# Atti Accademia Nazionale dei Lincei <br> Classe Scienze Fisiche Matematiche Naturali RENDICONTI 

## Edgar Berz <br> Invertible convolutions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.6, p. 904-911.
Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLINA_1973_8_54_6_904_0](http://www.bdim.eu/item?id=RLINA_1973_8_54_6_904_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Calcolo operazionale. - Invertible convolutions. Nota di Edgar Berz, presentata ${ }^{(*)}$ dal Socio G. Sansone.

Riassunto. - Sia $\mathrm{D}^{\prime}$ lo spazio delle distribuzioni in $\mathrm{R}^{n}$, dotato della topologia di Schwartz e sia $L\left(D^{\prime}\right)$ lo spazio degli operatori lineari continui $D^{\prime} \rightarrow D^{\prime}$. In $L\left(D^{\prime}\right)$ gli operatori che sono commutabili con tutte le traslazioni formano una sottoalgebra $\mathrm{A}\left(\mathrm{D}^{\prime}\right)$ che è isomorfa con l'algebra di convoluzione delle distribuzioni finite. Usando questo isomorfismo e un teorema di Paley-Wiener-Schwartz si prova che gli operatori $A \in A\left(D^{\prime}\right)$, che sono invertibili, sono unicamente le traslazioni e multipli non nulli di esse.

As is well known, the finite distributions on $R^{n}$ form an algebra $E^{\prime}$ with respect to the convolution-product; Dirac's measure $\delta$ is the unit of this algebra. We propose to determine the invertible elements in this algebra.

The algebra $E^{\prime}(*)$ is isomorphic to the algebra $A\left(D^{\prime}\right)$ of the continuous linear operators $\mathrm{A}: \mathrm{D}^{\prime} \rightarrow \mathrm{D}^{\prime}$ of the distribution-space $\mathrm{D}^{\prime}$, which commute with all translations. Therefore the knowledge of the invertible $S \in E^{\prime}$ leads to the invertible operators $A \in A\left(D^{\prime}\right)$. It turns out that these are exactly the translations and the non-zero multiples of them.

## I. Basic Concepts

Let

$$
\mathrm{E}=\mathrm{C}^{\infty}(\mathrm{R}) \quad, \quad \mathrm{D}=\mathrm{C}_{0}^{\infty}(\mathrm{R})
$$

A sequence in $E$ tends to zero in the sense of Schwartz, if it converges to zero uniformly on every compact set and if the same is true for every derivative of this sequence. A sequence in D tends to zero in the sense of Schwartz, if it does so as a sequence of E and if all its functions are concentrated on a fixed compact set.

The spaces $\mathrm{D}^{\prime}, \mathrm{E}^{\prime}$.
A linear form T on D is a distribution, if

$$
\lim \mathrm{T}\left(\varphi_{i}\right)=0
$$

for every Schwartz-sequence $\left\{\varphi_{i}\right\}$. The linear space of all distributions shall be denoted by $\mathrm{D}^{\prime}$
$S \in \mathrm{D}^{\prime}$ is finite, if supp S is compact. Every finite $\mathrm{S} \in \mathrm{D}^{\prime}$ can be extended to a linear form $\tilde{S}$ on $E$ in such a way, that

$$
\begin{equation*}
\overrightarrow{\mathrm{S}}\left(\chi_{i}\right) \rightarrow 0 \tag{I}
\end{equation*}
$$

(*) Nella seduta del 19 giugno 1973.
for every Schwartz-sequence $\left\{\chi_{i}\right\}$ in E. This extension is unique and it is given by

$$
\tilde{S}(\chi)=S(\alpha \chi),
$$

where $\alpha$ is a (fixed) test function, which equals i on a neighbourhood of supp $S$.
On the other hand, every linearform $S_{1}$ on $E$, which is continuous in the sense of ( I ), is the extension $\tilde{S}$ of a finite $S \in \mathrm{D}^{\prime}$.

The space of all finite $S \in \mathrm{D}^{\prime}$ shall therefore be denoted by $\mathrm{E}^{\prime}$.

## Convolutions.

For $S, T \in E^{\prime}$ we define the convolution $S * T$ by

$$
(\mathrm{S} * \mathrm{~T})(\varphi)=\mathrm{S}_{t_{1}}\left(\mathrm{~T}_{t_{2}}\left(\varphi\left(t_{1}+t_{2}\right)\right)\right),
$$

where $\varphi \in D . S * T$ is again finite, we have

$$
\operatorname{supp} \mathrm{S} * \mathrm{~T} \subseteq \operatorname{supp} \mathrm{~S}+\operatorname{supp} \mathrm{T} .
$$

The extension of $\mathrm{S} * \mathrm{~T}$ to R is given by

$$
\begin{equation*}
\widehat{\mathrm{S} * \mathrm{~T}}(\chi)=\tilde{\mathrm{S}}_{t_{1}}\left(\widetilde{\mathrm{~T}}_{t_{2}}\left(\chi\left(t_{1}+t_{2}\right)\right)\right) . \tag{2}
\end{equation*}
$$

In the sequel we will drop $\sim$.
As is well known, the convolution $*$ makes $\mathrm{E}^{\prime}$ into a commutative algebra with unit $\delta$, where

$$
\delta(\varphi)=\varphi(0) .
$$

## Fourier-Transformation.

For $\mathrm{S} \in \mathrm{E}^{\prime}$ the Fourier-transform $\hat{S}=\psi$ is defined by

$$
\psi(s)=\mathrm{S}_{t}\left(e^{-\mathrm{ist}}\right) \quad \text { for } \quad s \in \mathrm{C} .
$$

By virtue of the continuity of $S \psi$ is an entire function. The "FourierTransformation ".

$$
F: S \rightarrow \hat{S}
$$

has the following properties:
i) $F$ is linear,
ii) $\mathrm{F}(\mathrm{S} * \mathrm{~T})=\mathrm{F}(\mathrm{S}) \mathrm{F}(\mathrm{T})$.
ii) is checked easily by means of (2).

In addition, the following " Inversion-Formula" holds:
iii) $\langle\mathrm{S}, \varphi\rangle=\langle\hat{\mathrm{S}}, \hat{\varphi}\rangle$,
where

$$
\begin{aligned}
& \langle\mathrm{S}, \varphi\rangle=\mathrm{S}(\varphi) \quad, \quad \hat{\varphi}=\frac{\mathrm{I}}{2 \pi} \int_{\mathrm{R}} e^{\text {ist }} \varphi(t) \mathrm{d} t \\
& \langle\hat{\mathrm{~S}}, \hat{\varphi}\rangle=\int_{\mathrm{R}} \hat{\mathrm{~S}} \hat{\varphi} \mathrm{~d} s
\end{aligned}
$$

In particular iii) shows that F is injective. If we introduce the linear space $Z=F\left(E^{\prime}\right), F$ becomes a linear isomorphism of $E^{\prime}, Z$.

The functions $\psi \in Z$ can be characterized by the

## Theorem of Paley-Wiener-Schwartz.

An entire function $\psi(s)$ is the Fourier-transform of some $S \in E^{\prime}$, if and only if an estimation

$$
\begin{equation*}
|\psi(s)| \leqq \mathrm{C}(\mathrm{I}+|s|)^{p} e^{a|\tau|} \quad, \quad s=\sigma+i \tau \tag{3}
\end{equation*}
$$

holds, where C, $a$ are positive constants, $p$ a nonnegative integer.
For later application we give a simple example:
For $h \in \mathrm{R}$ we define the distribution $\delta_{h}$ by

$$
\delta_{h}(\varphi)=\varphi(h) .
$$

Clearly supp $\delta_{h}=\{h\}$. The Fourier-transform of $\delta_{h}$ is given by

$$
\delta_{h}\left(e^{-\mathrm{ist}}\right)=e^{-\mathrm{ish}}
$$

## 2. Invertible Convolutions

Under F the convolution-algebra $\mathrm{E}^{\prime}$ is isomorphic to the algebra Z with its natural operations. In particular this implies that $\mathrm{E}^{\prime}$ has no divisors of zero, a statement of the Titchmarsh type. Of course, we could use this fact to imbed $\mathrm{E}^{\prime}$ into its quotient-field, following the lines of Mikusinski.

From this point of view the question arises which elements $S$ of the algebra $\mathrm{E}^{\prime}$ are invertible in the sense that there exists a $\mathrm{T} \in \mathrm{E}^{\prime}$ such that

$$
\begin{equation*}
\mathrm{S} * \mathrm{~T}=\delta \tag{4}
\end{equation*}
$$

Let us assume in the sequel that $S$ is invertible, and derive necessary conditions for S .
(4) implies for the Fourier-transforms $\hat{S}, \hat{T}$ :

$$
\hat{\mathrm{S}} \hat{\mathrm{~T}}=\mathrm{I} .
$$

Thus the entire function $\psi=\hat{S}$ has no zeros in C. It therefore can be represented in the form

$$
\begin{equation*}
\psi(s)=e^{h(s)}, \tag{5}
\end{equation*}
$$

where $h(s)$ is an entire function.
On the other hand, $\psi$ satisfies the estimation (3) of Paley-Wiener-Schwartz. In this inequality the right hand side can be enlarged by

$$
e^{c|s|+d},
$$

where $c, d$ are positive constants, sufficiently large. We then obtain the condition

$$
\left|e^{h(s)}\right| \leqq e^{c|s|+d},
$$

which is equivalent to

$$
\begin{equation*}
\operatorname{Re} h(s) \leqq c|s|+d \tag{6}
\end{equation*}
$$

Information about $h$ itself is available from

## Caratheodory's Inequality.

Let $f(z)$ be an entire function, satisfying $f(0)=0, R>0$,

$$
\mathrm{M}(\mathrm{R})=\operatorname{Max}\{\operatorname{Re} f(z):|z|=\mathrm{R}\}
$$

Then for every $z \in \mathrm{C}$ with $|z|=r<\mathrm{R}$ we have

$$
|f(z)| \leqq \mathrm{M}(\mathrm{R}) \frac{2 r}{\mathrm{R}-r} .
$$

(See Titchmarsh [6], page i 74).
If for a given $z$ we take $\mathrm{R}=2 r$, we obtain

$$
\begin{equation*}
|f(z)| \leqq 2 \mathrm{M}(2 r) . \tag{7}
\end{equation*}
$$

We apply (7) to the function $h$, assuming, that $h(0)=0$ : in view of (6) we have

$$
\mathrm{M}(\mathrm{R}) \leqq c \mathrm{R}+d,
$$

hence by (7):

$$
|h(s)| \leqq 4 c|s|+2 d .
$$

Thus $h$ is of linear growth at most, hence by Liouville's Theorem $h$ is linear, say

$$
\begin{equation*}
h(s)=\mathrm{A} s+\mathrm{B} \tag{8}
\end{equation*}
$$

where A, B are complex constants.
If $h(0) \neq 0$, we conclude that $h-h(0)$ is linear and therefore $h$ itself.
There remains the question which constants A, B may really occur in (8).
By (3) we have the condition that

$$
\left|e^{\mathrm{As}+\mathrm{B}}\right| \leqq \mathrm{C}(\mathrm{I}+|s|)^{p} e^{a|\tau|}
$$

for $s=\sigma+i \tau$. In particular, if we put $\tau=0$, we must have

$$
\left|e^{\mathrm{A} \sigma+\mathrm{B}}\right| \leqq \mathrm{C}(\mathrm{I}+|\sigma|)^{p} .
$$

Assuming $A=\alpha+i \beta$ this is equivalent to

$$
e^{\alpha \sigma}\left|e^{\mathrm{B}}\right| \leqq \mathrm{C}(\mathrm{I}+|\sigma|)^{\phi} \quad \text { for } \sigma \in \mathrm{R} .
$$

But this estimation can hold only, if $\alpha=0$.
The conclusion is that $h$ is of the form

$$
h(s)=i \beta s+\mathrm{B}
$$

where $\beta$ is a real constant, $B$ a complex one. Hence $\psi$ itself has the form

$$
\psi(s)=c e^{i \beta s}, \quad \text { where } c \in C-\{0\} .
$$

By the example, given in 1$), \psi$ is nothing else than the Fouriertransform of

$$
S=c \delta_{h}, \quad \text { where } \quad h=-\beta
$$

Thus every invertible $S \in \mathrm{E}^{\prime}$ is of this form. Conversely, every such S is invertible, with

$$
\mathrm{S}^{-1}=c^{-1} \delta_{-h}
$$

The result is the following
Theorem i. A distribution $\mathrm{S} \in \mathrm{E}^{\prime}$ is invertible if and only if

$$
S=c \delta_{h}
$$

where $h \in \mathrm{R}, c \in \mathrm{C}-\{0\}$.
In the last proof it was sufficient to know that the Fourier-transform $\psi$ of S has no zeros in C . We therefore have the following

Corollary i. A distribution $\mathrm{S} \in \mathrm{E}^{\prime}$ is invertible if and only if its Fouriertransform $\hat{\mathrm{S}}$ has no zeros in C .

For the space $Z$ itself we have the following
Corollary 2. All functions $\psi \in Z$ have zeros in C except the functions of the form

$$
c e^{i \beta s} \quad, \quad c \in \mathrm{C}-\{0\} \quad, \quad \beta \in \mathrm{R} .
$$

## 3. GENERALIZATION TO SEVERAL VARIABLES

The last Theorem may be generalized to the convolution-algebra $\mathrm{E}^{\prime}\left(\mathrm{R}^{n}\right)$, consisting of the finite distributions $S$ on $\mathrm{R}^{n}, n \geqq 2$.

For such a distribution the Fourier-transform $\psi=\hat{S}$ is defined by

$$
\psi(s)=\mathrm{S}\left(e^{-\mathrm{i} s t}\right),
$$

where $s=\left(s_{1}, \cdots, s_{n}\right) \in \mathrm{C}^{n}, t=\left(t_{1}, \cdots, t_{n}\right) \in \mathrm{R}^{n}$,

$$
s t=\sum_{1}^{n} s_{i} t_{i}
$$

$\psi(s)$ is an entire function in $s_{1}, \cdots, s_{n}$.
The Fourier-transformation $\mathrm{F}: \mathrm{S} \rightarrow \hat{\mathrm{S}}$ is an algebra-isomorphism of $\mathrm{E}^{\prime}$ (*) and $Z_{n}=\mathrm{F}\left(\mathrm{E}^{\prime}\left(\mathrm{R}^{n}\right)\right)$. According to the Paley-Wiener-Schwartz Theorem in its general form, the functions $\psi \in Z_{n}$ are characterized by the validity of an estimation

$$
\begin{equation*}
|\psi(s)| \leqq \mathrm{C}(\mathrm{I}+|s|)^{p} e^{a|\tau|} \tag{9}
\end{equation*}
$$

where

$$
|s|=\left(\sum_{1}^{n}\left|s_{i}\right|^{2}\right)^{1 / 2} \quad, \quad|\tau|=\left(\sum_{1}^{n} \tau_{i}^{2}\right)^{1 / 2} .
$$

Theorem 2. A distribution $\mathrm{S} \in \mathrm{E}^{\prime}\left(\mathrm{R}^{n}\right)$ is invertible, if and only if

$$
\mathrm{S}=c \delta_{h},
$$

where $c \in \mathrm{C}-\{0\}, h=\left(h_{1}, \cdots, h_{n}\right) \in \mathrm{R}^{n}$.
Proof. Let $\mathrm{S} \in \mathrm{E}^{\prime}\left(\mathrm{R}^{n}\right)$ be invertible. Then $\psi=\hat{\mathrm{S}}$ has no zeros in $\mathrm{C}^{n}$, hence

$$
\begin{equation*}
\psi(s)=e^{h(s)}, \tag{io}
\end{equation*}
$$

where $h$ is an entire function in $s=\left(s_{1}, \cdots, s_{n}\right)$.
We consider the function $\psi_{1}$ in the complex variable $z$, defined by

$$
\psi_{1}(z)=\psi(z, \cdots, z) .
$$

By virtue of (9) $\psi_{1}$ belongs to $Z$ and by Corollary $2 \psi_{1}$ is of the form

$$
\psi_{1}(z)=e^{\gamma z+\delta},
$$

where $\gamma, \delta$ are constants. Together with (io) it follows that $h(s)$ is linear, say

$$
h(s)=\sum_{j=1}^{n} \mathrm{~A}_{j} s_{j}+\mathrm{B}
$$

Since the function

$$
s_{1} \rightarrow \psi\left(s_{1}, o, \cdots, o\right)=e^{\mathrm{A}_{1} s_{1}+\mathrm{B}}
$$

belongs to $Z$, we conclude from the case $n=1$, that

$$
\mathrm{A}_{1}=i \beta_{1}, \quad \beta_{1} \in \mathrm{R}
$$

Applying this argument to every $s_{j}$, we obtain

$$
\psi(s)=c e^{i\left(\sum_{1}^{n} \beta_{j} s_{j}\right)}, \quad \beta_{j} \in \mathrm{R}, c=e^{\mathrm{B}} .
$$

Therefore $S$ itself has the form

$$
\mathrm{S}=c \delta_{h} \quad, \quad h=\left(h_{1}, \cdots, h_{n}\right) \quad, \quad h_{i}=-\beta_{i}
$$

which proves our assertion.

## 4. The algebra A (D)

Let $L(D)$ be the linear space of the linear operators

$$
\mathrm{A}: \mathrm{D} \rightarrow \mathrm{D}
$$

which are continuous in the sense that $A \varphi_{i} \rightarrow 0$ for every Schwartzsequence $\left\{\varphi_{i}\right\}$. With respect to the composition-product $A_{1} A_{2}$ the space $L(D)$ is a (noncommutative) algebra.
63. - RENDICONTI 1973, Vol. LIV, fasc. 6.

Especially every translation-operator $\tau_{i 2}$,

$$
\left(\tau_{h} \varphi\right)(t)=\varphi(t+h),
$$

$h \in R$, belongs to $L(D)$.
Next we consider the subalgebra $A(D)$ of all operators $A \in L(D)$, which commute with the translations, i.e.

$$
\tau_{h} \mathrm{~A}=\mathrm{A} \tau_{h}
$$

for all $h \in R$. They correspond to the distributions $S \in E^{\prime}$ in the sense of the following proposition.

Proposition i. Every $\mathrm{A} \in \mathrm{A}(\mathrm{D})$ has a unique representation

$$
\begin{equation*}
(\mathrm{A} \varphi)(s)=\mathrm{S}_{t}(\varphi(s+t)) \tag{II}
\end{equation*}
$$

by a distribution $\mathrm{S} \in \mathrm{E}^{\prime}$. Conversely (II) defines an operator $\mathrm{A} \in \mathrm{A}(\mathrm{D})$ for every $\mathrm{S} \in \mathrm{E}^{\prime}$.

Clearly S is unique, since for $s=0$ we must have

$$
\mathrm{S}(\varphi)=(\mathrm{A} \varphi)(\mathrm{o}) .
$$

Conversely it can be shown that, by this equation, a distribution $S \in E^{\prime}$ is given which represents $A$ in the sense of (II).

Let us now consider the mapping $\sigma: A \rightarrow S$, which associates with $A \in A(D)$ the representing $S \in E^{\prime}$. Clearly $\sigma$ is a linear isomorphism. In addition, by a simple computation it can be shown that

$$
\sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)=\mathrm{S}_{1} * \mathrm{~S}_{2},
$$

that means $\sigma$ is an algebra-isomorphism. Thus we have
Proposition 2. The algebras $\mathrm{A}(\mathrm{D})$ and $\mathrm{E}^{\prime}$ are isomorphic under $\sigma$.
Hence $\mathrm{A}(\mathrm{D})$ is commutative and has no divisors of zero. The isomorphism $\sigma$ leads also to

THEOREM 3. The invertible operators $\mathrm{A} \in \mathrm{A}(\mathrm{D})$ are exactly the operators

$$
\mathrm{A}=c \tau_{h}
$$

$h \in \mathrm{R}, c \in \mathrm{C}-\{0\}$.
Indeed, these operators A correspond to the distributions $c \delta_{h}$.

## 5. The algebra $\mathrm{A}\left(\mathrm{D}^{\prime}\right)$

Let $L\left(D^{\prime}\right)$ denote the linear space of the linear operators

$$
\mathrm{B}: \mathrm{D}^{\prime} \rightarrow \mathrm{D}^{\prime},
$$

which are continuous in the sense that $\mathrm{BT}_{i} \rightarrow 0$ for every sequence of distributions $T_{i} \in \mathrm{D}^{\prime}$, converging to zero.

Every $A \in L(D)$ generates an operator $B \in L\left(D^{\prime}\right)$ as its transposed $B=A^{\prime}$, i.e. by the formula

$$
\langle\mathrm{BT}, \varphi\rangle=\langle\mathrm{T}, \mathrm{~A} \varphi\rangle .
$$

Conversely, from the reflexivity of $D$ it follows that every $B \in L\left(D^{\prime}\right)$ is the transposed of a certain $A \in L(D)$.

The mapping $k: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$ therefore is a linear isomorphism of $\mathrm{L}(\mathrm{D})$ and $\mathrm{L}\left(\mathrm{D}^{\prime}\right)$. In addition we have

$$
\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)^{\prime}=\mathrm{A}_{2}^{\prime} \mathrm{A}_{1}^{\prime} .
$$

Especially to $\tau_{h} \in \mathrm{~L}(\mathrm{D})$ there corresponds the "translation-operator" $\tau_{h}^{\prime}$, which for a continuous function $f \in \mathrm{D}^{\prime}$ gives the ordinary translation

$$
\left(\tau_{h}^{\prime} f\right)(t)=f(t-h) .
$$

Finally we study the operators $B \in L\left(D^{\prime}\right)$, which commute with all $\tau_{h}^{\prime}$, i.e.

$$
\tau_{h}^{\prime} \mathrm{B}=\mathrm{B} \tau_{h}^{\prime} \quad \text { for } \quad h \in \mathrm{R} .
$$

Equivalent is the condition that $\mathrm{A}=k^{-1} \mathrm{~B}$ satisfies

$$
\mathrm{A} \tau_{h}=\tau_{h} \mathrm{~A}
$$

The operators $B$ in question therefore form the class $k A(D)$, which will be denoted by $A\left(D^{\prime}\right)$. Since $A(D)$ is commutative, the same is true for $A\left(D^{\prime}\right)$. The induced mapping

$$
k: \mathrm{A}(\mathrm{D}) \rightarrow \mathrm{A}\left(\mathrm{D}^{\prime}\right)
$$

is therefore an algebra isomorphism. So we have
Proposition 3. The algebras $\mathrm{A}\left(\mathrm{D}^{\prime}\right), \mathrm{A}(\mathrm{D}), \mathrm{E}^{\prime}, \mathrm{Z}$ are isomorphic.
From the isomorphism $k: \mathrm{A}(\mathrm{D}) \rightarrow \mathrm{A}\left(\mathrm{D}^{\prime}\right)$ and Theorem 3 we deduce
Theorem 4. The invertible operators $\mathrm{B} \in \mathrm{A}\left(\mathrm{D}^{\prime}\right)$ are exactly the operators

$$
\mathrm{B}=c \tau_{h}^{\prime},
$$

where $c \in C-\{0\}, h \in R$.
Remark. In view of 3) all considerations in 4) generalize to the case of several variables.

## References

[I] Berz E., Verallgemeinerte Funktionen und Operatoren. Mannheim, BI-Verlag (1967).
[2] Berz E., Operatoren Verallgemeinerter Funktionen, "Mathematische Annalen », I58, 215-232 (1965).
[3] Gelfand I. M. and Shilov G. E., Generalized Functions. New York, London, Academic Press (i968).
[4] Mikusinski J., Operational Calculus. London, New York, Pergamon Press (i959).
[5] Schwartz L., Théorie des distributions. Paris, Hermann (1966).
[6] Titchmarsh E., The Theory of Functions. Oxford, University Press.

