Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Mauro Beltrametti

Some remarks about the contact of hypersurfaces along multiple subvarieties

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.5, p. 712-717.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1973_8_54_5_712_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria. - Some remarks about the contact of hypersurfaces along multiple subvarieties. Nota di Mauro Beltrametti, presentata ${ }^{(*)}$ dal Socio E. G. Togliatti.

Abstract

RiAsSunto. - Estendendo ricerche di D. Gallarati [2] e di molti altri Autori sul contatto tra due ipersuperficie d'uno spazio proiettivo S_{r} lungo una varietà ad $r-2$ dimensioni, si considera il caso in cui il contatto avvenga lungo le varie falde d'una varietà multipla per le due ipersuperficie.

I. First, we mention some definitions and known results to be used in the sequel (see also [3], par. 8).

Let us denote by $\left(\mathrm{X}, \mathrm{O}_{\mathrm{X}}\right),\left(\mathrm{Y}, \mathrm{O}_{\mathrm{Y}}\right)$ two algebraic varieties defined on a field k, by \mathfrak{d} a sheaf of ideals of O_{X}, by $f: \mathrm{Y} \rightarrow \mathrm{X}$ a morphism and by $f^{*}: \mathrm{O}_{\mathrm{X}} \rightarrow \mathrm{O}_{\mathrm{Y}}$ the associated morphism between the structure sheaves.

Definition (i). We say that f makes the ideal \mathfrak{J} invertible (or divisorial) if $f^{-1} \mathfrak{I}$ is an invertible sheaf on Y , where $f^{-1} \mathfrak{g}$ is the ideal generated by the image of $f^{*} \mathfrak{J}$ in O_{Y}.

Definition (2). Denoting by $\sigma: \mathrm{X}^{\prime} \rightarrow \mathrm{X}$ a morphism which makes \mathfrak{d} invertible, the pair $\left(\mathrm{X}^{\prime}, \sigma\right)$ is said to be a blow up of X along \mathfrak{y} if for every morphism $f: \mathrm{Y} \rightarrow \mathrm{X}$, which makes \mathfrak{d} invertible, there exists one and only one morphism $\tau: \mathrm{Y} \rightarrow \mathrm{X}^{\prime}$ such that the diagram:

commutes.

Proposition (i). Let X be a variety and \mathfrak{I} a sheaf of ideals of $\mathrm{O}_{\mathrm{x}}, \mathfrak{I} \neq \mathrm{o}$. Then there exists a blow up $\left(\mathrm{X}^{\prime}, \sigma\right)$ of X along \mathfrak{d} which is unique up to isomorphisms.

Definition (3). Let Z be a closed subset of X defined by the ideal \mathfrak{I}_{Z} of O_{x}. The blow up of X along $\mathfrak{I}_{\mathrm{Z}}$ is called blow up of X along Z. In particular if Z is a point P we get blow up of X at P.

Proposition (2). If X and Z are non singular X^{\prime} is non singular, moreover $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{X}^{\prime}$.

Last, we observe that if $\left(\mathrm{X}^{\prime}, \sigma\right)$ is the blow up of X along \mathfrak{I} and if U is a nonempty open set of X , then $\left(\sigma^{-1}(\mathrm{U}), \sigma / \sigma^{-1}(\mathrm{U})\right)$ is the blow up of $(\mathrm{U}, \mathscr{I} / \mathrm{U})$.
(*) Nella seduta del 12 maggio 1973.

Let X be a non singular, irreducible, complete algebraic variety of dimension n, defined over an algebraically closed field k of characteristic zero, let D be an hypersurface of X, V a non singular, irreducible, subvariety of X of codimension $\lambda+\mathrm{I}$. \mathscr{J}_{ν} the sheaf of ideals of O_{x} defining V. Further, we denote by P a point of V , by U an affine neighborhood of P in X , by $f=0$, with $f \in \Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{x}}\right)$, a local equation of D in U and write $\mathfrak{\mathscr { R }}_{v}=\Gamma\left(\mathrm{U}, \mathfrak{I}_{v}\right)$. We set the following:

Definition (4). D passes through V with multiplicity s if:

$$
f \in \mathfrak{Q}_{v}^{s} \quad, \quad f \notin \mathscr{O}_{v}^{s+1}
$$

Let us now assume that D passes through V with multiplicity s and that there exists an effective divisor Δ of V such that the generic point of every irreducible component δ of Δ has multiplicity $s_{1}{ }^{(1)}$ with respect to $\mathrm{D}\left(s_{1}>s\right)$. Thus if \mathscr{J}_{δ} is the sheaf of ideals defining δ and $\mathfrak{T}_{\delta}=\Gamma\left(\mathrm{U}, \mathfrak{J}_{\delta}\right)$ we have:

$$
\begin{equation*}
f \in \mathscr{O}_{v}^{s} \quad, \quad f \notin \mathscr{Q}_{v}^{s+1} \quad ; \quad f \in \mathscr{Q}_{\delta}^{s_{1}} \quad, \quad f \notin \mathscr{O}_{\delta}^{s_{1}^{1}+1} . \tag{I}
\end{equation*}
$$

By the hypothesis made, it is possible to choose the affine neighborhood U such that V and δ become complete intersection on U ; hence we get:

$$
\mathfrak{Q}_{v}=\left(g_{1}, \cdots, g_{\lambda+1}\right) \quad, \quad \mathscr{N}_{\delta}=\left(g_{1}, \cdots, g_{\lambda+2}\right) \quad, \quad g_{i} \in \Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{x}}\right)
$$

Let $\left(\sigma^{-1}(\mathrm{U}), \sigma / \sigma^{-1}(\mathrm{U})\right)$ be the blow up of U along $\mathrm{V} \cap \mathrm{U}$, induced by the blow up $\left(X^{\prime}, \sigma\right)$ of X along V. In the variety $U \times \mathbf{P}^{\lambda}$ we consider the closed subset U^{\prime} defined by the equations:

$$
g_{i} \mathrm{X}_{j}-g_{j} \mathrm{X}_{i}=\mathrm{o} \quad i, j=\mathrm{I}, \cdots, \lambda+\mathrm{I}
$$

where $\mathrm{X}_{1}, \cdots, \mathrm{X}_{\lambda+1}$ are homogeneous coordinates in \mathbf{P}^{λ}. Outside of V the projection $\sigma: \mathrm{U}^{\prime} \rightarrow \mathrm{U}$ is an isomorphism and $\mathrm{U}^{\prime}=\sigma^{-1}(\mathrm{U})$.

Now we prove that \mathscr{I}_{v} becomes divisorial on U^{\prime}. To achieve this purpose take over $\mathrm{U} \times \mathbf{P}^{\lambda}$ the open set $\mathrm{U} \times \mathrm{U}_{i}$, with $\mathrm{U}_{i}=\operatorname{Spec}\left(k\left[\frac{\mathrm{X}_{1}}{\mathrm{X}_{i}}, \cdots, \frac{\mathrm{X}_{\lambda+1}}{\mathrm{X}_{i}}\right]\right)$. U^{\prime} is defined on $\mathrm{U} \times \mathrm{U}_{i}$ by the equations: $g_{j}=g_{i} \frac{\mathrm{X}_{j}}{\mathrm{X}_{i}}, j=\mathrm{I}, \cdots, \lambda+\mathrm{I}$ (i fixed); hence on $\mathrm{U}^{\prime} \cap\left(\mathrm{U} \times \mathrm{U}_{i}\right)$ the ideal $\sigma^{-1} \mathfrak{I}_{\nu}$ is generated by g_{i}. Thus g_{i} defines on $\mathrm{U}^{\prime} \cap\left(\mathrm{U} \times \mathrm{U}_{i}\right)$ the exceptional divisor $\mathrm{E}=\sigma^{-1}(\mathrm{~V})$. One gets:

$$
\mathrm{U} \times \mathrm{U}_{i}=\operatorname{Spec}\left(\Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{x}}\right)\left[\frac{\mathrm{X}_{1}}{\mathrm{X}_{i}}, \cdots, \frac{\mathrm{X}_{\lambda+1}}{\mathrm{X}_{i}}\right]\right)
$$

so that:

$$
\mathrm{U}^{\prime} \cap\left(\mathrm{U} \times \mathrm{U}_{i}\right)=\operatorname{Spec}\left(\Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{X}}\right)\left[\frac{\mathrm{X}_{1}}{\mathrm{X}_{i}}, \cdots, \frac{\mathrm{X}_{\lambda+1}}{\mathrm{X}_{i}}\right] /\left(\cdots, g_{j}-g_{i} \frac{\mathrm{X}_{j}}{\mathrm{X}_{i}}, \cdots\right)\right)
$$

Putting $\mathrm{U}_{g_{i}}=\mathrm{U}-\left\{g_{i}=0\right\}$ it follows:

$$
\mathrm{U}_{i}^{\prime}:=\mathrm{U}^{\prime} \cap\left(\mathrm{U}_{g_{i}} \times \mathrm{U}_{i}\right)=\operatorname{Spec}\left(\Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{x}}\right)\left[\frac{g_{1}}{g_{i}}, \cdots, \frac{g_{\lambda+1}}{g_{i}}\right]\right)
$$

(I) Shortly denoted, in the sequel, by s_{1}-point.
2. Let $f=\mathrm{o}$ be a local equation of D in U ; owing to the relations (I) there exist $\alpha_{s}, \alpha_{s+1}, \cdots, \alpha_{s_{1}}$ with $\alpha_{j} \in \mathscr{V}_{v}^{j}\left(j=s, \cdots, s_{1}\right), \alpha_{s} \notin \mathscr{Q}_{v}^{s+1}$ and α_{s} homogeneous such that:

$$
\begin{equation*}
f-\left(g_{\lambda+2}^{s_{1}-s} \alpha_{s}+g_{\lambda+2}^{s_{1}-s-1} \alpha_{s+1}+\cdots+g_{\lambda+2} \alpha_{s_{1}-1}+\alpha_{s_{1}}\right) \in \mathscr{V}_{\nu}^{s_{1}+1} \tag{2}
\end{equation*}
$$

On the open set $\mathrm{U}_{g_{i}}$ write $g_{k}=g_{i} \frac{g_{k}}{g_{i}}(k=\mathrm{I}, \cdots, \lambda+2)$: since $\alpha_{j} \in \mathscr{\Upsilon}_{v}^{j}$ we get, for every $j, \alpha_{j}=g_{i}^{j} \beta_{j}$, where

$$
\beta_{j} \in\left(\frac{g_{1}}{g_{i}}, \cdots, \frac{g_{\lambda+1}}{g_{i}}\right)^{j} \Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{x}}\right) .
$$

Hence in $\mathrm{U}_{g_{i}}$ a relation of the form:

$$
\begin{equation*}
f=g_{i}^{s}\left[g_{\lambda+2}^{s_{1}-s} \beta_{s}+g_{i} \cdot \eta\right]=0 \tag{3}
\end{equation*}
$$

holds, where g_{i} does not divide β_{s} and where η is element of $\mathfrak{V}_{v}^{s_{1}}$.
In the open set U_{i}^{\prime} we have the following: $g_{i}=0$ is an equation of the exceptional divisor $\mathrm{E}, g_{\lambda+2}^{s_{1}-s} \cdot \beta_{s}+g_{i} \cdot \eta$ stands for the proper transform $\mathrm{D}^{(1)}$ of $\mathrm{D}, g_{\lambda+2}=\mathrm{o}$ is an equation of $\delta^{*}=\sigma^{-1}(\delta) \in \operatorname{Div}(\mathrm{E})$. Moreover, if V_{1} is the divisor of E locally represented by the equation $\beta_{s}=0{ }^{(2)}$, we get on E:

$$
\mathrm{E} \cdot \mathrm{D}^{(1)}=\mathrm{V}_{1}+\left(s_{1}-s\right) \delta^{*}
$$

(taking into account that the open sets U_{i}^{\prime} are a covering of U^{\prime}).
Therefore, we have proved the following
Proposition (3). $\mathrm{O}_{\mathrm{X}^{\prime}}\left(\mathrm{D}^{(1)}\right) \otimes_{\mathrm{O}_{\mathrm{X}^{\prime}}} \mathrm{O}_{\mathrm{E}}=\mathrm{O}_{\mathrm{E}}\left(\mathrm{V}_{1}\right) \otimes_{\mathrm{o}_{\mathrm{X}^{\prime}}} \mathrm{O}_{\mathrm{E}}\left(\left(s_{1}-s\right) \delta^{*}\right)$.
Remark: $\left(g_{1}, \cdots, g_{\lambda+1}\right)$ is a $\Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{x}}\right)$ sequence and, if $\mathrm{P} \notin \Delta$, it may be completed in $\mathrm{O}_{\mathrm{X}, \mathrm{P}}$ to a $\mathrm{O}_{\mathrm{X}, \mathrm{P}}$ sequence ($g_{1}^{\prime}, \cdots, g_{\lambda+1}^{\prime}, \cdots, g_{n}^{\prime}$) formed by a regular system of parameters, where g_{i}^{\prime} is the image of g_{i} in $\mathrm{O}_{\mathrm{X}, \mathrm{P}}, i=\mathrm{I}, \cdots, \lambda+\mathrm{I}$. Hence $g_{\alpha}^{\prime}, \alpha=\mathrm{I}, \cdots, n$ may be viewed as indeterminates [I].
3. Let $\mathrm{D}_{1}, \mathrm{D}_{2}$ be two hypersurfaces of X passing with multiplicity s through the subvariety V of X . Hereinafter we shall assume that an open set U_{V} of V exists in which D_{1} and D_{2} have s distinct branches: we mean that for every point P of U_{V} it is possible to find a surface intersecting D_{1} and D_{2} in two curves, each having at $\mathrm{P} s$ distinct tangent lines (i.e. P is an ordinary s-point for the two section curves). Moreover, we assume the existence of two divisors δ_{1} and δ_{2} of $\mathrm{V}, \operatorname{loci}{ }^{(3)}$ of s_{1} and s_{2}-points for D_{1} and D_{2} respectively $\left(s_{1}>s, s_{2}>s\right)$.
(2) Clearly V_{1} does not depend on the choice of α_{s}.
(3) (i.e. the generic point of every irreducible component of δ_{i} is s_{i}-point, $i=1,2$).

If in the affine open set U the divisor D_{i} has equation $f_{i}=\mathrm{o}(i=\mathrm{I}, 2)$, we write, with the notation of the previous section:

$$
\begin{align*}
& f_{1}=g_{i}^{s}\left[g_{\lambda+2}^{s_{1}-s} \beta_{s}^{(1)}+g_{i} \cdot \eta_{1}\right]=0 \tag{4}\\
& f_{2}=g_{i}^{s}\left[g_{\lambda+2}^{s_{2}-s} \beta_{s}^{(2)}+g_{i} \cdot \eta_{2}\right]=0 .
\end{align*}
$$

If the divisors V_{1}, V_{2} of E, locally represented on U_{i}^{\prime} by $\beta_{s}^{(1)}=0$, $\beta_{s}^{(2)}=0$, coincide then $\alpha_{s}^{(1)}=g_{i}^{s} \beta_{s}^{(1)}$ and $\alpha_{s}^{(2)}=g_{i}^{s} \beta_{s}^{(2)}$ coincide up to invertible factors. This means that in every point $\mathrm{P} \in \mathrm{V}$ not belonging to Supp $\delta_{1} \cup \operatorname{Supp} \delta_{2}, \mathrm{D}_{1}$ and D_{2} have the same tangent cone. In fact, on account of remark of Section 2 we get, for every such point P :

$$
\widehat{\mathrm{O}}_{\mathrm{x}, \mathrm{P}} \stackrel{\stackrel{\xi}{\simeq}}{\simeq} k \llbracket g_{1}^{\prime}, \cdots, g_{n}^{\prime} \| .
$$

On the other hand the tangent cone to D_{1} at P is the affine scheme:

$$
\begin{aligned}
& \operatorname{Spec}\left(g r \mathrm{O}_{\mathrm{D}_{1}, \mathrm{P}}\right)=\operatorname{Spec}\left(g r \mathrm{O}_{\mathrm{x}, \mathrm{P}} /\left(f_{1}\right) \mathrm{O}_{\mathrm{x}, \mathrm{P}}\right) \simeq \\
\simeq & \operatorname{Spec}\left(g r \widehat{\mathrm{O}}_{\mathrm{x}, \mathrm{P}} /\left(f_{1}\right) \widehat{\mathrm{O}}_{\mathrm{X}, \mathrm{P}}\right) \simeq \operatorname{Spec}\left(\operatorname{gr} k \llbracket g_{1}^{\prime}, \cdots, g_{n}^{\prime} \| /\left(\xi\left(f_{1}\right)\right)\right) \simeq \\
\simeq & \operatorname{Spec}\left(g r k\left\|g_{1}^{\prime}, \cdots, g_{n}^{\prime}\right\| /\left(\bar{\xi}\left(f_{1}\right)\right)\right),
\end{aligned}
$$

where $\overline{\xi\left(f_{1}\right)}$ is the lower-degree term of $\xi\left(f_{1}\right)$; since $\alpha_{s}^{(1)}, \alpha_{s}^{(2)}$ are homogeneous: $\overline{\xi\left(f_{1}\right)}=\rho \overline{\xi\left(f_{2}\right)}, \rho \in k$, is equivalent to $\mathrm{V}_{1}=\mathrm{V}_{2}$.
4. We denote $D_{1}^{(1)}$ and $D_{2}^{(1)}$ the proper transforms of the divisors D_{1} and D_{2} while δ_{1}^{*} and δ_{2}^{*} stand for the inverse images of δ_{1} and $\delta_{2}\left(\delta_{i} \in \operatorname{Div}(\mathrm{~V})\right.$, $i=\mathrm{I}, 2$).

Formulas (4) yield:

$$
\mathrm{O}_{\mathrm{X}^{\prime}}\left(\mathrm{D}_{1}^{(1)}\right) \otimes \mathrm{o}_{\mathrm{X}^{\prime}} \mathrm{O}_{\mathrm{E}}=\mathrm{O}_{\mathrm{E}}\left(\mathrm{~V}_{1}+\left(s_{1}-s\right) \delta_{1}^{*}\right)
$$

and

$$
\mathrm{O}_{\mathrm{X}^{\prime}}\left(\mathrm{D}_{2}^{(1)}\right) \otimes \mathrm{o}_{\mathrm{X}^{\prime}} \mathrm{O}_{\mathrm{E}}=\mathrm{O}_{\mathrm{E}}\left(\mathrm{~V}_{2}+\left(s_{2}-s\right) \delta_{2}^{*}\right)
$$

Whenever D_{1} and D_{2} have the same tangent cone at the points of V not belonging to $\operatorname{Supp} \delta_{1} \cup \operatorname{Supp} \delta_{2}$, i.e. in the hypothesis $V_{1}=V_{2}$, one has:

$$
\mathrm{O}_{\mathrm{X}^{\prime}}\left(\mathrm{D}_{1}^{(1)}-\mathrm{D}_{2}^{(1)}\right) \otimes_{\mathrm{o}^{\prime}} \mathrm{O}_{\mathrm{E}}=\mathrm{O}_{\mathrm{E}}\left[\left(s_{1}-s\right) \delta_{1}^{*}-\left(s_{2}-s\right) \delta_{2}^{*}\right] .
$$

Suppose V_{1} be a prime, non singular divisor (this is motivated by the generality of $\left.\alpha_{s}^{(1)}\right)^{(4)}$.
(4) The argument which follows can be extended, with minor changes, to the case where V_{1} is reducible with every component non singular, by considering every irreducible component.

Tensoring by $\mathrm{O}_{\mathrm{V}_{1}}=\mathrm{O}_{\mathrm{V}_{2}}$ on O_{E} and still denoting by δ_{i}^{*} the divisors intersected on V_{1} by $\delta_{i}^{*}, i=\mathrm{I}, 2$:

$$
\begin{equation*}
\mathrm{O}_{\mathrm{x}^{\prime}}\left(\mathrm{D}_{1}^{(1)}-\mathrm{D}_{2}^{(1)}\right) \otimes \otimes_{\mathrm{o}^{\prime}} \mathrm{O}_{\mathrm{V}_{1}}=\mathrm{O}_{\mathrm{V}_{1}}\left[\left(s_{1}-s\right) \delta_{1}^{*}-\left(s_{2}-s\right) \delta_{2}^{*}\right] . \tag{5}
\end{equation*}
$$

Let now $\overline{\mathrm{D}}_{1}$ and $\overline{\mathrm{D}}_{2}$ be two divisors of X such that $\overline{\mathrm{D}}_{1} \equiv \mathrm{D}_{1}, \overline{\mathrm{D}}_{2} \equiv \mathrm{D}_{2}$ and assume that \bar{D}_{1}, \bar{D}_{2} do not contain V ([5], Cap. II, par. 3). Putting $\overline{\mathrm{D}}_{i}^{*}=\sigma^{-1}\left(\overline{\mathrm{D}}_{i}\right), i=\mathrm{I}, 2$, it follows:

$$
\overline{\mathrm{D}}_{1}^{*}-\overline{\mathrm{D}}_{2}^{*} \equiv \mathrm{D}_{1}^{(1)}+s \mathrm{E}-\mathrm{D}_{2}^{(1)}-s \mathrm{E}=\mathrm{D}_{1}^{(1)}-\mathrm{D}_{2}^{(1)} ;
$$

whence, by use of (5):

$$
\begin{equation*}
\mathrm{O}_{\mathrm{X}^{\prime}}\left(\overline{\mathrm{D}}_{1}^{*}-\overline{\mathrm{D}}_{2}^{*}\right) \otimes_{\mathrm{o}_{\mathrm{X}^{\prime}}} \mathrm{O}_{\mathrm{v}_{1}}=\mathrm{O}_{\mathrm{v}_{1}}\left[\left(s_{1}-s\right) \delta_{1}^{*}-\left(s_{2}-s\right) \delta_{2}^{*}\right] . \tag{6}
\end{equation*}
$$

This formula is equivalent to state the linear equivalence of the two divisors intersected on V_{1} by $\left(s_{1}-s\right) \delta_{1}^{*}-\left(s_{2}-s\right) \delta_{2}^{*}$ and by $\bar{D}_{1}^{*}-\bar{D}_{2}^{*}$ respectively.

We remark that, if $\left(s_{1}-s\right) \delta_{1}^{*}-\left(s_{2}-s\right) \delta_{2}^{*} \equiv \mathrm{o}$, in particular if $\delta_{1}=\delta_{2}=0$, whe have:

$$
\mathrm{O}_{\mathrm{E}}\left[\left(\overline{\mathrm{D}}_{1}^{*}-\overline{\mathrm{D}}_{2}^{*}\right) \cdot \mathrm{E}\right]=\mathrm{O}_{\mathrm{E}}
$$

then, since $\sigma_{*} \mathrm{O}_{\mathrm{E}}=\mathrm{O}_{\mathrm{V}}$:

$$
\begin{equation*}
\left(\overline{\mathrm{D}}_{1}-\overline{\mathrm{D}}_{2}\right) \cdot \mathrm{V} \equiv \mathrm{o} . \tag{7}
\end{equation*}
$$

We suppose now that the subvariety V has codimension two $(\lambda=\mathrm{I})$. In this case there exists on V an open set U_{V} such that the restriction to U_{V} of the morphism $\tau=\sigma / \mathrm{V}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}$ has finite fibres ([4], Cap. I, p. 96), all of them being formed by s distinct points. Indeed if U_{V} is the open set of V in which D_{1} and D_{2} have s distinct branches and if S is a surface which intersects V in a point P and $\mathrm{D}_{1}, \mathrm{D}_{2}$ along curves having in P an ordinary s-point, the blow up of X along V induces blow up at P of both these curves; furthermore P blows up in s distinct points belonging to V_{1}.

In the hypothesis that the variety X has dimension 3 and that all the points forming the divisor $\delta_{i}(i=\mathrm{I}, 2)$ have the same multiplicity $s_{i}=s+\mathrm{I}$ (this situation is a general one) eq. (6) implies that the two divisors intersected on the curve V_{1} by $\delta_{1}^{*}-\delta_{2}^{*}$ and by $\bar{D}_{1}^{*}-\bar{D}_{2}^{*}$ have the same degree. Since the divisors $\overline{\mathrm{D}}_{1}$ and $\overline{\mathrm{D}}_{2}$ may be choosen to ensure that no point $\mathrm{P} \notin \mathrm{U}_{\mathrm{V}}$ is contained in Supp $\overline{\mathrm{D}}_{1} \cup \operatorname{Supp} \overline{\mathrm{D}}_{2}$, we have:

$$
\begin{equation*}
\operatorname{deg}\left(\overline{\mathrm{D}}_{1}^{*}-\overline{\mathrm{D}}_{2}^{*}\right)_{/ \mathrm{v}_{1}}=s \operatorname{deg}\left(\overline{\mathrm{D}}_{1}-\overline{\mathrm{D}}_{2}\right)_{/ \mathrm{v}} \tag{8}
\end{equation*}
$$

then:

$$
s \operatorname{deg}\left(\overline{\mathrm{D}}_{1}-\overline{\mathrm{D}}_{2}\right)_{/ \mathrm{v}}=\operatorname{deg} \delta_{1}^{*}-\operatorname{deg} \delta_{2}^{*} .
$$

On the other hand ${ }^{(5)}$:

$$
\operatorname{deg} \delta_{1}^{*}=s \operatorname{deg} \delta_{1} \quad, \quad \operatorname{deg} \delta_{2}^{*}=s \operatorname{deg} \delta_{2}
$$

whence:

$$
\begin{equation*}
\operatorname{deg}\left(\bar{D}_{1}-\overline{\mathrm{D}}_{2}\right)_{/ \mathrm{V}}=\operatorname{deg} \delta_{1}-\operatorname{deg} \delta_{2} \tag{9}
\end{equation*}
$$

Let us make the following remark: if D_{1} and D_{2} are two surfaces, of orders d_{1} and d_{2}, belonging to $\mathrm{X}=\mathbf{P}^{3}$ and if h is the order of the curve V , we have from (9):

$$
h\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right)=\operatorname{deg} \delta_{1}-\operatorname{deg} \delta_{2} .
$$

If $\delta_{1} \equiv \delta_{2}$ (in particular if $\delta_{1}=\delta_{2}=0$) it follows $\mathrm{d}_{1}=\mathrm{d}_{2}$. Thus we have proved the following:

Proposition (4). Let D_{1} and D_{2} be two algebraic surfaces of \mathbf{P}^{3}, each passing with multiplicity s, and with s distinct branches, through a non singular curve V of order h. If δ_{i} is the divisor on V locus of s_{i}-points $\left(s_{i}=\mathrm{I}+s\right)$ for $\mathrm{D}_{i}(i=\mathrm{I}, 2)$ and if $\mathrm{D}_{1}, \mathrm{D}_{2}$ have the same tangent cone at the points of V not belonging to Supp $\delta_{1} \cup$ Supp δ_{2}, then the equality $h\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right)=$ $=\operatorname{deg} \delta_{1}-\operatorname{deg} \delta_{2}$ holds .

Corollary. Two surfaces $\mathrm{D}_{1}, \mathrm{D}_{2}$ of \mathbf{P}^{3} both passing with multiplicity s through a non singular curve C and not having on C points of multiplicity $>s$, can have the same tangent cone along C only if their orders are equal.

The previous proposition is extended in an obvious way to the case $\mathrm{X}=\mathbf{P}^{n}$: if two hypersurfaces D_{1} and D_{2}, of the same order, have the same tangent cone at every point $\mathrm{P} \notin \operatorname{Supp} \delta_{1} \cup \operatorname{Supp} \delta_{2}$ it follows:

$$
\left(s_{1}-s\right) \delta_{1}^{*} \equiv\left(s_{2}-s\right) \delta_{2}^{*} .
$$

Bibliography

[i] R. Hartshorne, A property of A-sequences, «Bull. Soc. Math. France», 94, 6i-66 (1966).
[2] D. Gallarati, Ricerche sul contatto di superficie algebriche lungo curve, "Mémoires de l'Académie Royale de Belgique, Classe de Sciences», 32 (3), I-78 (1960).
[3] A. Grothendieck, Eléments de Géometrie Algébrique, II (i96i).
[4] D. Mumford, Introduction to Algebraic Geometry.
[5] J. R. Shafarevich, Foundations of Algebraic Geometry, "Russian Math. Surveys», 24 (6). (1969).
(5) There exists on the curve V a divisor $\bar{\delta}_{1} \equiv \delta_{1}$ such that Supp $\bar{\delta}_{1} \subset \mathrm{U}_{\mathrm{V}}$, hence $\operatorname{deg} \bar{\delta}_{1}^{*}=s \operatorname{deg} \delta_{1} . \quad$ But $\operatorname{deg} \bar{\delta}_{1}^{*}=\operatorname{deg} \delta_{1}^{*}$, for $\bar{\delta}_{1}^{*} \equiv \delta_{1}^{*}$; it follows: deg $\delta_{1}^{*}=s \operatorname{deg} \delta_{1} . \quad$ The equality $\operatorname{deg} \delta_{2}^{*}=s \operatorname{deg} \delta_{2}$ follows similarly.

