ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

BADIE T. M. HASSAN

The Cut Locus of a Finsler Manifold

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.5, p. 739–744.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_5_739_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1973.

Topologia. — The Cut Locus of a Finsler Manifold. Nota di BADIE T. M. HASSAN, presentata ^(*) dal Socio E. BOMPIANI.

RIASSUNTO. — In questa Nota si estendono agli spazi di Finsler completi e/o compatu risultati noti negli spazi di Riemann concernenti la totalità delle geodetiche uscenti da un punto.

I. INTRODUCTION

The study of the cut locus ⁽¹⁾ of a Riemannian manifold has led to many interesting results in Riemannian geometry. For example, the proof of the so called "Sphere theorem" due to Rauch [6] depends on estimates of the distance to the cut locus. Moreover, it was realized that much of the topological interest of a manifold lies in its cut locus. A very good account of these results and methods are contained in articles by Klingenberg [3], Kobayashi [4], and Weinstein [7].

The aim of this paper is to extend these methods to the study of the cut locus of a Finsler manifold. As in Riemannian geometry, the exponential map is an important tool in forming the proofs. However, for Finsler manifolds this map is not a C^{∞} map, as it is only of class C^{1} on zero vectors.

2. NOTATIONAL CONVENTIONS

The following notations will be used throughout this paper.

- M : a complete connected Finsler manifold of dimension $n, n \ge 2$, endowed with a general metric d. By a general metric we mean one which satisfies all metric properties except the symmetry property.
- $T(M)_m$: the tangent space to M at $m \in M$.
- ||X||: norm of the tangent vector $X \in T(M)_m$.
- exp : the exponential map of $T(M)_m$ onto M.
- dexp : the differential of exp.

S : {X | ||X|| = 1, X \in T(M)_m}.

 R^+ : the set of positive real numbers.

$$\begin{split} \gamma_{\rm X} &: \{(t\,,\gamma_{\rm X}(t)) \mid \gamma_{\rm X}(t) = \exp t {\rm X}\,, t \in [0\,,\infty)\,, {\rm X} \in {\rm S}\} \text{ is a geodesic starting} \\ & \text{from } m \text{ with initial vector } {\rm X} \text{ and parametrized by arc-length.} \end{split}$$

 $\begin{array}{l} A_{X} \quad : \ \{ \textit{s} \ | \ \text{the segment of } \gamma_{X} \ \text{from } \textit{m} \ \text{to} \ \gamma_{X}(\textit{s}) \ \text{is minimizing,} \ \textit{s} \in \mathbb{R}^{+} \cup \{ \infty \} \}. \\ L(\gamma_{X}): \ \text{the length of } \gamma_{X}. \end{array}$

(*) Nella seduta del 14 aprile 1973.

(1) For a point m of a manifold M, the cut locus K_m of m in M is the set of all points $p \in M$ such that there exists a minimal segment from m to p which is not minimizing beyond p.

3. The cut locus

From the above definition of the set A_x it follows that:

- (I) $s \in A_X \wedge t < s \Rightarrow t \in A_X$,
- (2) $r \in \mathbb{R}^+ \land (s < r \Rightarrow s \in \mathcal{A}_x) \Rightarrow r \in \mathcal{A}_x$,
- (3) $A_x = (o, r]$ for some $r \in \mathbb{R}^+ \vee A_x = \mathbb{R}^+ \cup \{\infty\}$.

If $A_x = (0, r]$, then the point $\gamma_x(r)$ is called the cut point of *m* along γ_x . If $A_x = R^+ \cup \{\infty\}$, then no point of γ_x is a cut point of *m*.

We define a real valued function

$$c: \mathbf{S} \to \mathbf{R}^+ \cup \{\infty\}$$

as

$$c(\mathbf{X}) = \begin{cases} r & \text{if } \mathbf{A}_{\mathbf{X}} = (\mathbf{0}, r] \\ \infty & \text{if } \mathbf{A}_{\mathbf{X}} = \mathbf{R}^{+} \cup \{\infty\}. \end{cases}$$

Set $S_0 = c^{-1}(R^+)$. The function

$$f: S_0 \to T(M)_m$$

is defined as f(X) = c(X) X. The set $f(S_0) \subset T(M)_m$ is denoted by \widetilde{K}_m . The function

 $g: S_0 \to M$

defined as $g = \exp \circ f$ is such that g(X) is a cut point of m along γ_X . The set $g(S_0) \subset M$ is therefore the set of all cut points of m along all geodesics starting from m. The set $g(S_0)$ is called the cut locus of m in M and is denoted by K_m . It is clear that $\exp \widetilde{K}_m = K_m$. The set \widetilde{K}_m is called the cut locus of m in $T(M)_m$ and its points are called cut points of m in $T(M)_m$.

From the fact that geodesics do not minimize arc-length beyond the first conjugate point, it follows immediately that

ASSERTION A. If p is the first conjugate point of m along γ_x , then there is a point of K_m along γ_x which is not beyond p.

ASSERTION B. If γ_x is a minimal segment from m to p and p is conjugate to m along γ_x , then $p \in K_m$.

THEOREM 3.1. Let $\{\sigma_i\}$ be a sequence of curves from m to p. If $p \notin K_m$ and limit $L(\sigma_i) = d(m, p)$, then $\{\sigma_i\}$ converges to the unique minimal segment from m to p.

Proof. Since M is complete, then there exists a minimal segment γ_{X} from *m* to *p*. Set d(m, p) = b, $L(\sigma_i) = b_i$, and let

$$\sigma_i = \{(t, \exp tX_i) \mid t \in [0, b_i], X_i \in S\}.$$

For each value of δ , $0 \leq \delta < b$, the set of vectors $(b_i - \delta) X_i$ is contained in some compact subset of $T(M)_m$. We may assume, by taking a subsequence if necessary, that

limit $(b_i - \delta) X_i = (b - \delta) Y$, $Y \in S$.

Then,

$$\gamma_{\mathbf{Y}} = \{(t, \exp t\mathbf{Y}) \mid \mathbf{o} \le t \le b\}$$

is a minimal segment from *m* to *p*. It is clear that limit $\sigma_i = \gamma_y$.

If X = Y, then $\gamma_X = \gamma_Y$ and the theorem is proved.

If $X \neq Y$, then $\gamma_X(t)$, $0 \le t \le b'$, is no longer minimizing for every b' greater than b. This contradicts the assumption $p \notin K_m$.

Hence the assumption $X \neq Y$ is false and the theorem is proved.

THEOREM 3.2. If $p \in K_m$ along a geodesic γ_X , then at least one of the following statements holds:

(1) p is the first conjugate point of m along γ_x ,

(2) there exist, at least, two minimizing geodesics from m to p.

Proof. If $p = \gamma_{\mathbf{X}}(r)$, then we choose a monotone decreasing sequence $\{a_k\}, a_k \in \mathbb{R}^+$, such that limit $a_k = r$. Let $b_k = d(m, \gamma_{\mathbf{X}}(a_k)), k \in \mathbb{N}$. Since M is complete, then m and $\gamma_{\mathbf{X}}(a_k)$ can be joined by a minimal segment, namely

$$\sigma_k = \{ (t, \exp t \mathbf{X}_k) \mid t \in [0, b_k], \mathbf{X}_k \in \mathbf{S} \}.$$

It is clear that

$$X = X_k$$
, $a_k > b_k$, limit $b_k = r$.

The set of vectors $b_k X_k$ is contained in some compact subset of $T(M)_m$. We may assume, by taking a subsequence if necessary, that

S.

$$\lim b_k X_k = rY \quad , \quad Y \in$$

Then,

 $\gamma_{\mathbf{Y}} = \{(t, \exp t\mathbf{Y}) \mid t \in [0, r]\}$

is a minimal segment from m to p.

Now, we have two cases:

Case I. X = Y. Then,

$$\exp b_k \mathbf{X}_k = \exp a_k \mathbf{X} \,,$$

and

limit
$$b_k X_k = rX =$$
limit $a_k X$,

implie that exp is not one-to-one in a neighborhood U of rX = rY. Thus dexp is singular there and p is conjugate to m along γ_X .

On the other hand, if $\gamma_{X}(s)$, 0 < s < r, were conjugate to *m* along γ_{X} , then γ_{X} would not be minimizing beyond $\gamma_{X}(s)$. Hence $p \notin K_{m}$, which is a contradiction. Thus p is the first conjugate point of *m* along γ_{X} , and (I) holds.

Case II. $X \neq Y$. In this case $\gamma_X \neq \gamma_Y$ and (2) holds.

52. - RENDICONTI 1973, Vol. LIV, fasc. 5.

THEOREM 3.3. The mapping c is continuous over S.

Proof. Let $X \in S$, and $\{X_k\}$ be a sequence of points of S such that limit $X_k = X$. Set $c(X_k) = a_k$. We may assume, by taking a subsequence if necessary, that limit $\{a_k\}$ exists in $\mathbb{R}^+ \cup \{\infty\}$. Denote this limit by a. Then

$$a = c(\mathbf{X}) \vee a \neq c(\mathbf{X})$$

We are going to prove that $a \neq c(X)$ is impossible. Hence a = c(X), and c is continuous at $X \in S$. Since X is arbitrary, this proves that c is continuous over S.

Let us first assume that c(X) > a. Then,

(I)
$$\gamma_{\rm x}(a)$$
 is not conjugate to *m* along $\gamma_{\rm x}$,

and

(2)
$$\gamma_{X}(a) \notin K_{m}$$
 along γ_{X} .

From (1) it follows that exp is non-singular at aX. Hence, there exists a neighborhood U of aX in $T(M)_m$ on which exp is a diffeomorphism. As $\{a_k X_k\}$ converges to aX, we may assume, by omitting a finite number of $a_k X_k$ if necessary, that all of $a_k X_k$ are in U. Since exp is a diffeomorphism from U onto exp U, it follows that $\gamma_k(a_k)$ cannot be conjugate to *m* along γ_k , where

$$\gamma_{k} = \{ (t, \exp t \mathbf{X}_{k}) \mid t \in [0, a_{k}] \}.$$

Noting that $\gamma_k(a_k) \in K_m$ along γ_k , it follows from theorem (2) that there exists another minimizing geodesic σ_k from *m* to $\gamma_k(a_k)$, namely

$$\sigma_k = \{ (t, \exp t \mathbf{Y}_k) \mid t \in [0, a_k], \mathbf{Y}_k \in \mathbf{S} \}.$$

We have to note that, for every k,

$$\mathbf{Y}_{k} \neq \mathbf{X}_{k}$$
 , $\mathbf{\gamma}_{k}(a_{k}) = \sigma_{k}(a_{k})$, $a_{k} \mathbf{Y}_{k} \notin \mathbf{U}$.

By taking a subsequence if necessary, we may assume that $\{Y_k\}$ converges to some point $Y \in S$. Then $aY \notin U$ and the geodesic

$$\gamma_{\mathbf{v}} = \{(t, \exp t\mathbf{Y}) \mid t \in [0, a]\}$$

is a minimal segment from *m* to $\gamma_X(a) = \gamma_Y(a)$. Hence, both γ_X and γ_Y are minimal segments from *m* to $\gamma_X(a) = \gamma_Y(a)$. From (2) and Theorem (1) we can see that this is impossible. Hence c(X) > a is false.

Let us now assume that c(X) < a, and let b be a positive number such that a > c(X) + b. Set c(X) + b = a'. As $\{a_k\}$ converges to a, we may assume, by omitting a finite number of a_k if necessary that $a_k > a'$, for all k.

Since $\gamma_{X}(a') \notin K_{m}$ along γ_{X} , it follows from Theorem (I) that there exists a unique minimal segment from m to $\gamma_{X}(a')$. This means that there exists a point $X' \in S$ such that $X' \neq X$ and

$$\gamma_{X'} = \{(t, \exp tX') \mid 0 \le t \le c(X) + b', b' < b\}$$

is a minimal segment from *m* to $\gamma_x(a')$. We have to note that

 $\gamma_{\mathbf{X}}(a') = \gamma_{\mathbf{X}'}(c(\mathbf{X}) + b').$

We set 2r = b - b'. It is clear that

limit $\gamma_k(a') = \gamma_{\mathbf{X}}(a')$.

Hence we may assume, by omitting a finite number of X_k if necessary, that there exists a neighborhood U of X such that, for every k,

$$X_k \in U$$
 , $d(\gamma_X(a'), \gamma_k(a')) < r$.

Let α be a minimal segment from $\gamma_{X}(a')$ to $\gamma_{k}(a')$. For each fixed k, consider the curve τ from m to $\gamma_{k}(a')$ defined by

$$\tau = \begin{cases} \exp t \mathbf{X}' & \mathbf{o} \le t \le c(\mathbf{X}) + b' \\ \alpha & \mathbf{o} \le t \le c(\mathbf{X}) \end{cases}$$

Hence,

$$\mathcal{L}(\tau) < c(\mathcal{X}) + b' + r = c(\mathcal{X}) + b - r < \mathcal{L}(\gamma_k),$$

where L (γ_k) is the length of γ_k from *m* to $\gamma_k(a')$. This means that the geodesic segment of γ_k from *m* to $\gamma_k(a')$ is not minimizing. This contradicts the inequality $a_k > a'$. Hence the assumption c(X) < a is false. This completes the proof.

From the continuity of c it follows immediately that the function f is continuous over S_0 . Also, from the continuity of c and the exponential map it follows that g is continuous over S_0 . We also have that

COROLLARY 1. The map

$$h_m: S_0 \to \mathbb{R}^+$$

defined as $h_m(X) = d(m, g(X))$ is continuous over S_0 .

4. The cut locus of a compact manifold

For $X \in S$, let

$$\mathbf{E}_{\mathbf{x}} = \{ \mathbf{Y} \mid \mathbf{Y} = t\mathbf{X}, t \in [\mathbf{o}, c(\mathbf{X})) \}.$$

The set $E = \bigcup E_x$, for all $X \in S$, is an open cell in $T(M)_m$ called the interior set in $T(M)_m$. It is clear that $E \cap \widetilde{K}_m = \emptyset$.

THEOREM 4.1. $\exp | E : E \rightarrow \exp E$ is a diffeomorphism.

Proof. It is clear that exp is one-to-one onto exp E. For every $X \in E$, exp $X \notin K_m$. From assertion (B) it follows that exp X is not conjugate to m for every $X \in E$. Hence dexp is non-singular at every $X \in E$. This completes the proof.

The set E is such that:

(1) exp is a diffeomorphism of E onto an open neighborhood of m in M, namely exp E.

(2) E is star shaped in the sense that if $Y \in E$ then $tY \in E$, $t \in [0, 1]$.

Hence E is a normal neighborhood of the origin zero in $T(M)_m$, and exp E is a normal neighborhood of m in M, see [2]. In fact E and exp E are the largest normal neighborhoods of zero in $T(M)_m$ and of m in M respectively.

Since $E \cap \widetilde{K}_m = \emptyset$, it follows that $(\exp E) \cap K_m = \emptyset$. Let $B = E \cup \widetilde{K}_m$, then

Theorem 4.2. $\exp B = M$.

Proof. For any $p \in M$, let d(m, p) = b and

 $\gamma_{\mathbf{x}} = \{(t, \exp t\mathbf{X}) \mid \mathbf{X} \in \mathbf{S}, \mathbf{o} \le t \le b\}$

be a minimal segment from m to p. Then, $b \leq c(X)$ and therefore $bX \in B$. Hence,

$$p = \exp b \mathbf{X} \in \exp \mathbf{B} .$$

Hence, $\exp B = M$.

From this it follows directly that $M = (\exp E) \cup K_m$. Hence K_m is a closed subset of M and \widetilde{K}_m is a closed subset of T $(M)_m$.

THEOREM 4.3. The manifold M is compact if, and only if, $S_0 = S$.

Proof. Suppose M is compact, and let d be the diameter of M. If b > d, then

$$\gamma_{\mathbf{X}} = \{ (t, \exp t\mathbf{X}) \mid t \in [0, b], \mathbf{X} \in \mathbf{S} \}$$

is not a minimal segment from *m* to $\gamma_X(b)$. Hence, $c(X) \leq d$. Thus $X \in S_0$ and $S = S_0$.

Conversely, if $S_0 = S$. Then from the continuity of h_m , it follows that B is closed and bounded in T $(M)_m$, and hence compact. But then $M = \exp B$ is compact.

As an immediate consequence of this theorem it follows that.

COROLLARY 1. If every geodesic ray from m has a conjugate point of m, then M is compact.

COROLLARY 2. M is compact if, and only if, the function f is a homeomorphism of S_0 onto \tilde{K}_m .

References

- [1] R. BISHOP and R. CRITTENDEN, Geometry of Manifolds, Academic Press, N.Y., 1964.
- [2] B. T. M. HASSAN, The Theory of Geodesics in Finsler Spaces, Ph. D. Thesis, Southampton University, U. K., 1967.
- [3] W. KLINGENBERG, Contributions to Riemannian geometry in the large, «Ann. of Math.», 69, 654–666 (1959).
- [4] S. KOBAYASHI, On conjugate and cut loci, Studies in Global Geometry and Analysis, «Math. Assoc. Amer.», 96–172 (1967).
- [5] S. KOBAVASHI and K. NOMIZU, Foundations of Differential Geometry, Vol. II, Wiley (Interscience), N. Y., 1969.
- [6] H. RAUCH, Geodesics and Curvature in Differential Geometry in the Large, Yeshiva University Press, N. Y., 1959.
- [7] A. D. WEINSTEIN, The cut locus and conjugate locus of a Riemannian manifold, «Ann. of Math. », 87, 29-41 (1968).