Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Badie T. M. Hassan
\section*{The Cut Locus of a Finsler Manifold}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.5, p. 739-744.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1973_8_54_5_739_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Topologia. - The Cut Locus of a Finsler Manifold. Nota di Badie T. M. Hassan, presentata ${ }^{(*)}$ dal Socio E. Bompiani.

Abstract

Riassunto. - In questa Nota si estendono agli spazi di Finsler completi e/o compattı risultati noti negli spazi di Riemann concernenti la totalità delle geodetiche uscenti da un punto.

I. Introduction

The study of the cut locus ${ }^{(1)}$ of a Riemannian manifold has led to many interesting results in Riemannian geometry. For example, the proof of the so called "Sphere theorem" due to Rauch [6] depends on estimates of the distance to the cut locus. Moreover, it was realized that much of the topological interest of a manifold lies in its cut locus. A very good account of these results and methods are contained in articles by Klingenberg [3], Kobayashi [4], and Weinstein [7].

The aim of this paper is to extend these methods to the study of the cut locus of a Finsler manifold. As in Riemannian geometry, the exponential map is an important tool in forming the proofs. However, for Finsler manifolds this map is not a C^{∞} map, as it is only of class C^{1} on zero vectors.

2. Notational conventions

The following notations will be used throughout this paper.
M : a complete connected Finsler manifold of dimension $n, n \geq 2$, endowed with a general metric d. By a general metric we mean one which satisfies all metric properties except the symmetry property.
$\mathrm{T}(\mathrm{M})_{m}$: the tangent space to M at $m \in \mathrm{M}$.
$\|\mathrm{X}\|:$ norm of the tangent vector $\mathrm{X} \in \mathrm{T}(\mathrm{M})_{m}$.
\exp : the exponential map of $\mathrm{T}(\mathrm{M})_{m}$ onto M .
dexp : the differential of exp.
$\mathrm{S} \quad:\left\{\mathrm{X} \mid\|\mathrm{X}\|=\mathrm{I}, \mathrm{X} \in \mathrm{T}(\mathrm{M})_{m}\right\}$.
R^{+}: the set of positive real numbers.
$\gamma_{\mathrm{X}} \quad:\left\{\left(t, \gamma_{\mathrm{X}}(t)\right) \mid \gamma_{\mathrm{X}}(t)=\exp t \mathrm{X}, t \in[\mathrm{o}, \infty), \mathrm{X} \in \mathrm{S}\right\}$ is a geodesic starting from m with initial vector X and parametrized by arc-length.
$\mathrm{A}_{\mathrm{X}} \quad:\left\{s \mid\right.$ the segment of γ_{X} from m to $\gamma_{\mathrm{X}}(s)$ is minimizing, $\left.s \in \mathrm{R}^{+} \cup\{\infty\}\right\}$. $L\left(\gamma_{x}\right)$: the length of γ_{x}.
(*) Nella seduta del 14 aprile 1973.
(I) For a point m of a manifold M , the cut locus K_{m} of m in M is the set of all points $p \in \mathrm{M}$ such that there exists a minimal segment from m to p which is not minimizing beyond p.

3. The cut locus

From the above definition of the set A_{x} it follows that:
(1) $s \in \mathrm{~A}_{\mathrm{x}} \wedge t<s \Rightarrow t \in \mathrm{~A}_{\mathrm{x}}$,
(2) $r \in \mathrm{R}^{+} \wedge\left(s<r \Rightarrow s \in \mathrm{~A}_{\mathrm{X}}\right) \Rightarrow r \in \mathrm{~A}_{\mathrm{X}}$,
(3) $\mathrm{A}_{\mathrm{x}}=(0, r] \quad$ for some $r \in \mathrm{R}^{+} \underline{\vee} \mathrm{A}_{\mathrm{x}}=\mathrm{R}^{+} \cup\{\infty\}$.

If $A_{x}=(0, r]$, then the point $\gamma_{X}(r)$ is called the cut point of m along γ_{x}. If $A_{x}=R^{+} \cup\{\infty\}$, then no point of γ_{x} is a cut point of m.

We define a real valued function

$$
c: S \rightarrow \mathrm{R}^{+} \cup\{\infty\}
$$

as

$$
c(\mathrm{X})=\left\{\begin{array}{lll}
r & \text { if } & \mathrm{A}_{\mathrm{X}}=(0, r] \\
\infty & \text { if } & \mathrm{A}_{\mathrm{X}}=\mathrm{R}^{+} \cup\{\infty\}
\end{array}\right.
$$

Set $S_{0}=c^{-1}\left(\mathrm{R}^{+}\right)$. The function

$$
f: \mathrm{S}_{0} \rightarrow \mathrm{~T}(\mathrm{M})_{m}
$$

is defined as $f(\mathrm{X})=c(\mathrm{X}) \mathrm{X}$. The set $f\left(\mathrm{~S}_{0}\right) \subset \mathrm{T}(\mathrm{M})_{m}$ is denoted by $\widetilde{\mathrm{K}}_{m}$.
The function

$$
g: \mathrm{S}_{0} \rightarrow \mathrm{M}
$$

defined as $g=\exp \circ f$ is such that $g(\mathrm{X})$ is a cut point of m along γ_{x}. The set $g\left(\mathrm{~S}_{0}\right) \subset M$ is therefore the set of all cut points of m along all geodesics starting from m. The set $g\left(\mathrm{~S}_{0}\right)$ is called the cut locus of m in M and is denoted by K_{m}. It is clear that $\exp \widetilde{\mathrm{K}}_{m}=\mathrm{K}_{m}$. The set $\widetilde{\mathrm{K}}_{m}$ is called the cut locus of m in $\mathrm{T}(\mathrm{M})_{m}$ and its points are called cut points of m in $\mathrm{T}(\mathrm{M})_{m}$.

From the fact that geodesics do not minimize arc-length beyond the first conjugate point, it follows immediately that

AsSERTION A. If p is the first conjugate point of m along γ_{X}, then there is a point of K_{m} along γ_{X} which is not beyond p.

Assertion B. If γ_{x} is a minimal segment from m to p and p is conjugate to m along γ_{X}, then $p \in \mathrm{~K}_{m}$.

TheOrem 3.1. Let $\left\{\sigma_{i}\right\}$ be a sequence of curves from m to p. If $p \notin \mathrm{~K}_{m}$ and limit $\mathrm{L}\left(\sigma_{i}\right)=d(m, p)$, then $\left\{\sigma_{i}\right\}$ converges to the unique minimal segment from m to p.

Proof. Since M is complete, then there exists a minimal segment γ_{X} from m to p. Set $d(m, p)=b, \mathrm{~L}\left(\sigma_{i}\right)=b_{i}$, and let

$$
\sigma_{i}=\left\{\left(t, \exp t \mathrm{X}_{i}\right) \mid t \in\left[\mathrm{o}, b_{i}\right], \mathrm{X}_{i} \in \mathrm{~S}\right\}
$$

For each value of $\delta, 0 \leq \delta<b$, the set of vectors ($b_{i}-\delta$) X_{i} is contained in some compact subset of $T(M)_{m}$. We may assume, by taking a subsequence if necessary, that

$$
\operatorname{limit}\left(b_{i}-\delta\right) \mathrm{X}_{i}=(b-\delta) \mathrm{Y}, \quad \mathrm{Y} \in \mathrm{~S}
$$

Then,

$$
\gamma_{\mathrm{Y}}=\{(t, \exp t \mathrm{Y}) \mid 0 \leq t \leq b\}
$$

is a minimal segment from m to p. It is clear that limit $\sigma_{i}=\gamma_{\mathrm{Y}}$.
If $X=Y$, then $\gamma_{X}=\gamma_{Y}$ and the theorem is proved.
If $\mathrm{X} \neq \mathrm{Y}$, then $\gamma_{\mathrm{X}}(t)$, $0 \leq t \leq b^{\prime}$, is no longer minimizing for every b^{\prime} greater than b. This contradicts the assumption $p \notin \mathrm{~K}_{m}$.

Hence the assumption $\mathrm{X} \neq \mathrm{Y}$ is false and the theorem is proved.
Theorem 3.2. If $p \in \mathrm{~K}_{m}$ along a geodesic γ_{X}, then at least one of the following statements holds:
(I) p is the first conjugate point of m along γ_{x},
(2) there exist, at least, two minimizing geodesics from m to p.

Proof. If $p=\gamma_{x}(r)$, then we choose a monotone decreasing sequence $\left\{a_{k}\right\}, a_{k} \in \mathrm{R}^{+}$, such that limit $a_{k}=r$. Let $b_{k}=d\left(m, \gamma_{\mathrm{x}}\left(a_{k}\right)\right), k \in \mathrm{~N}$. Since M is complete, then m and $\gamma_{\mathrm{x}}\left(a_{k}\right)$ can be joined by a minimal segment, namely

$$
\sigma_{k}=\left\{\left(t, \exp t \mathrm{X}_{k}\right) \mid t \in\left[\mathrm{o}, b_{k}\right], \mathrm{X}_{k} \in \mathrm{~S}\right\}
$$

It is clear that

$$
\mathrm{X} \neq \mathrm{X}_{k} \quad, \quad a_{k}>b_{k} \quad, \quad \text { limit } b_{k}=r
$$

The set of vectors $b_{k} \mathrm{X}_{k}$ is contained in some compact subset of $\mathrm{T}(\mathrm{M})_{m}$. We may assume, by taking a subsequence if necessary, that

$$
\text { limit } b_{k} \mathrm{X}_{k}=r \mathrm{Y} \quad, \quad \mathrm{Y} \in \mathrm{~S}
$$

Then,

$$
\gamma_{\mathrm{Y}}=\{(t, \exp t \mathrm{Y}) \mid t \in[\mathrm{o}, r]\}
$$

is a minimal segment from m to p.
Now, we have two cases:
Case I. $\mathrm{X}=\mathrm{Y}$. Then,

$$
\exp b_{k} \mathrm{X}_{k}=\exp a_{k} \mathrm{X}
$$

and

$$
\text { limit } b_{k} \mathrm{X}_{k}=r \mathrm{X}=\operatorname{limit} a_{k} \mathrm{X}
$$

implie that exp is not one-to-one in a neighborhood U of $r \mathrm{X}=r \mathrm{Y}$. Thus dexp is singular there and p is conjugate to m along γ_{X}.

On the other hand, if $\gamma_{\mathrm{X}}(s), o<s<r$, were conjugate to m along γ_{X}, then γ_{X} would not be minimizing beyond $\gamma_{\mathrm{X}}(s)$. Hence $p \notin \mathrm{~K}_{m}$, which is a contradiction. Thus p is the first conjugate point of m along γ_{X}, and (I) holds.

Case II. $\mathrm{X} \neq \mathrm{Y}$. In this case $\gamma_{\mathrm{x}} \neq \gamma_{\mathrm{Y}}$ and (2) holds.
52. - RENDICONTI 1973, Vol. LIV, fasc. 5.

Theorem 3.3. The mapping c is continuous over S .
Proof. Let $\mathrm{X} \in \mathrm{S}$, and $\left\{\mathrm{X}_{k}\right\}$ be a sequence of points of S such that limit $\mathrm{X}_{k}=\mathrm{X}$. Set $c\left(\mathrm{X}_{k}\right)=a_{k}$. We may assume, by taking a subsequence if necessary, that limit $\left\{a_{k}\right\}$ exists in $\mathrm{R}^{+} \cup\{\infty\}$. Denote this limit by a. Then

$$
a=c(\mathrm{X}) \vee a \neq c(\mathrm{X})
$$

We are going to prove that $a \neq c(\mathrm{X})$ is impossible. Hence $a=c(\mathrm{X})$, and c is continuous at $\mathrm{X} \in \mathrm{S}$. Since X is arbitrary, this proves that c is continuous over S .

Let us first assume that $c(\mathrm{X})>a$. Then,

$$
\begin{equation*}
\gamma_{\mathrm{x}}(a) \text { is not conjugate to } m \text { along } \gamma_{\mathrm{x}} \text {, } \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{\mathrm{X}}(a) \notin \mathrm{K}_{m} \quad \text { along } \quad \gamma_{\mathrm{X}} . \tag{2}
\end{equation*}
$$

From (I) it follows that \exp is non-singular at $a \mathrm{X}$. Hence, there exists a neighborhood U of $a \mathrm{X}$ in $\mathrm{T}(\mathrm{M})_{m}$ on which \exp is a diffeomorphism. As $\left\{a_{k} \mathrm{X}_{k}\right\}$ converges to $a \mathrm{X}$, we may assume, by omitting a finite number of $a_{k} \mathrm{X}_{k}$ if necessary, that all of $a_{k} \mathrm{X}_{k}$ are in U . Since \exp is a diffeomorphism from U onto $\exp U$, it follows that $\gamma_{k}\left(\alpha_{k}\right)$ cannot be conjugate to m along γ_{k}, where

$$
\boldsymbol{\gamma}_{k}=\left\{\left(t, \exp t \mathrm{X}_{k}\right) \mid t \in\left[0, a_{k}\right]\right\}
$$

Noting that $\gamma_{k}\left(a_{k}\right) \in \mathrm{K}_{m}$ along γ_{k}, it follows from theorem (2) that there exists another minimizing geodesic σ_{k} from m to $\gamma_{k}\left(a_{k}\right)$, namely

$$
\sigma_{k}=\left\{\left(t, \exp t \mathrm{Y}_{k}\right) \mid t \in\left[\mathrm{o}, a_{k}\right], \mathrm{Y}_{k} \in \mathrm{~S}\right\}
$$

We have to note that, for every k,

$$
\mathrm{Y}_{k} \neq \mathrm{X}_{k} \quad, \quad \gamma_{k}\left(a_{k}\right)=\sigma_{k}\left(a_{k}\right) \quad, \quad a_{k} \mathrm{Y}_{k} \notin \mathrm{U}
$$

By taking a subsequence if necessary, we may assume that $\left\{\mathrm{Y}_{k}\right\}$ converges to some point $\mathrm{Y} \in \mathrm{S}$. Then $a \mathrm{Y} \notin \mathrm{U}$ and the geodesic

$$
\gamma_{\mathrm{Y}}=\{(t, \exp t \mathrm{Y}) \mid t \in[\mathrm{o}, a]\}
$$

is a minimal segment from m to $\gamma_{X}(a)=\gamma_{Y}(a)$. Hence, both γ_{X} and γ_{Y} are minimal segments from m to $\gamma_{\mathrm{X}}(a)=\gamma_{\mathrm{V}}(a)$. From (2) and Theorem (I) we can see that this is impossible. Hence $c(\mathrm{X})>a$ is false.

Let us now assume that $c(\mathrm{X})<a$, and let b be a positive number such that $a>c(\mathrm{X})+b$. Set $c(\mathrm{X})+b=a^{\prime}$. As $\left\{a_{k}\right\}$ converges to a, we may assume, by omitting a finite number of a_{k} if necessary that $a_{k}>a^{\prime}$, for all k.

Since $\gamma_{\mathrm{x}}\left(a^{\prime}\right) \notin \mathrm{K}_{m}$ along γ_{x}, it follows from Theorem (I) that there exists' a unique minimal segment from m to $\gamma_{\mathrm{X}}\left(a^{\prime}\right)$. This means that there exists a point $X^{\prime} \in S$ such that $X^{\prime} \neq X$ and

$$
\gamma_{\mathrm{X}^{\prime}}=\left\{\left(t, \exp t \mathrm{X}^{\prime}\right) \mid 0 \leq t \leq c(\mathrm{X})+b^{\prime}, b^{\prime}<b\right\}
$$

is a minimal segment from m to $\gamma_{\mathrm{X}}\left(a^{\prime}\right)$. We have to note that

$$
\gamma_{\mathrm{X}}\left(a^{\prime}\right)=\gamma_{\mathrm{X}^{\prime}}\left(c(\mathrm{X})+b^{\prime}\right)
$$

We set $2 r=b-b^{\prime}$. It is clear that

$$
\operatorname{limit} \gamma_{k}\left(a^{\prime}\right)=\gamma_{\mathrm{X}}\left(a^{\prime}\right)
$$

Hence we may assume, by omitting a finite number of X_{k} if necessary, that there exists a neighborhood U of X such that, for every k,

$$
\mathrm{X}_{k} \in \mathrm{U} \quad, \quad d\left(\gamma_{\mathrm{X}}\left(a^{\prime}\right), \gamma_{k}\left(a^{\prime}\right)\right)<r
$$

Let α be a minimal segment from $\gamma_{\mathrm{X}}\left(a^{\prime}\right)$ to $\gamma_{k}\left(a^{\prime}\right)$. For each fixed k, consider the curve τ from m to $\gamma_{k}\left(a^{\prime}\right)$ defined by

$$
\tau= \begin{cases}\exp t \mathrm{X}^{\prime} & 0 \leq t \leq c(\mathrm{X})+b^{\prime} \\ \alpha & \end{cases}
$$

Hence,

$$
\mathrm{L}(\tau)<c(\mathrm{X})+b^{\prime}+r=c(\mathrm{X})+b-r<\mathrm{L}\left(\gamma_{k}\right),
$$

where $L\left(\gamma_{k}\right)$ is the length of γ_{k} from m to $\gamma_{k}\left(a^{\prime}\right)$. This means that the geodesic segment of γ_{k} from m to $\gamma_{k}\left(a^{\prime}\right)$ is not minimizing. This contradicts the inequality $a_{k}>a^{\prime}$. Hence the assumption $c(\mathrm{X})<a$ is false. This completes the proof.

From the continuity of c it follows immediately that the function f is continuous over S_{0}. Also, from the continuity of c and the exponential map it follows that g is continuous over S_{0}. We also have that

Corollary i. The map

$$
h_{m}: \mathrm{S}_{0} \rightarrow \mathrm{R}^{+}
$$

defined as $h_{m}(\mathrm{X})=d(m, g(\mathrm{X}))$ is continuous over S_{0}.

4. The cut locus of a compact manifold

For $X \in S$, let

$$
\mathrm{E}_{\mathrm{x}}=\{\mathrm{Y} \mid \mathrm{Y}=t \mathrm{X}, t \in[\mathrm{o}, c(\mathrm{X}))\}
$$

The set $\mathrm{E}=\cup \mathrm{E}_{\mathrm{X}}$, for all $\mathrm{X} \in \mathrm{S}$, is an open cell in $\mathrm{T}(\mathrm{M})_{m}$ called the interior set in $\mathrm{T}(\mathrm{M})_{m}$. It is clear that $\mathrm{E} \cap \widetilde{\mathrm{K}}_{m}=\varnothing$.

Theorem 4.r. $\exp \mid \mathrm{E}: \mathrm{E} \rightarrow \exp \mathrm{E}$ is a diffeomorphism.
Proof. It is clear that exp is one-to-one onto \exp E. For every $\mathrm{X} \in \mathrm{E}$, $\exp \mathrm{X} \notin \mathrm{K}_{m}$. From assertion (B) it follows that $\exp \mathrm{X}$ is not conjugate to m for every $\mathrm{X} \in \mathrm{E}$. Hence dexp is non-singular at every $\mathrm{X} \in \mathrm{E}$. This completes the proof.

The set E is such that:
(r) exp is a diffeomorphism of E onto an open neighborhood of m in M, namely $\exp \mathrm{E}$.
(2) E is star shaped in the sense that if $\mathrm{Y} \in \mathrm{E}$ then $t \mathrm{Y} \in \mathrm{E}, t \in[\mathrm{o}, \mathrm{r}]$.

Hence E is a normal neighborhood of the origin zero in $\mathrm{T}(\mathrm{M})_{m}$, and $\exp \mathrm{E}$ is a normal neighborhood of m in M , see [2]. In fact E and $\exp \mathrm{E}$ are the largest normal neighborhoods of zero in $\mathrm{T}(\mathrm{M})_{m}$ and of m in M respectively.

Since $\mathrm{E} \cap \widetilde{\mathrm{K}}_{m}=\varnothing$, it follows that $(\exp \mathrm{E}) \cap \mathrm{K}_{m}=\varnothing$. Let $\mathrm{B}=\mathrm{E} \cup \widetilde{\mathrm{K}}_{m}$, then

Theorem 4.2. $\exp \mathrm{B}=\mathrm{M}$.
Proof. For any $p \in \mathrm{M}$, let $d(m, p)=b$ and

$$
\gamma_{\mathrm{X}}=\{(t, \exp t \mathrm{X}) \mid \mathrm{X} \in \mathrm{~S}, \mathrm{o} \leq t \leq b\}
$$

be a minimal segment from m to p. Then, $b \leq c(\mathrm{X})$ and therefore $b \mathrm{X} \in \mathrm{B}$. Hence,

$$
p=\exp b \mathrm{X} \in \exp \mathrm{~B}
$$

Hence, $\exp \mathrm{B}=\mathrm{M}$.
From this it follows directly that $\mathrm{M}=(\exp \mathrm{E}) \cup \mathrm{K}_{m}$. Hence K_{m} is a closed subset of M and $\widetilde{\mathrm{K}}_{m}$ is a closed subset of $\mathrm{T}(\mathrm{M})_{m}$.

Theorem 4.3. The manifold M is compact if, and only if, $\mathrm{S}_{0}=\mathrm{S}$.
Proof. Suppose M is compact, and let d be the diameter of M. If $b>d$, then

$$
\gamma_{\mathrm{X}}=\{(t, \exp \mathrm{tX}) \mid t \in[0, b], \mathrm{X} \in \mathrm{~S}\}
$$

is not a minimal segment from m to $\gamma_{\mathrm{X}}(b)$. Hence, $c(\mathrm{X}) \leq d$. Thus $\mathrm{X} \in \mathrm{S}_{0}$ and $S=S_{0}$.

Conversely, if $\mathrm{S}_{0}=\mathrm{S}$. Then from the continuity of h_{m}, it follows that B is closed and bounded in $\mathrm{T}(\mathrm{M})_{m}$, and hence compact. But then $\mathrm{M}=\exp \mathrm{B}$ is compact.

As an immediate consequence of this theorem it follows that.
Corollary i. If every geodesic ray from m has a conjugate point of m, then M is compact.

Corollary 2. M is compact if, and only if, the function f is a homeomorphism of S_{0} onto $\widetilde{\mathrm{K}}_{m}$.

References

[i] R. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press, N. Y., 1964.
[2] B. T.M. Hassan, The Theory of Geodesics in Finsler Spaces, Ph. D. Thesis, Southampton University, U. K., 1967.
[3] W. Klingenberg, Contributions to Riemannian geometry in the large, "Ann. of Math. », 69, 654-666 (1959).
[4] S. Kobayashi, On conjugate and cut loci, Studies in Global Geometry and Analysis, «Math. Assoc. Amer.», 96-172 (1967).
[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Wiley (Interscience), N. Y.. 1969.
[6] H. Rauch, Geodesics and Curvature in Differential Geometry in the Large, Yeshiva University Press, N. Y., 1959.
[7] A. D. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, "Ann. of Math: », 87, 29-4I (1968).

