Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Joseph Adolphe Thas
 4-gonal subconfigurations of a given 4-gonal configuration

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 53 (1972), n.6, p. 520-530.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1972_8_53_6_520_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria. - 4-gonal subconfigurations of a given 4-gonal configuration. Nota di Joseph Adolphe Thas, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Si introducono e studiano certe strutture finite, includenti quelle formate dai punti e dalle rette di una quadrica non degenere (su cui non giacciano piani) di uno spazio di Galois di dimensione 3, o 4, o 5 .

I. Introduction

i.i. Definition. A finite 4 -gonal configuration [2] is an incidence structure $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with an incidence relation satisfying the following axioms.
(i) each point is incident with r lines $(r \geq 2)$ and two distinct points are incident with at most one line;
(ii) each line is incident with k points ($k \geq 2$) and two distinct lines are incident with at most one point;
(iii) if x is a point and L is a line not incident with x, then there are a unique point $x!$ and a unique line L^{\prime} such that $x \mathrm{I} L^{\prime} \mathrm{I} x^{\prime} \mathrm{I} L$.
I.2. Fundamental Relations. If $|\mathbf{P}|=v$ and $|\mathbf{B}|=b$, then $v=k(k r-k-r+2)$ and $b=r(k r-k-r+2)$. In [4] D. G. Higman proves that the positive integer $k+r-2$ divides $k r(k-\mathrm{I})(r-\mathrm{I})$. Moreover, under the assumption that $k>2$ and $r>2$, he shows that $r-\mathrm{I} \leq(k-\mathrm{I})^{2}$ and $k-\mathrm{I} \leq(r-\mathrm{I})^{2}$.
I.3. Examples of 4 -Gonal configurations. (a) Let $\mathbf{P}=\left\{x_{i j} \| i, j=\right.$ $=\mathrm{I}, 2, \cdots, k\}$ and $\mathbf{B}=\left\{L_{1}, L_{2}, \cdots, L_{k}, M_{1}, M_{2}, \cdots, M_{k}\right\}$, where $k \geq 2$. Incidence is defined as follows: $x_{i j} \mathrm{I} L_{l} \Leftrightarrow \Rightarrow i=l, x_{i j} \mathrm{I} M_{l} \Leftrightarrow j=l$. Then $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$ is a 4 -gonal configuration with parameters $k=k, r=2$, $v=k^{2}, b=2 k$. This 4 -gonal configuration is denoted by $\mathbf{T}(k)$.
(b) We consider a non-singular hyperquadric Q of index 2 of the projective space $P G(d, q)$, with $d=3,4$ or 5 . Then the points of Q together with the lines of Q (which are the subspaces of maximal dimension
(*) Nella seduta dell'ı 1 novembre 1972.
on Q) form a 4-gonal configuration $\mathbf{Q}(d, q)$ with parameters [2]
$k=q+1, r=2, v=(q+1)^{2}, \quad b=2(q+1), \quad$ when $d=3 ;$
$k=r=q+\mathrm{I}, v=b=(q+\mathrm{I})\left(q^{2}+\mathrm{I}\right), \quad$ when $d=4$;
$k=q+\mathrm{I}, r=q^{2}+\mathrm{I}, v=(q+\mathrm{I})\left(q^{3}+\mathrm{I}\right), \quad b=\left(q^{2}+\mathrm{I}\right)\left(q^{3}+\mathrm{I}\right)$, when $d=5$.

Remarks. I) $\mathbf{Q}(3, q)$ is isomorphic to $\mathbf{T}(q+\mathrm{I})$.
2) The points of $P G(3, q)$, together with the totally isotropic lines with respect to a symplectic polarity π, form a 4 -gonal configuration $\mathbf{W}(q)$ which is isomorphic to the dual of $\mathbf{Q}(4, q)$ [I].
(c) Let H be a non-singular Hermitian primal [8] of the projective space $P G(d, q), q=p^{2 h}$. If $d=3$ or 4 , then the points of H together with the lines of H form a 4 -gonal configuration $\mathbf{H}(d, q)$ with parameters [2]

$$
\begin{array}{r}
k=q+\mathrm{I}, r=\mathrm{I}+\sqrt{q}, v=(\mathrm{I}+q) \cdot(\mathrm{I}+q \sqrt{q}), \quad b=(\mathrm{I}+\sqrt{q})(\mathrm{I}+q \sqrt{q}) \\
\text { when } d=3 \\
k=q+\mathrm{I}, r=\mathrm{I}+q \sqrt{q}, v=(\mathrm{I}+q)\left(\mathrm{I}+q^{2} \sqrt{q}\right), \quad b=(\mathrm{I}+q \sqrt{q})\left(\mathrm{I}+q^{2} \sqrt{q}\right) \\
\text { when } d=4
\end{array}
$$

(d) Consider an oval O (i.e. a set of $q+2$ points no three of which are collinear) of the plane $P G(2, q), q=2^{h}$. Let $P G(2, q)$ be embedded as a plane H in $P G(3, q)=P$. Now a 4 -gonal configuration $\mathbf{O}(q)$ is defined as follows [3]. Points of $\mathbf{O}(q)$ are the points of $P-H$. Lines of $\mathbf{O}(q)$ are the lines of P which are not contained in H and meet O (necessarily in a unique point). Incidence is that of P. The 4 -gonal configuration $\mathbf{O}(q), q=2^{h}$, so defined has parameters

$$
k=q, \quad r=q+2, \quad v=q^{3}, \quad b=q^{2}(q+2)
$$

2. Ovaloids and spreads

2.i. Definitions. An ovaloid (resp. spread) of the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with parameters k, r, v, b, is a set of $k r-k-r+2=0$ points (resp. lines) no two of which are collinear (resp. concurrent). We remark that θ is the maximal number of points (lines) of \mathbf{S}, no two of which are collinear (resp. concurrent).
2.2. Examples of ovaloids and spreads. (a) If $\mathbf{S}=\mathbf{T}(k)$, then $\theta=k$. We see immediately that $\left\{x_{11}, x_{22}, \cdots, x_{k k}\right\}$ is an ovaloid and that $\left\{L_{1}, L_{2}, \cdots, L_{k}\right\}$ is a spread (we remark that $\mathbf{T}(k)$ possesses k ! ovaloids and 2 spreads).
(b) For $\mathbf{S}=\mathbf{Q}(4, q)$, we have $\theta=q^{2}+\mathrm{r}$. Let $P G(3, q)$ be a hyperplane of $P G(4, q) \supset Q$ for which $P G(3, q) \cap Q=Q^{\prime}$ is an elliptic quadric 36. - RENDICONTI 1972, Vol. LIII, fasc. 6.
of $P G(3, q)$. Then Q^{\prime} evidently is an ovaloid of $\mathbf{Q}(4, q)$. As $\mathbf{Q}(4, q)$, $q=2^{h}$, is always self-dual ([9], [r]) there follows immediately that there exists also a spread of $\mathbf{Q}(4, q)$. Finally, we remark that $\mathbf{Q}(4, q), q$ odd, does not contain a spread [io].

If $\mathbf{S}=\mathbf{Q}(5, q)$, then $\theta=q^{3}+$ I. We do not know if $\mathbf{Q}(5, q)$ possesses spreads or ovaloids.
(c) For $\mathbf{S}=\mathbf{H}(3, q), q=p^{2 h}$, we have $\theta=q \sqrt{q}+$ i. Let $P G(2, q)$ be a plane of $P G(3, q) \supset H$ for which $P G(2, q) \cap H=H^{\prime}$ is a non-singular Hermitian curve of $P G(2, q)$. Then H^{\prime} evidently is an ovaloid of $\mathbf{H}(3, q)$. We do not know if there exists a spread of $\mathbf{H}(3, q)$.

If $\mathbf{S}=\mathbf{H}(4, q), q=p^{2 h}$, then $\theta=q^{2} \sqrt{q}+\mathrm{I}$. We do not know if $\mathbf{H}(4, q)$ possesses spreads or ovaloids.
(d) For $\mathbf{S}=\mathbf{O}(q), q=2^{h}$, we have $\theta=q^{2}$. Let $P G^{(1)}(2, q)$ be a plane of $P G(3, q) \supset P G(2, q) \supset O$ where $P G^{(1)}(2, q) \cap P G(2, q)=L$ has no point in common with O. Then $P G^{(1)}(2, q)-L$ evidently is an ovaloid of $\mathbf{O}(q)$. It is also evident that the q^{2} lines of $P G(3, q)$, which are not contained in $P G(2, q)$ and meet O in a fixed point, constitute a spread of the 4 gonal configuration $\mathbf{O}(q)$.

3. 4-Gonal subconfigurations of a given 4-Gonal configuration

3.i. Definitions. The 4 -gonal configuration $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$ is called a 4-gonal subconfiguration of the 4 -gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$ if and only if $\mathbf{P}^{\prime} \subset \mathbf{P}, \mathbf{B}^{\prime} \subset \mathbf{B}$ and $\mathrm{I}^{\prime}=\mathrm{I} \cap\left(\mathbf{P}^{\prime} \times \mathbf{B}^{\prime}\right)$. If $\mathbf{S}^{\prime} \neq \mathbf{S}$, then we say that \mathbf{S}^{\prime} is a proper 4 -gonal subconfiguration of \mathbf{S}. When the parameters of \mathbf{S} are denoted by k, r, v, b, the parameters of \mathbf{S}^{\prime} are denoted by $k^{\prime}, r^{\prime}, v^{\prime}, b^{\prime}$.
3.2. Theorem. If $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$ is a 4 -gonal subconfiguration of the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, then $y \mathrm{I} L \mathrm{I} x$, with $x, y \in \mathbf{P}^{\prime}$ and $L \in \mathbf{B}$, implies $L \in \mathbf{B}^{\prime}$. Dually, $L \mathrm{I} x \mathrm{I} M$, with $L, M \in \mathbf{B}^{\prime}$ and $x \in \mathbf{P}$, implies $x \in \mathbf{P}^{\prime}$.

Proof. Suppose that $y \mathrm{I} L \mathrm{I} x$, with $x, y \in \mathbf{P}^{\prime}$ and $L \in \mathbf{B}$. Let $L^{\prime} \neq L$ be a line of \mathbf{S}^{\prime} which is incident with x. From (iii) in the definition of 4 -gonal configuration there follows immediately that there are a unique point $x^{\prime} \in \mathbf{P}^{\prime}$ and a unique line $L^{\prime \prime} \in \mathbf{B}^{\prime}$, such that $y \mathrm{I}^{\prime} L^{\prime \prime} \mathrm{I}^{\prime} x^{\prime} \mathrm{I}^{\prime} L^{\prime}$. As $y \mathrm{I} L^{\prime \prime} \mathrm{I} x^{\prime} \mathrm{I} L^{\prime}$ and $y \mathrm{I} L^{\prime} \mathrm{I} x \mathrm{I} L^{\prime}$, it follows that $x=x^{\prime}$ and $L=L^{\prime \prime}$. So we conclude that $L \in \mathbf{B}^{\prime}$.

Corollaries. Ci. If $L \in \mathbf{B}$ then there are three possibilities:
(a) 非 $x \in \mathbf{P}^{\prime} \| x \mathrm{I} L$;
(b) \exists ! $x \in \mathbf{P}^{\prime} \| x \mathrm{I} L$;
(c) $L \in \mathbf{B}^{\prime}$.

C2. If $x \in \mathbf{P}$ then there are three, possibilities:
(a) 非 $L \in \mathbf{B}^{\prime} \| x \mathrm{I} L$;
(b) $\exists!L \in \mathbf{B}^{\prime} \| x \mathrm{I} L$;
(c) $x \in \mathbf{P}^{\prime}$.
C_{3}. If \mathbf{S}^{\prime} is a proper 4-gonal subconfiguration of \mathbf{S}, then $\mathbf{P} \neq \mathbf{P}^{\prime}$ and $\mathbf{B} \neq \mathbf{B}^{\prime}$ (i.e. $v^{\prime}<v$ and $b^{\prime}<b$).

4. The case $k=k^{\prime}, r^{\prime}<r$

4.I. Theorem. Suppose that the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with parameters k, r, v, b, has a 4-gonal subconfiguration $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, I^{\prime}\right)$, with parameters $k, r^{\prime}, v^{\prime}, b^{\prime}\left(r^{\prime}<r\right)$. Then \mathbf{S}^{\prime} possesses an ovaloid and $r^{\prime}-\mathrm{I} \leq(r-\mathrm{I}) /(k-\mathrm{I})$.

Proof. We consider a point $x \in \mathbf{P}-\mathbf{P}^{\prime}$. From C2. there follows: 非 $L \in \mathbf{B}^{\prime} \|$ $x \mathrm{I} L\left(\mathrm{C}_{2}^{\prime}.\right)$. Let $L_{1}, L_{2}, \cdots, L_{r}$ be the r lines of \mathbf{S} which are incident with x. Taking account of C . and C_{2}., it follows that $L_{i}, i=\mathrm{I}, 2, \cdots, r$, is incident with at most one point of \mathbf{S}^{\prime}. Suppose that $L_{i_{1}}, L_{i_{2}}, \cdots, L_{i_{\alpha}},\left\{i_{1}, i_{2}, \cdots, i_{\alpha}\right\} \subset$ C $\{\mathrm{I}, 2, \cdots, r\}$, are the lines which are incident with one point of \mathbf{S}^{\prime}. If $x_{i_{j}} \mathrm{I} L_{i_{j}}, x_{i_{j}} \in \mathbf{P}^{\prime}$ and $j=\mathrm{I}, 2, \cdots, \alpha$, then from the definition of 4 -gonal configuration there follows immediately that $\left\{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{\alpha}}\right\}=O$ is a set of α points of \mathbf{S}^{\prime} no two of which are collinear. Hence the configuration \mathbf{S}^{\prime} contains $\alpha \gamma^{\prime}$ distinct lines which are incident with one of the points of O.

Next we consider an arbitrary line L^{\prime} of \mathbf{S}^{\prime}. There are a unique line $L^{\prime \prime} \in \mathbf{B}$ and a unique point $x^{\prime} \in \mathbf{P}$ such that $x \mathrm{I} L^{\prime \prime} \mathrm{I} x^{\prime} \mathrm{I} L^{\prime}$. As $x^{\prime} \in \mathbf{P}^{\prime}$, it follows that $x^{\prime} \in O$. So the line L^{\prime} is incident with one of the points of O.

From the preceding there follows immediately that $\alpha r^{\prime}=b^{\prime}=r^{\prime}\left(k r^{\prime}-\right.$ $-k-r^{\prime}+2$) or $\alpha=k r^{\prime}-k-r^{\prime}+2$. Hence O is an ovaloid of \mathbf{S}^{\prime}. Moreover we have $\alpha=k r^{\prime}-k-r^{\prime}+2 \leq r$ or $r^{\prime}-\mathrm{I} \leq(r-\mathrm{I}) /(k-\mathrm{I})$.

Corollaries. C4. $r \geq k ; r=k$ implies $r^{\prime}=2$.
C_{5}. If $k>2$ then we have $r^{\prime} \leq k ; r^{\prime}=k>2$ implies $r-\mathrm{I}=(k-\mathrm{I})^{2}$.
Proof. From C4. there follows that $r>2$, and so we have $r-\mathrm{I} \leq$ $\leq(k-\mathrm{I})^{2}(\mathrm{I} .2$.$) . Consequently r^{\prime}-\mathrm{I} \leq(r-\mathrm{I}) /(k-\mathrm{I}) \leq k-\mathrm{I}$ or $r^{\prime} \leq \vec{k}$.

If $r^{\prime}=k>2$ then $k-\mathrm{I}=r^{\prime}-\mathrm{I} \leq(r-\mathrm{I}) /(k-\mathrm{I})$, and so $r-\mathrm{I} \geq$ $\geq(k-\mathrm{I})^{2}$. From the preceding there follows immediately that $r-\mathrm{I}=$ $=(k-\mathrm{I})^{2}$.

Remark. When $k=2$ it is easy to prove that $2 \leq r^{\prime}<r$ is the only restriction for r^{\prime}.

C6. Suppose that $r^{\prime}>2$ and $k>2$. Then $\sqrt{k-\mathrm{I}} \leq r^{\prime}-\mathrm{I} \leq k-\mathrm{I}$ (F) and $(k-\mathrm{I})^{3 / 2} \leq r-\mathrm{I} \leq(k-\mathrm{I})^{2}\left(\mathrm{~F}^{\prime}\right)$.

Proof. From $r^{\prime}>2$ and $k>2$ there follows that $r^{\prime} \leq k$ and $\left(r^{\prime}-1\right)^{2} \geq$ $\geq k-\mathrm{I}$. So we have $\sqrt{k-\mathrm{I}} \leq r^{\prime}-\mathrm{I} \leq k-\mathrm{I}$.

Next we remark that $k-\mathrm{I} \leq\left(r^{\prime}-\mathrm{I}\right)^{2} \leq(r-\mathrm{I})^{2} /(k-\mathrm{I})^{2}$ or $(k-\mathrm{I})^{3} \leq$ $\leq(r-\mathrm{I})^{2}$. As $k>2$ and $r>2$ we also have $r-\mathrm{I} \leq(k-\mathrm{I})^{2}$. We conclude that $(k-\mathrm{I})^{3 / 2} \leq r-\mathrm{I} \leq(k-\mathrm{I})^{2}$.

REmARK. Let $r-\mathrm{I}=(k-\mathrm{I})^{3 / 2}, k>2$ and $r^{\prime}>2$. Then $r^{\prime}-\mathrm{I} \leq$ $\leq(k-\mathrm{I})^{3 / 2} /(k-\mathrm{I})$ or $r^{\prime}-\mathrm{I} \leq \sqrt{k-\mathrm{I}}$. From (F) there follows that $r^{\prime}-\mathrm{I}=\sqrt{k-\mathrm{I}}$.

C7. If \mathbf{S}^{\prime} possesses a proper 4 -gonal subconfiguration $\mathbf{S}^{\prime \prime}$ with parameters $k, r^{\prime \prime}, v^{\prime \prime}, b^{\prime \prime}, k>2$, then $r^{\prime \prime}=2, r^{\prime}=k$ and $r-\mathrm{I}=(k-\mathrm{I})^{2}$.

Proof. There holds $r^{\prime} \leq k(\mathrm{C} 5$.$) and r^{\prime \prime}-\mathrm{I} \leq\left(r^{\prime}-\mathrm{I}\right) /(k-\mathrm{I})$. Hence $r^{\prime \prime}-\mathrm{I} \leq \frac{r^{\prime}-\mathrm{I}}{k-\mathrm{I}} \leq \frac{k-\mathrm{I}}{k-\mathrm{I}}$ or $r^{\prime \prime} \leq 2$. There results that $r^{\prime \prime}=2$ and $r^{\prime}=k$. From C_{5}. there follows immediately that $r-\mathrm{I}=(k-\mathrm{I})^{2}$.
4.2. Theorem. Suppose that the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with parameters k, r, v, b, has a proper 4-gonal subconfiguration $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$, with parameters $k, r^{\prime}, v^{\prime}, b^{\prime}$, and suppose moreover that $r^{\prime}-\mathrm{I}<(r-\mathrm{I}) /(k-\mathrm{I})$. Then \mathbf{P}^{\prime} is the union of k disjoint ovaloids of \mathbf{S}^{\prime}.

Proof. From the Proof of 4.I. there follows that $r^{\prime}-\mathrm{I}<(r-\mathrm{I}) /(k-\mathrm{I})$ if and only if \mathbf{B} contains a line L which is incident with no point of \mathbf{P}^{\prime}. If $x_{j} \mathrm{I} L, x_{j} \in \mathbf{P}$ and $j=\mathrm{I}, 2, \cdots, k$, then the points of \mathbf{P}^{\prime} which are collinear with x_{j} constitute an ovaloid of \mathbf{S}^{\prime} (see Proof of 4.I.). In this way we obtain k ovaloids of \mathbf{S}^{\prime}. As \mathbf{S} does not contain a triangle, these ovaloids evidently are disjoint. From $v^{\prime}=k \theta^{\prime}$, with $\theta^{\prime}=k r^{\prime}-k-r^{\prime}+2$ the number of points of an ovaloid of \mathbf{S}^{\prime}, there follows that \mathbf{P}^{\prime} is the union of k disjoint ovaloids of \mathbf{S}^{\prime}.
4.3. Remark. Suppose that O is an ovaloid of the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with parameters k, r, v, b. If $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$ is a 4 -gonal subconfiguration of \mathbf{S}, with $k^{\prime}=k$, then it is easy to prove that $O \cap \mathbf{P}^{\prime}$ is an ovaloid of \mathbf{S}^{\prime}.
4.4. Theorem. Let $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$ be a substructure of the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with parameters $k, r, v, b(k>2)$, satisfying the following:
(i) every two distinct points of \mathbf{P}^{\prime} which are collinear in \mathbf{S} are also collinear in \mathbf{S}^{\prime};
(ii) each element of \mathbf{B}^{\prime} is incident with k points of \mathbf{P}^{\prime}. Then there are three possibilities:
(a) the elements of \mathbf{B}^{\prime} are lines which are incident with a same point of \mathbf{P}, and \mathbf{P}^{\prime} consists of the points of \mathbf{P} which are incident with these lines;
(b) $\mathbf{B}^{\prime}=\varnothing$ and \mathbf{P}^{\prime} is a set of points of \mathbf{P}, no two of which are collinear in \mathbf{S};
 $k, r^{\prime}, v^{\prime}, b^{\prime}$.

Proof. Evidently (i) and (ii) are fulfilled by (a), (b), (c). Now we show that there are no other possibilities.

Suppose that $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, I^{\prime}\right)$ satisfies (i), (ii) and is not of type (a), (b). Then there holds $\mathbf{B}^{\prime} \neq \varnothing$ and $\mathbf{P}^{\prime} \neq \varnothing$. Suppose that $L^{\prime} \in \mathbf{B}^{\prime}$. As \mathbf{S}^{\prime} is not of type (a) there exists a point $x^{\prime} \in \mathbf{P}^{\prime}$ such that $x^{\prime} \Psi^{\prime} L^{\prime}$. Let x be the unique element of \mathbf{P} and let L be the unique element of \mathbf{B} for which $x^{\prime} \mathrm{I} L \mathrm{I} x \mathrm{I} L^{\prime}$. We remark that $x \in \mathbf{P}^{\prime}$ (see (ii)). From $x, x^{\prime} \in \mathbf{P}^{\prime}$ and x^{\prime} I L I x there follows immediately that $L \in \mathbf{B}^{\prime}$ (see (i)). And so axiom (iii) in the definition of 4 -gonal configuration is satisfied by \mathbf{S}^{\prime}. Now we show that also (i) and (ii) in definition I.I. are satisfied.

First of all we remark that every line of \mathbf{B}^{\prime} is incident with $k(>2)$ points of \mathbf{P}^{\prime} and that two distinct lines of \mathbf{B}^{\prime} are incident with at most one point of \mathbf{P}^{\prime}. Next we consider a point $x^{\prime} \in \mathbf{P}^{\prime}$ and we suppose that x^{\prime} is incident with $r^{\prime}(>0)$ lines of \mathbf{B}^{\prime}. Let $y^{\prime} \in \mathbf{P}^{\prime}$ be a point which is not collinear with x^{\prime} and call $r^{\prime \prime}$ the number of lines of \mathbf{S}^{\prime} which are incident with y^{\prime} (as \mathbf{S}^{\prime} is not of type (a) or (b), such a point y^{\prime} exists). If L^{\prime} is a line of \mathbf{B}^{\prime} which is incident with x^{\prime} (resp. y^{\prime}), then there exists one and only one line of \mathbf{B}^{\prime} which is incident with y^{\prime} (resp. x^{\prime}) and which is concurrent with L^{\prime}. There follows immediately that $r^{\prime}=r^{\prime \prime}$. In the same way we can prove that r^{\prime} is the number of lines of \mathbf{B}^{\prime} which are incident with any point of \mathbf{P}^{\prime} which is collinear with x^{\prime} but which is not collinear with y^{\prime}. Finally we consider a point $z^{\prime} \in \mathbf{P}^{\prime}$ which is collinear with x^{\prime} and y^{\prime}. We have to consider two cases.
(a) Let us suppose that $r^{\prime}=\mathrm{I}$. The line which is incident with x^{\prime} (resp. y^{\prime}) and z^{\prime} is denoted by L^{\prime} (resp. $L^{\prime \prime}$). Suppose that L is a line of \mathbf{B}^{\prime} with $L \notin\left\{L^{\prime}, L^{\prime \prime}\right\}$. Then $x^{\prime} ¥ L, y^{\prime} \nsucceq L$ (since $r^{\prime}=r^{\prime \prime}=\mathrm{I}$). Since there exists a line of \mathbf{B}^{\prime} which is incident with x^{\prime} (resp. y^{\prime}) and which is concurrent with L, there results that L and L^{\prime} (resp. L and $L^{\prime \prime}$) are concurrent (taking account of $r^{\prime}=r^{\prime \prime}=\mathrm{I}$). So we conclude that $z^{\prime} \mathrm{I} L$. Consequently \mathbf{S}^{\prime} is of type (a), a contradiction.
(b) Let us suppose that $r^{\prime}>\mathrm{I}$. We consider a line L of \mathbf{B}^{\prime} which is incident with x^{\prime} and which is not incident with z^{\prime}. As $k>2$ there exists a point $u^{\prime} \in \mathbf{P}^{\prime}-\left\{x^{\prime}\right\}$ which is incident with L and which is not collinear with y^{\prime}. Such a point u^{\prime} is not collinear with z^{\prime} or y^{\prime}. There follows: number of lines of \mathbf{S}^{\prime} which are incident with $z^{\prime}=$ number of lines of \mathbf{S}^{\prime} which are incident with $u^{\prime}=$ number of lines of \mathbf{S}^{\prime} which are incident with $y^{\prime}=r^{\prime}$.

Consequently every point of \mathbf{P}^{\prime} is incident with $r^{\prime}(\geq 2)$ lines of \mathbf{B}^{\prime} and two distinct points of \mathbf{P}^{\prime} are incident with at most one line of \mathbf{S}^{\prime}. So we conclude that \mathbf{S}^{\prime} is a 4 -gonal subconfiguration of \mathbf{S} with parameters $k, r^{\prime}, v^{\prime}, b^{\prime}$.

Remark. Consider the 4 -gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \boldsymbol{\epsilon})$, where $\mathbf{P}=\{\mathrm{I}, 2,3,4,5,6\}$ and $\mathbf{B}=\{\{1,4\},\{1,5\},\{1,6\},\{2,4\},\{2,5\}$, $\{2,6\},\{3,4\},\{3,5\},\{3,6\}\}$ (here we have $k=2, r=3, v=6$, $b=9)$. Then the substructure $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \epsilon\right)$, where $\mathbf{P}^{\prime}=\{\mathrm{I}, 2,4,5,6\}$ and $\mathbf{B}^{\prime}=\{\{\mathrm{I}, 4\},\{\mathrm{I}, 5\},\{\mathrm{I}, 6\},\{2,4\},\{2,5\},\{2,6\}\}$, satisfies (i), (ii) and is not of type (a), (b), (c). We conclude that condition $k>2$, in the statement of Theorem 4.4., cannot be deleted.
4.5. Examples. (a) Let $\mathbf{P}=\left\{x_{1}, x_{2}, \cdots, x_{r}, y_{1}, y_{2}, \cdots, y_{r}\right\}$ and $\mathbf{B}=\left\{L_{i j} \| i, j=\mathrm{I}, 2, \cdots, r\right\}$, where $r \geq 2$. Incidence is defined as follows: $L_{i j} \mathrm{I} x_{l} \Longleftrightarrow i=l, L_{i j} \mathrm{I} y_{l} \Longleftrightarrow j=l$. Then $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$ is a 4 -gonal configuration with parameters $k=2, r=r, v=2 r, b=r^{2}$. This configuration is denoted by $\mathbf{T}^{*}(r)$ and is the dual of the configuration $\mathbf{T}(r)$. Then the structure $\quad \mathbf{T}^{*}\left(r^{\prime}\right)=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$, with $2 \leq r^{\prime} \leq r, \quad \mathbf{P}^{\prime}=\left\{x_{1}, \cdots, x_{r^{\prime}}, y_{1}, \cdots, y_{r^{\prime}}\right\}$, $\mathbf{B}^{\prime}=\left\{L_{i j} \| i, j=\mathrm{I}, \cdots, r^{\prime}\right\}, \mathrm{I}^{\prime}=\mathrm{I} \cap\left(\mathbf{P}^{\prime} \times \mathbf{B}^{\prime}\right), \quad$ evidently \quad is a 4 -gonal subconfiguration of \mathbf{S} with parameters $k^{\prime}=2, r^{\prime}=r^{\prime}, \quad v^{\prime}=2 r^{\prime}, b^{\prime}=r^{\prime 2}$.
(b) For $\mathbf{S}=\mathbf{Q}(4, q)$ we have $k=r=q+$ I. If \mathbf{S}^{\prime} is a proper 4^{-} gonal subconfiguration of $\mathbf{Q}(4, q)$ with parameters $k^{\prime}=q+1, r^{\prime}, v^{\prime}, b^{\prime}$, then necessarily $r^{\prime}=2$ (C4.). It is easy to prove that $\mathbf{Q}(4, q)$ possesses such 4-gonal subconfigurations. Next, let $\mathbf{Q}^{*}(4, q)=\mathbf{W}(q)$ be the dual of \mathbf{S}. Then it is possible to prove that $\mathbf{W}(q)$ possesses proper 4 -gonal subconfigurations, with $k^{\prime}=q+1$ (then necessarily $r^{\prime}=2$), if and only if q is even, i.e. if and only if $\mathbf{W}(q)$ is isomorphic to $\mathbf{Q}(4, q)$ (cfr. [r]).

For $\mathbf{S}=\mathbf{Q}(5, q)$ we have $k=q+\mathrm{I}, r=q^{2}+\mathrm{I}$, and so $r-\mathrm{I}=$ $=(k-\mathrm{I})^{2}$. If \mathbf{S}^{\prime} is a proper 4-gonal subconfiguration of $\mathbf{Q}(5, q)$ with $k^{\prime}=q+\mathrm{I}$, then necessarily $r^{\prime} \leq q+\mathrm{I}$. If $r^{\prime}>2$ then we have $r^{\prime} \geq \sqrt{q}+\mathrm{I}$ (cfr. C6.). Let $P G(4, q)$ be a hyperplane of $P G(5, q) \supset Q$ for which $P G(4, q) \cap Q=Q^{\prime}$ is a non-singular hyperquadric of index 2 of $P G(4, q)$. Then $\mathbf{Q}^{\prime}(4, q)$ is a proper 4 -gonal subconfiguration of $\mathbf{Q}(5, q)$ with $k^{\prime}=q+\mathrm{I}$ and $r^{\prime}=q+\mathrm{I}$. Consequently $\mathbf{Q}^{\prime}(4, q)$ possesses ovaloids. We remark that in this case $r^{\prime}=k$ (cfr. C_{5}.). From the preceding there also follows that $\mathbf{Q}^{\prime}(4, q)$, and consequently $\mathbf{Q}(5, q)$, possesses 4-gonal subconfigurations with parameters $q+\mathrm{I}, 2,(q+\mathrm{I})^{2}, 2(q+\mathrm{I})(\mathrm{cfr} . \mathrm{C} 7$.).
(c) As $r<k$ the configuration $\mathbf{H}(3, q), q=p^{2 h}$, has no proper 4^{-g} gonal subconfigurations with $k^{\prime}=q+\mathrm{I}\left(\mathrm{C}_{4}\right)$.

For $\mathbf{S}=\mathbf{H}(4, q), q=p^{2 h}$, we have $k=q+\mathrm{I}, r=\mathrm{I}+q \sqrt{q}$, and so $r-\mathrm{I}=(k-\mathrm{I})^{3 / 2}\left(\operatorname{cfr}\right.$. C6.). If \mathbf{S}^{\prime} is a proper 4 -gonal subconfiguration of $\mathbf{H}(4, q)$ with $k^{\prime}=q+\mathrm{I}$, then necessarily $r^{\prime}=2$ or $r^{\prime}=\sqrt{q}+\mathrm{I}$ (see remark of C6.). Let $P G(3, q)$ be a hyperplane of $P G(4, q) \supset H$ for which $P G(3, q) \cap H=H^{\prime}$ is a non-singular Hermitian primal of $P G(3, q)$. Then $\mathbf{H}^{\prime}(3, q)$ is a proper 4 -gonal subconfiguration of $\mathbf{H}(4, q)$ with $k^{\prime}=q+\mathrm{I}$ and $r^{\prime}=\sqrt{q}+\mathrm{I}$. Consequently $\mathbf{H}^{\prime}(3, q)$ possesses ovaloids. It is not difficult to prove that there does not exist 4 -gonal subconfigurations of $\mathbf{H}(4, q)$ with $k^{\prime}=q+\mathrm{I}$ and $r^{\prime}=2$.
(d) We shall prove that $\mathbf{O}(q), q=2^{h}$ and $h>1$, does not possess a proper 4-gonal subconfiguration with $k^{\prime}=q$ and $r^{\prime}>2$. Suppose the contrary. Then from C6. there follows that $(k-\mathrm{I})^{3 / 2} \leq r-\mathrm{I} \leq(k-\mathrm{I})^{2}$ or $(q-\mathrm{I})^{3 / 2} \leq q+\mathrm{I} \leq(q-\mathrm{I})^{2}$, a contradiction. Finally we shall construct a 4-gonal, subconfiguration $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$ of $\mathbf{O}(q)$ with $k^{\prime}=q$ and $r^{\prime}=2$. Let $P G^{(1)}(2, q)$ be a plane of $P G(3, q) \supset P G(2, q) \supset O$, where $P G^{(1)}(2, q) \cap P G(2, q)=L$ has two distinct points x, y in common with O. Define: $\mathbf{P}^{\prime}=P G^{(1)}(2, q)-L, \mathbf{B}^{\prime}=\left\{\right.$ lines of $P G^{(1)}(2, q)$ which are diffe-
rent from L and contain x or $y\}$, incidence is that of $\operatorname{PG}(3, q)$. Then the configuration \mathbf{S}^{\prime} so defined evidently is a 4 -gonal subconfiguration of \mathbf{S}, with parameters $k^{\prime}=q, r^{\prime}=2, v^{\prime}=q^{2}, b^{\prime}=2 q$.

5. The CASE $k^{\prime}<k, r^{\prime}<r$

5.1. Theorem. Suppose that the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with parameters k, r, v, b, has a 4 -gonal subconfiguration $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, I^{\prime}\right)$, with parameters $k^{\prime}, r^{\prime}, v^{\prime}, b^{\prime}\left(k^{\prime}<k, r^{\prime}<r\right)$. Then $\left(k^{\prime}-\mathrm{I}\right)\left(r^{\prime}-\mathrm{I}\right)^{2}<(r-\mathrm{I})(k-\mathrm{I})$ and dually $\left(r^{\prime}-\mathrm{I}\right)\left(k^{\prime}-\mathrm{I}\right)^{2}<(r-\mathrm{I})(k-\mathrm{I})$.

Proof. Suppose that $L^{\prime} \in \mathbf{B}^{\prime}, x \mathrm{I} L^{\prime}, x \notin \mathbf{P}^{\prime}$. Let $L \in \mathbf{B}-\left\{L^{\prime}\right\}$ and $x \mathrm{I} L$ (from C2. there follows that $L \notin \mathbf{B}^{\prime}$). Then we prove that \mathbf{P}^{\prime} does not contain an element which is incident with L.

Suppose a moment that $x^{\prime} \in \mathbf{P}^{\prime}$ and $x^{\prime} \mathrm{I} L . \mathrm{As} \mathbf{S}^{\prime}$ is a $4^{-g o n a l}$ configuration, there exists an element $y^{\prime} \in \mathbf{P}^{\prime}$ which is incident with L^{\prime} and collinear with x^{\prime}. There follows that \mathbf{S} possesses a triangle (with vertices $x, x^{\prime}, y^{\prime}$), a contradiction. So we conclude that \mathbf{P}^{\prime} does not contain an element which is incident with L.

Next, let $y \mathrm{I} L$ and $x \neq y$. From the preceding and from C 2 . there follows immediately that y is incident with at most one line of \mathbf{S}^{\prime}. So the number of elements of $\mathbf{B}^{\prime}-\left\{L^{\prime}\right\}$, which are concurrent with a line of \mathbf{B} which is incident with x, is not greater than $k^{\prime}\left(r^{\prime}-\mathrm{I}\right)+(k-\mathrm{I})(r-\mathrm{I})$. Further we remark that each element of $\mathbf{B}^{\prime}-\left\{L^{\prime}\right\}$ is concurrent with one and only one line of \mathbf{B} which is incident with x. There results that $\left|\mathbf{B}^{\prime}-\left\{L^{\prime}\right\}\right| \leq$ $\leq k^{\prime}\left(r^{\prime}-\mathrm{I}\right)+(k-\mathrm{I})(r-\mathrm{I})$ or $r^{\prime}\left(k^{\prime} r^{\prime}-k^{\prime}-r^{\prime}+2\right)-\mathrm{I} \leq k^{\prime}\left(r^{\prime}-\mathrm{I}\right)+$ $+(k-\mathrm{I})(r-\mathrm{I})$. Hence $\left(k^{\prime}-\mathrm{I}\right)\left(r^{\prime}-\mathrm{I}\right)^{2} \leq(r-\mathrm{I})(k-\mathrm{I})$.

Suppose a moment that $\left(k^{\prime}-\mathrm{I}\right)\left(r^{\prime}-\mathrm{I}\right)^{2}=(r-\mathrm{I})(k-\mathrm{I})$. If $L \in \mathbf{B}-$ $-\left\{L^{\prime}\right\}, x \mathrm{I} L, y \mathrm{I} L, x \neq y$, then y is incident with exactly one line M^{\prime} of \mathbf{S}^{\prime}. From the first part of the proof there follows that \mathbf{P}^{\prime} does not contain an element which is incident with a line $M \in \mathbf{B}-\left\{M^{\prime}\right\}$; where $y \mathrm{I} M$. Hence y is collinear with exactly k^{\prime} points of \mathbf{P}^{\prime}. As each element of \mathbf{P}^{\prime} is collinear with one and only one point which is incident with L, there results $\left|\mathbf{P}^{\prime}\right|=\mid\{$ all $x \in \mathbf{P} \| x \mathrm{I} L\} \mid k^{\prime}=k k^{\prime}$ or $k^{\prime}\left(k^{\prime} r^{\prime}-k^{\prime}-r^{\prime}+2\right)=k k^{\prime}$ or $k-\mathrm{I}=\left(k^{\prime}-\mathrm{I}\right)\left(r^{\prime}-\mathrm{I}\right)$. Consequently $r^{\prime}-\mathrm{I}=r-\mathrm{I}$ or $r=r^{\prime}$, a contradiction. We conclude that $\left(k^{\prime}-\mathrm{I}\right)\left(r^{\prime}-\mathrm{I}\right)^{2}<(r-\mathrm{I})(k-\mathrm{I})$.

Córollaries. C8. $\left(k^{\prime}-\mathrm{I}\right)^{3}\left(r^{\prime}-\mathrm{I}\right)^{3}<(r-\mathrm{I})^{2}(k-\mathrm{I})^{2}$.
C9. Suppose that $r^{\prime}>2$ and $k^{\prime}>2$. Then $\left(r^{\prime}-\mathrm{I}\right)^{5}<(k-\mathrm{I})^{6}$ and dually $\left(k^{\prime}-\mathrm{I}\right)^{5}<(r-\mathrm{I})^{6}$.

Proof. From $r^{\prime}>2$ and $k^{\prime}>2$ there follows that $r^{\prime}-\mathrm{I} \leq\left(k^{\prime}-\mathrm{I}\right)^{2}$ or $\sqrt{r^{\prime}-\mathrm{I}} \leq k^{\prime}-\mathrm{I}$. So $\sqrt{r^{\prime}-\mathrm{I}}\left(r^{\prime}-\mathrm{I}\right)^{2}<(r-\mathrm{I})(k-\mathrm{I})$. As $r>2$ and $k>2$ we have also $r-\mathrm{I} \leq(k-\mathrm{I})^{2}$. Hence $\sqrt{r^{\prime}-\mathrm{I}}\left(r^{\prime}-\mathrm{I}\right)^{2}<$ $<(k-\mathrm{I})^{3}$ or $\left(r^{\prime}-\mathrm{I}\right)^{5}<(k-\mathrm{I})^{6}$.

Cio. Suppose that $k=r=s$ and $k^{\prime}=r^{\prime}=s^{\prime}\left(s^{\prime}<s\right)$. Then $(s-\mathrm{I})^{2}>$ $>\left(s^{\prime}-\mathrm{I}\right)^{3}$.
5.2. The particular case $k=r=s, k^{\prime}=r^{\prime}=s^{\prime}\left(s^{\prime}<s\right)$. If the 4-gonal configuration $\mathbf{S}=(\mathbf{P}, \mathbf{B}, \mathrm{I})$, with $k=r=s$, has a proper 4-gonal subconfiguration $\mathbf{S}^{\prime}=\left(\mathbf{P}^{\prime}, \mathbf{B}^{\prime}, \mathrm{I}^{\prime}\right)$, with $k^{\prime}=r^{\prime}=s^{\prime}$ and $s^{\prime} \geq \mathrm{I} 3$, then there holds $(s-\mathrm{I})^{2}>3\left(s^{\prime}-\mathrm{I}\right)^{3}$.

Proof. If x (resp. L) is a point (resp. line) of $\mathbf{P}-\mathbf{P}^{\prime}$ (resp. $\mathbf{B}-\mathbf{B}^{\prime}$) which is not incident with a line (resp. point) of \mathbf{S}^{\prime}, then the number of points (resp. lines) of \mathbf{S}^{\prime} which are collinear (resp. concurrent) with x (resp. L) is denoted by α_{x} (resp. β_{L}). We call α (resp. β) the maximum value of α_{x} (resp. $\beta_{\mathrm{I} .}$).

Let x be a point of $\mathbf{P}-\mathbf{P}^{\prime}$ which is not incident with a line of \mathbf{S}^{\prime} and let $\alpha_{x}=\alpha$. Now it is not difficult to prove that $\left|\mathbf{B}^{\prime}\right|=\alpha s^{\prime}+\sum_{\mathrm{L}} \beta_{\mathrm{L}}$, where the summation runs over the lines L of \mathbf{B} which are incident with x and which are not incident with a point of \mathbf{P}^{\prime} (the number of lines L equals $s-\alpha$). Consequently $\left|\mathbf{B}^{\prime}\right| \leq \alpha s^{\prime}+(s-\alpha) \beta$ or $s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right) \leq \alpha s^{\prime}+(s-\alpha) \beta(\mathrm{I})$. Dually $\beta s^{\prime}+(s-\beta) \alpha \geq s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$ (2). Summation of (I) and (2) gives: $\alpha\left(s+s^{\prime}-2 \beta\right)+\beta\left(s+s^{\prime}\right) \geq 2 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$ (3). We distinguish four cases.
(a) Suppose that $\beta \geq\left(s+s^{\prime}\right) / 2$ and $\alpha \geq\left(s+s^{\prime}\right) / 2$. As $s+s^{\prime}-2 \beta \leq 0$ and $\alpha \geq\left(s+s^{\prime}\right) / 2$, there follows from (3) that $\frac{s+s^{\prime}}{2}\left(s+s^{\prime}-2 \beta\right)+$ $+\beta\left(s+s^{\prime}\right) \geq 2 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$ or $\left(s+s^{\prime}\right)^{2} \geq 4 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$. Consequently

$$
\begin{aligned}
& \left((s-\mathrm{I})+\left(s^{\prime}-\mathrm{I}\right)+2\right)^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+4\left(s^{\prime}-\mathrm{I}\right)^{2}+4\left(s^{\prime}-\mathrm{I}\right)+4, \quad \text { or } \\
& (s-\mathrm{I})^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I}) .
\end{aligned}
$$

(b) Suppose that $\beta \leq\left(s+s^{\prime}\right) / 2$ and $\alpha \leq\left(s+s^{\prime}\right) / 2$. As $s+s^{\prime}-2 \beta \geq 0$ and $\alpha \leq\left(s+s^{\prime}\right) / 2$, there follows from (3) that $\frac{s+s^{\prime}}{2}\left(s+s^{\prime}-2 \beta\right)+$ $+\beta\left(s+s^{\prime}\right) \geq 2 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right) \quad$ or $\left(s+s^{\prime}\right)^{2} \geq 4 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$. Consequently

$$
(s-\mathrm{I})^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I})
$$

(c) Suppose that $\alpha \leq\left(s+s^{\prime}\right) / 2$ and $\beta \geq\left(s+s^{\prime}\right) / 2$.

If $s-\mathrm{I} \geq\left(s^{\prime}-\mathrm{I}\right)^{2}$, then $(s-\mathrm{I})^{2} \geq\left(s^{\prime}-\mathrm{I}\right)^{4}>4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}$ (taking account of $s^{\prime} \geq 13>5$). Consequently

$$
(s-\mathrm{I})^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I}) .
$$

Next, let $s-\mathrm{I} \leq\left(s^{\prime}-\mathrm{I}\right)^{2}$. We prove that in this case $\alpha \geq s^{\prime}$. Suppose the contrary. If L is a line of $\mathbf{B}-\mathbf{B}^{\prime}$ which is not incident with a point of \mathbf{S}^{\prime}, then it is not difficult to prove that $\left|\mathbf{P}^{\prime}\right|=\beta_{\mathrm{L}} s^{\prime}+\sum_{x} \alpha_{x}$, where the summation runs over the points x of \mathbf{P} which are incident with L and which are not incident with a line of \mathbf{B}^{\prime}. Consequently $s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right) \leq \beta_{\mathrm{L}} s^{\prime}+$
$+\left(s-\beta_{\mathrm{L}}\right) \alpha<\beta_{\mathrm{L}} s^{\prime}+\left(s-\beta_{\mathrm{L}}\right) s^{\prime}$ or $s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)<s s^{\prime}$. There results $s-\mathrm{I}>\left(s^{\prime}-\mathrm{I}\right)^{2}$, a contradiction. We conclude that $\alpha \geq s^{\prime}$. From $\beta\left(s^{\prime}-\alpha\right)+s \alpha \geq s^{\prime}\left(\left(s^{\prime}-1\right)^{2}+\mathrm{I}\right)$ (see (2)), $s^{\prime}-\alpha \leq 0$ and $\beta \geq\left(s+s^{\prime}\right) / 2$ there follows that $\frac{s+s^{\prime}}{2}\left(s^{\prime}-\alpha\right)+s \alpha \geq s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$ or $\alpha\left(s-s^{\prime}\right)+$ $+s^{\prime 2}+s s^{\prime} \geq 2 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$. As $\alpha \leq\left(s+s^{\prime}\right) / 2$ there holds $\frac{s+s^{\prime}}{2}\left(s-s^{\prime}\right)+$ $+s^{\prime 2}+s s^{\prime} \geq 2 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$ or $\left(s+s^{\prime}\right)^{2} \geq 4 s^{\prime}\left(\left(s^{\prime}-\mathrm{I}\right)^{2}+\mathrm{I}\right)$. So we obtain again

$$
(s-\mathrm{I})^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I}) .
$$

(d) If $\alpha \geq\left(s+s^{\prime}\right) / 2$ and $\beta \leq\left(s+s^{\prime}\right) / 2$, then again

$$
(s-\mathrm{I})^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I})
$$

(dual of (c)).
We conclude that in all the possible cases

$$
(s-\mathrm{I})^{2} \geq 4\left(s^{\prime}-\mathrm{I}\right)^{3}+3\left(s^{\prime}-\mathrm{I}\right)^{2}-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I}) .
$$

Now we have to distinguish two cases.
I) $s-\mathrm{I}>\left(s^{\prime}-\mathrm{I}\right)^{2} / 2$. As $s^{\prime} \geq \mathrm{I} 3$ there holds $3\left(s^{\prime}-\mathrm{I}\right)^{2} \leq\left(s^{\prime}-\mathrm{I}\right)^{4} / 4$, and so $(s-\mathrm{I})^{2}>\left(s^{\prime}-\mathrm{I}\right)^{4} / 4 \geq 3\left(s^{\prime}-\mathrm{I}\right)^{3}$.
2) $s-\mathrm{I} \leq\left(s^{\prime}-\mathrm{I}\right)^{2} / 2$. Then $3\left(s^{\prime}-\mathrm{I}\right)^{2} \geq 6(s-\mathrm{I})$ and $\left(s^{\prime}-\mathrm{I}\right)^{3} \geq$ $\geq 2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)$. So $(s-\mathrm{I})^{2} \geq 3\left(s^{\prime}-\mathrm{I}\right)^{3}+2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)+6(s-\mathrm{I})-$ $-2(s-\mathrm{I})\left(s^{\prime}-\mathrm{I}\right)-4(s-\mathrm{I})$ or $(s-\mathrm{I})^{2} \geq 3\left(s^{\prime}-\mathrm{I}\right)^{3}+2(s-\mathrm{I})$. Consequently $(s-\mathrm{I})^{2}>3\left(s^{\prime}-\mathrm{I}\right)^{3}$.

We conclude that $(s-\mathrm{I})^{2}>3\left(s^{\prime}-\mathrm{I}\right)^{3}$ when $s^{\prime} \geq \mathrm{I} 3$.
5.3. Examples. (a) Let Q^{\prime} be a non-singular hyperquadric of index 2 of the projective space $P G(4, q)$ over the Galois field $G F(q)$. Now we consider the extension $G F\left(q^{n}\right)(n>$ I) of the field $G F(q)$ and also the corresponding extension $P G\left(4, q^{n}\right)$ (resp: Q) of $P G(4, q)$ (resp. Q^{\prime}) (we remark that Q is a non-singular hyperquadric of index 2 of the projective space $P G\left(4, q^{n}\right)$). Then the 4-gonal configuration $\mathbf{Q}^{i}(4, q)$ is a proper 4 -gonal subconfiguration of $\mathbf{Q}^{\prime}\left(4, q^{n}\right)$. In this case we have $k=r=q^{n}+\mathrm{I}, k^{\prime}=r^{\prime}=q+\mathrm{I} \quad(q$ is a prime power and $n>1$).
(b) Consider an irreducible conic C^{\prime} of the plane $P G(2, q) \subset P G(3, q)$, where $q=2^{k}$. If x is the nucleus of C^{\prime}, then $C^{\prime} \cup\{x\}=O^{\prime}$ is an oval of $P G(2, q)$. Let $G F\left(q^{n}\right)(n>$ 1) be an extension of the field $G F(q)$ and let $P G\left(3, q^{n}\right)$ (resp. $P G\left(2, q^{n}\right)$, resp. $\left.C\right)$ be the corresponding extension of $P G(3, q)$ (resp. $P G(2, q)$, resp. $\left.C^{\prime}\right)$. The nucleus of the irreducible conic C evidently is the point x. The oval $C \cup\{x\}$ of $P G\left(2, q^{n}\right)$ is denoted by O. Then the 4 -gonal configuration $\mathbf{O}^{\prime}(q)$ is a proper 4 -gonal subconfiguration of $\mathbf{O}\left(q^{n}\right)$. In this case we have $k=q^{n}, r^{\prime}=q^{n}+2, k^{\prime}=q, r^{\prime}=q+2$ ($q=2^{h}$ and $n>1$).

References

[I] C. T. Benson, On the structure of generalized quadrangles, "J. Algebra», I5, 443-454 (1970).
[2] P. Dembowski, Finite geometries, Springer-Verlag, i968, 375 pp.
[3] M. Hall Jr., Affine generalized quadrilaterals, Studies in Pure Mathematics, ed. by L. Mirsky, Academic Press, 1971, 113-ir.
[4] D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs, Atti del convegno di geometria combinatoria e sue applicazioni; Perugia i97I.
[5] S. E. Payne, Affine representations of generalized quadrangles, "J. Algebra», I6, 473485 (1970).
[6] S. E. Payne, Nonisomorphic generalized quadrangles, "J. Algebra», I8, 201-212 (1971).
[7] S. E. Payne, The equivalence of certain generalized quadrangles, "J. Comb. Theory", 10, 284-289 (1971).
[8] B. Segre, Introduction to Galois geometries, "Atti della Accad. Naz. Lincei, Mem. Cl. di Sc. Fis. Mat. e Nat.», 8, sez. I, Fasc. 5, 137-236 (1967).
[9] J. A. Thas, Ovoidal translation planes, "Arch. der Math.", (23) I, IIO-II2 (1972).
[io] J. A. Thas, On 4-gonal configurations, Geometriae Dedicata (to appear).

