + B}$$

belongs to Z, we conclude from the case n = 1, that

$$A_1 = i\beta_1$$
, $\beta_1 \in \mathbb{R}$.

Applying this argument to every s_j , we obtain

$$\psi(s) = c e^{i\left(\sum_{1}^{n} \beta_{j} s_{j}\right)}, \qquad \beta_{j} \in \mathbb{R} \ , \ c = e^{\mathbb{B}}.$$

Therefore S itself has the form

$$S = c\delta_h$$
, $h = (h_1, \dots, h_n)$, $h_i = -\beta_i$,

which proves our assertion.

4. The algebra A(D)

Let L(D) be the linear space of the linear operators

$$A: D \rightarrow D$$
,

which are continuous in the sense that $A\varphi_i \rightarrow o$ for every Schwartzsequence $\{\varphi_i\}$. With respect to the composition-product $A_1 A_2$ the space L(D) is a (noncommutative) algebra.

63. — RENDICONTI 1973, Vol. LIV, fasc. 6.

[599]

Especially every translation-operator τ_{μ} ,

$$(\tau_h \varphi)(t) = \varphi(t+h),$$

 $h \in \mathbb{R}$, belongs to $L(\mathbb{D})$.

Next we consider the subalgebra A(D) of all operators $A \in L(D)$, which commute with the translations, i.e.

$$\tau_h \mathbf{A} = \mathbf{A} \tau_h$$

for all $h \in \mathbb{R}$. They correspond to the distributions $S \in E'$ in the sense of the following proposition.

PROPOSITION 1. Every
$$A \in A(D)$$
 has a unique representation

(II)
$$(A\varphi)(s) = S_t(\varphi(s+t))$$

by a distribution $S \in E'$. Conversely (11) defines an operator $A \in A(D)$ for every $S \in E'$.

Clearly S is unique, since for s = 0 we must have

$$S(\varphi) = (A\varphi) (o).$$

Conversely it can be shown that, by this equation, a distribution $S \in E'$ is given which represents A in the sense of (11).

Let us now consider the mapping $\sigma: A \to S$, which associates with $A \in A(D)$ the representing $S \in E'$. Clearly σ is a linear isomorphism. In addition, by a simple computation it can be shown that

$$\sigma\left(A_{1}A_{2}\right)=S_{1}*S_{2},$$

that means σ is an algebra-isomorphism. Thus we have

PROPOSITION 2. The algebras A(D) and E' are isomorphic under σ .

Hence $A\left(D\right)$ is commutative and has no divisors of zero. The isomorphism σ leads also to

THEOREM 3. The invertible operators $A \in A(D)$ are exactly the operators

 $A = c\tau_h$,

 $h \in \mathbb{R}, c \in \mathbb{C} - \{o\}.$

Indeed, these operators A correspond to the distributions $c\delta_{k}$.

5. The algebra A(D')

Let L(D') denote the linear space of the linear operators

$$B: D' \rightarrow D'$$
,

which are continuous in the sense that $BT_i \rightarrow 0$ for every sequence of distributions $T_i \in D'$, converging to zero.

Every $A \in L(D)$ generates an operator $B \in L(D')$ as its transposed B = A', i.e. by the formula

$$\langle BT, \varphi \rangle = \langle T, A\varphi \rangle$$
.

The mapping $k: A \rightarrow A'$ therefore is a linear isomorphism of L(D) and L(D'). In addition we have

$$\left(\mathbf{A_1} \, \mathbf{A_2}\right)' = \mathbf{A_2'} \, \mathbf{A_1'}.$$

Especially to $\tau_k \in L(D)$ there corresponds the "translation-operator" τ'_k , which for a continuous function $f \in D'$ gives the ordinary translation

$$(\tau'_h f)(t) = f(t-h).$$

Finally we study the operators $B \in L(D')$, which commute with all τ'_{k} , i.e.

 $\tau'_h \mathbf{B} = \mathbf{B} \, \tau'_h \quad \text{for} \quad h \in \mathbf{R}.$

Equivalent is the condition that $A = k^{-1} B$ satisfies

$$A\tau_h = \tau_h A$$
.

The operators B in question therefore form the class &A(D), which will be denoted by A(D'). Since A(D) is commutative, the same is true for A(D'). The induced mapping

$$k: A(D) \rightarrow A(D')$$

is therefore an algebra isomorphism. So we have

PROPOSITION 3. The algebras A(D'), A(D), E', Z are isomorphic. From the isomorphism $k: A(D) \rightarrow A(D')$ and Theorem 3 we deduce

THEOREM 4. The invertible operators $B \in A(D')$ are exactly the operators

 $\mathbf{B}=c\;\tau_{k}^{\prime},$

where $c \in C - \{o\}$, $h \in R$.

Remark. In view of 3) all considerations in 4) generalize to the case of several variables.

References

- [1] BERZ E., Verallgemeinerte Funktionen und Operatoren. Mannheim, BI-Verlag (1967).
- [2] BERZ E., Operatoren Verallgemeinerter Funktionen, «Mathematische Annalen», 158, 215-232 (1965).
- [3] GELFAND I. M. and SHILOV G. E., *Generalized Functions*. New York, London, Academic Press (1968).
- [4] MIKUSINSKI J., Operational Calculus. London, New York, Pergamon Press (1959).

[5] SCHWARTZ L., Théorie des distributions. Paris, Hermann (1966).

[6] TITCHMARSH E., The Theory of Functions. Oxford, University Press.

[601]