ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

JOSEPH ADOLPHE THAS

4-gonal subconfigurations of a given 4-gonal configuration

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **53** (1972), n.6, p. 520–530. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_6_520_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Geometria. — 4-gonal subconfigurations of a given 4-gonal configuration. Nota di Joseph Adolphe Thas, presentata (*) dal Socio B. SEGRE.

RIASSUNTO. — Si introducono e studiano certe strutture finite, includenti quelle formate dai punti e dalle rette di una quadrica non degenere (su cui non giacciano piani) di uno spazio di Galois di dimensione 3, o 4, o 5.

Ι. INTRODUCTION

I.I. DEFINITION. A finite 4-gonal configuration [2] is an incidence structure $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with an incidence relation satisfying the following axioms.

(i) each point is incident with r lines $(r \ge 2)$ and two distinct points are incident with at most one line;

(ii) each line is incident with k points $(k \ge 2)$ and two distinct lines are incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there are a unique point x' and a unique line L' such that x I L' I x' I L.

1.2. FUNDAMENTAL RELATIONS. If $|\mathbf{P}| = v$ and $|\mathbf{B}| = b$, then v = k(kr - k - r + 2) and b = r(kr - k - r + 2). In [4] D. G. Higman proves that the positive integer k + r - 2 divides kr(k - I)(r - I). Moreover, under the assumption that k > 2 and r > 2, he shows that $r-1 \le (k-1)^2$ and $k-1 \le (r-1)^2$.

1.3. EXAMPLES OF 4-GONAL CONFIGURATIONS. (a) Let $\mathbf{P} = \{x_{ij} \mid i, j = 1, \dots, j\}$ = 1, 2, ..., k and $\mathbf{B} = \{L_1, L_2, ..., L_k, M_1, M_2, ..., M_k\}$, where $k \ge 2$. Incidence is defined as follows: $x_{ij} \operatorname{I} L_l \Leftrightarrow i = l, x_{ij} \operatorname{I} M_l \Leftrightarrow j = l$. Then $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$ is a 4-gonal configuration with parameters k = k, r = 2, $v = k^2$, b = 2k. This 4-gonal configuration is denoted by $\mathbf{T}(k)$.

(b) We consider a non-singular hyperquadric Q of index 2 of the projective space PG(d, q), with d = 3, 4 or 5. Then the points of Q together with the lines of Q (which are the subspaces of maximal dimension

(*) Nella seduta dell'11 novembre 1972.

on Q) form a 4-gonal configuration $\mathbf{Q}(d, q)$ with parameters [2] k = q + 1, r = 2, $v = (q + 1)^2$, b = 2(q + 1), when d = 3; k = r = q + 1, $v = b = (q + 1)(q^2 + 1)$, when d = 4; k = q + 1, $r = q^2 + 1$, $v = (q + 1)(q^3 + 1)$, $b = (q^2 + 1)(q^3 + 1)$, when d = 5.

REMARKS. I) $\mathbf{Q}(3, q)$ is isomorphic to $\mathbf{T}(q + 1)$.

2) The points of PG(3, q), together with the totally isotropic lines with respect to a symplectic polarity π , form a 4-gonal configuration $\mathbf{W}(q)$ which is isomorphic to the dual of $\mathbf{Q}(4, q)$ [I].

(c) Let H be a non-singular Hermitian primal [8] of the projective space PG(d, q), $q = p^{2^{k}}$. If d = 3 or 4, then the points of H together with the lines of H form a 4-gonal configuration $\mathbf{H}(d, q)$ with parameters [2]

(d) Consider an oval O (i.e. a set of q + 2 points no three of which are collinear) of the plane PG(2, q), $q = 2^k$. Let PG(2, q) be embedded as a plane H in PG(3, q) = P. Now a 4-gonal configuration $\mathbf{O}(q)$ is defined as follows [3]. Points of $\mathbf{O}(q)$ are the points of P - H. Lines of $\mathbf{O}(q)$ are the lines of P which are not contained in H and meet O (necessarily in a unique point). Incidence is that of P. The 4-gonal configuration $\mathbf{O}(q)$, $q = 2^k$, so defined has parameters

$$k = q \;, \;\; r = q + 2 \;, \;\; v = q^3, \;\; b = q^2 \, (q + 2).$$

2. OVALOIDS AND SPREADS

2.1. DEFINITIONS. An ovaloid (resp. spread) of the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with parameters k, r, v, b, is a set of $kr - k - r + 2 = \theta$ points (resp. lines) no two of which are collinear (resp. concurrent). We remark that θ is the maximal number of points (lines) of \mathbf{S} , no two of which are collinear (resp. concurrent).

2.2. EXAMPLES OF OVALOIDS AND SPREADS. (a) If $\mathbf{S} = \mathbf{T}(k)$, then $\theta = k$. We see immediately that $\{x_{11}, x_{22}, \dots, x_{kk}\}$ is an ovaloid and that $\{L_1, L_2, \dots, L_k\}$ is a spread (we remark that $\mathbf{T}(k)$ possesses k! ovaloids and 2 spreads).

(b) For $\mathbf{S} = \mathbf{Q}(4, q)$, we have $\theta = q^2 + \mathbf{I}$. Let PG(3, q) be a hyperplane of $PG(4, q) \supset Q$ for which $PG(3, q) \cap Q = Q'$ is an elliptic quadric

^{36. -} RENDICONTI 1972, Vol. LIII, fasc. 6.

of PG(3, q). Then Q' evidently is an ovaloid of $\mathbf{Q}(4, q)$. As $\mathbf{Q}(4, q)$, $q = 2^k$, is always self-dual ([9], [1]) there follows immediately that there exists also a spread of $\mathbf{Q}(4, q)$. Finally, we remark that $\mathbf{Q}(4, q), q$ odd, does not contain a spread [10].

If $\mathbf{S} = \mathbf{Q}(5, q)$, then $\theta = q^3 + 1$. We do not know if $\mathbf{Q}(5, q)$ possesses spreads or ovaloids.

(c) For $\mathbf{S} = \mathbf{H}(3, q)$, $q = p^{2k}$, we have $\theta = q \sqrt{q} + 1$. Let PG(2, q) be a plane of $PG(3, q) \supset H$ for which $PG(2, q) \cap H = H'$ is a non-singular Hermitian curve of PG(2, q). Then H' evidently is an ovaloid of $\mathbf{H}(3, q)$. We do not know if there exists a spread of $\mathbf{H}(3, q)$.

If $\mathbf{S} = \mathbf{H}(4, q)$, $q = p^{2h}$, then $\theta = q^2 \sqrt{q} + 1$. We do not know if $\mathbf{H}(4, q)$ possesses spreads or ovaloids.

(d) For $\mathbf{S} = \mathbf{O}(q)$, $q = 2^{h}$, we have $\theta = q^{2}$. Let $PG^{(1)}(2, q)$ be a plane of $PG(3, q) \supset PG(2, q) \supset O$ where $PG^{(1)}(2, q) \cap PG(2, q) = L$ has no point in common with O. Then $PG^{(1)}(2, q) - L$ evidently is an ovaloid of $\mathbf{O}(q)$. It is also evident that the q^{2} lines of PG(3, q), which are not contained in PG(2, q) and meet O in a fixed point, constitute a spread of the 4-gonal configuration $\mathbf{O}(q)$.

3. 4-GONAL SUBCONFIGURATIONS OF A GIVEN 4-GONAL CONFIGURATION

3.1. DEFINITIONS. The 4-gonal configuration $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ is called a 4-gonal subconfiguration of the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$ if and only if $\mathbf{P}' \subset \mathbf{P}, \mathbf{B}' \subset \mathbf{B}$ and $\mathbf{I}' = \mathbf{I} \cap (\mathbf{P}' \times \mathbf{B}')$. If $\mathbf{S}' \neq \mathbf{S}$, then we say that \mathbf{S}' is a proper 4-gonal subconfiguration of \mathbf{S} . When the parameters of \mathbf{S} are denoted by k, r, v, b, the parameters of \mathbf{S}' are denoted by k', r', v', b'.

3.2. THEOREM. If $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ is a 4-gonal subconfiguration of the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, then $y \mathbf{I} L \mathbf{I} x$, with $x, y \in \mathbf{P}'$ and $L \in \mathbf{B}$, implies $L \in \mathbf{B}'$. Dually, $L \mathbf{I} x \mathbf{I} M$, with L, $M \in \mathbf{B}'$ and $x \in \mathbf{P}$, implies $x \in \mathbf{P}'$.

Proof. Suppose that y I L I x, with $x, y \in \mathbf{P}'$ and $L \in \mathbf{B}$. Let $L' \neq L$ be a line of \mathbf{S}' which is incident with x. From (iii) in the definition of 4-gonal configuration there follows immediately that there are a unique point $x' \in \mathbf{P}'$ and a unique line $L'' \in \mathbf{B}'$, such that y I'L'' I'x' I'L'. As y I L'' I x' I L' and y I L I x I L', it follows that x = x' and L = L''. So we conclude that $L \in \mathbf{B}'$.

COROLLARIES. C1. If $L \in \mathbf{B}$ then there are three possibilities:

(a) $\exists x \in \mathbf{P}' \parallel x \operatorname{IL};$ (b) $\exists ! x \in \mathbf{P}' \parallel x \operatorname{IL};$ (c) $L \in \mathbf{B}'.$

C2. If $x \in \mathbf{P}$ then there are three possibilities:

(a) $\exists L \in \mathbf{B}' \parallel x \amalg L$; (b) $\exists ! L \in \mathbf{B}' \parallel x \amalg L$; (c) $x \in \mathbf{P}'$.

C3. If **S**' is a proper 4-gonal subconfiguration of **S**, then $\mathbf{P} \neq \mathbf{P}'$ and $\mathbf{B} \neq \mathbf{B}'$ (i.e. v' < v and b' < b).

4. The case k = k', r' < r

4.1. THEOREM. Suppose that the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with parameters k, r, v, b, has a 4-gonal subconfiguration $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$, with parameters k, r', v', b'(r' < r). Then \mathbf{S}' possesses an ovaloid and $r' - \mathbf{I} \le (r - \mathbf{I})/(k - \mathbf{I})$.

Proof. We consider a point $x \in \mathbf{P} - \mathbf{P}'$. From C2. there follows: $\exists L \in \mathbf{B}' \parallel x \operatorname{I} L(\operatorname{C2'})$. Let L_1, L_2, \dots, L_r be the *r* lines of **S** which are incident with *x*. Taking account of C1. and C2'., it follows that L_i , $i = 1, 2, \dots, r$, is incident with at most one point of **S**'. Suppose that $L_{i_1}, L_{i_2}, \dots, L_{i_a}, \{i_1, i_2, \dots, i_a\} \subset C\{1, 2, \dots, r\}$, are the lines which are incident with one point of **S**'. If $x_{i_j} \operatorname{I} L_{i_j}, x_{i_j} \in \mathbf{P}'$ and $j = 1, 2, \dots, \alpha$, then from the definition of 4-gonal configuration there follows immediately that $\{x_{i_1}, x_{i_2}, \dots, x_{i_a}\} = O$ is a set of α points of **S**' no two of which are collinear. Hence the configuration **S**' contains $\alpha r'$ distinct lines which are incident with one of the points of O.

Next we consider an arbitrary line L' of \mathbf{S}' . There are a unique line $L'' \in \mathbf{B}$ and a unique point $x' \in \mathbf{P}$ such that $x \operatorname{I} L'' \operatorname{I} x' \operatorname{I} L'$. As $x' \in \mathbf{P}'$, it follows that $x' \in O$. So the line L' is incident with one of the points of O.

From the preceding there follows immediately that $\alpha r' = b' = r'(kr' - k - r' + 2)$ or $\alpha = kr' - k - r' + 2$. Hence *O* is an ovaloid of **S**'. Moreover we have $\alpha = kr' - k - r' + 2 \le r$ or $r' - 1 \le (r - 1)/(k - 1)$.

COROLLARIES. C4. $r \ge k$; r = k implies r' = 2.

C5. If k > 2 then we have $r' \le k$; r' = k > 2 implies $r - 1 = (k - 1)^2$.

Proof. From C4. there follows that r > 2, and so we have $r - 1 \le \le (k-1)^2$ (1.2.). Consequently $r' - 1 \le (r-1)/(k-1) \le k-1$ or $r' \le k$. If r' = k > 2 then $k - 1 = r' - 1 \le (r-1)/(k-1)$, and so $r - 1 \ge \ge (k-1)^2$. From the preceding there follows immediately that $r - 1 = (k-1)^2$.

REMARK. When k = 2 it is easy to prove that $2 \le r' < r$ is the only restriction, for r'.

C6. Suppose that r' > 2 and k > 2. Then $\sqrt[4]{k-1} \le r' - 1 \le k - 1$ (F) and $(k-1)^{3/2} \le r - 1 \le (k-1)^2$ (F').

Proof. From r' > 2 and k > 2 there follows that $r' \le k$ and $(r' - 1)^2 \ge k - 1$. So we have $\sqrt{k-1} \le r' - 1 \le k - 1$.

Next we remark that $k - I \le (r' - I)^2 \le (r - I)^2 / (k - I)^2$ or $(k - I)^3 \le (r - I)^2$. As k > 2 and r > 2 we also have $r - I \le (k - I)^2$. We conclude that $(k - I)^{3/2} \le r - I \le (k - I)^2$.

REMARK. Let $r - \mathbf{I} = (k - \mathbf{I})^{3/2}$, k > 2 and r' > 2. Then $r' - \mathbf{I} \le (k - \mathbf{I})^{3/2}/(k - \mathbf{I})$ or $r' - \mathbf{I} \le \sqrt{k - \mathbf{I}}$. From (F) there follows that $r' - \mathbf{I} = \sqrt{k - \mathbf{I}}$.

C7. If **S'** possesses a proper 4-gonal subconfiguration **S''** with parameters k, r'', v'', b'', k > 2, then r'' = 2, r' = k and $r - 1 = (k - 1)^2$.

Proof. There holds $r' \leq k$ (C5.) and $r'' - 1 \leq (r' - 1)/(k - 1)$. Hence $r'' - 1 \leq \frac{r' - 1}{k - 1} \leq \frac{k - 1}{k - 1}$ or $r'' \leq 2$. There results that r'' = 2 and r' = k. From C5. there follows immediately that $r - 1 = (k - 1)^2$.

4.2. THEOREM. Suppose that the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with parameters k, r, v, b, has a proper 4-gonal subconfiguration $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$, with parameters k, r', v', b', and suppose moreover that $r' - \mathbf{I} < (r - \mathbf{I})/(k - \mathbf{I})$. Then \mathbf{P}' is the union of k disjoint ovaloids of \mathbf{S}' .

Proof. From the Proof of 4.1. there follows that r' - I < (r - I)/(k - I)if and only if **B** contains a line *L* which is incident with no point of **P**'. If $x_j I L$, $x_j \in \mathbf{P}$ and j = I, 2,..., k, then the points of **P**' which are collinear with x_j constitute an ovaloid of **S**' (see Proof of 4.1.). In this way we obtain kovaloids of **S**'. As **S** does not contain a triangle, these ovaloids evidently are disjoint. From $v' = k\theta'$, with $\theta' = kr' - k - r' + 2$ the number of points of an ovaloid of **S**', there follows that **P**' is the union of k disjoint ovaloids of **S**'.

4.3. REMARK. Suppose that O is an ovaloid of the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with parameters k, r, v, b. If $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ is a 4-gonal subconfiguration of \mathbf{S} , with k' = k, then it is easy to prove that $O \cap \mathbf{P}'$ is an ovaloid of \mathbf{S}' .

4.4. THEOREM. Let $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ be a substructure of the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with parameters k, r, v, b(k > 2), satisfying the following:

(i) every two distinct points of \mathbf{P}' which are collinear in \mathbf{S} are also collinear in \mathbf{S}' ;

(ii) each element of \mathbf{B}' is incident with k points of \mathbf{P}' . Then there are three possibilities:

(a) the elements of \mathbf{B}' are lines which are incident with a same point of \mathbf{P} , and \mathbf{P}' consists of the points of \mathbf{P} which are incident with these lines;

(b) $\mathbf{B}' = \emptyset$ and \mathbf{P}' is a set of points of \mathbf{P} , no two of which are collinear in \mathbf{S} ;

(c) $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ is a 4-gonal subconfiguration of \mathbf{S} with parameters k, r', v', b'.

Proof. Evidently (i) and (ii) are fulfilled by (a), (b), (c). Now we show that there are no other possibilities.

[332]

Suppose that $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ satisfies (i), (ii) and is not of type (a), (b). Then there holds $\mathbf{B}' \neq \emptyset$ and $\mathbf{P}' \neq \emptyset$. Suppose that $L' \in \mathbf{B}'$. As \mathbf{S}' is not of type (a) there exists a point $x' \in \mathbf{P}'$ such that $x'\mathbf{I}'L'$. Let x be the unique element of \mathbf{P} and let L be the unique element of \mathbf{B} for which $x'\mathbf{I}L\mathbf{I}x\mathbf{I}L'$. We remark that $x \in \mathbf{P}'$ (see (ii)). From $x, x' \in \mathbf{P}'$ and $x'\mathbf{I}L\mathbf{I}x$ there follows immediately that $L \in \mathbf{B}'$ (see (i)). And so axiom (iii) in the definition of 4-gonal configuration is satisfied by \mathbf{S}' . Now we show that also (i) and (ii) in definition 1.1. are satisfied.

First of all we remark that every line of \mathbf{B}' is incident with k (> 2) points of \mathbf{P}' and that two distinct lines of \mathbf{B}' are incident with at most one point of \mathbf{P}' . Next we consider a point $x' \in \mathbf{P}'$ and we suppose that x' is incident with r'(>0) lines of \mathbf{B}' . Let $y' \in \mathbf{P}'$ be a point which is not collinear with x' and call r'' the number of lines of \mathbf{S}' which are incident with y' (as \mathbf{S}' is not of type (a) or (b), such a point y' exists). If L' is a line of \mathbf{B}' which is incident with x' (resp. y'), then there exists one and only one line of \mathbf{B}' which is incident with y' (resp. x') and which is concurrent with L'. There follows immediately that r' = r''. In the same way we can prove that r' is the number of lines of \mathbf{B}' which are incident with any point of \mathbf{P}' which is collinear with x' but which is not collinear with y'. Finally we consider a point $z' \in \mathbf{P}'$ which is collinear with x' and y'. We have to consider two cases.

(a) Let us suppose that r' = I. The line which is incident with x' (resp. y') and z' is denoted by L' (resp. L''). Suppose that L is a line of \mathbf{B}' with $L \notin \{L', L''\}$. Then $x' \notin L, y' \notin L$ (since r' = r'' = I). Since there exists a line of \mathbf{B}' which is incident with x' (resp. y') and which is concurrent with L, there results that L and L' (resp. L and L'') are concurrent (taking account of r' = r'' = I). So we conclude that $z' \mid L$. Consequently \mathbf{S}' is of type (a), a contradiction.

(b) Let us suppose that r' > I. We consider a line L of \mathbf{B}' which is incident with x' and which is not incident with z'. As k > 2 there exists a point $u' \in \mathbf{P}' - \{x'\}$ which is incident with L and which is not collinear with y'. Such a point u' is not collinear with z' or y'. There follows: number of lines of \mathbf{S}' which are incident with z' = number of lines of \mathbf{S}' which are incident with z' = number of lines of \mathbf{S}' which are incident with u' = number of \mathbf{S}' which are incident with u' = number of \mathbf{S}' which are incident with u' = numb

Consequently every point of \mathbf{P}' is incident with $r' (\geq 2)$ lines of \mathbf{B}' and two distinct points of \mathbf{P}' are incident with at most one line of \mathbf{S}' . So we conclude that \mathbf{S}' is a 4-gonal subconfiguration of \mathbf{S} with parameters k, r', v', b'.

REMARK. Consider the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \epsilon)$, where $\mathbf{P} = \{1, 2, 3, 4, 5, 6\}$ and $\mathbf{B} = \{\{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}\}$ (here we have k = 2, r = 3, v = 6, b = 9). Then the substructure $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \epsilon)$, where $\mathbf{P}' = \{1, 2, 4, 5, 6\}$ and $\mathbf{B}' = \{\{1', 4\}, \{1, 5\}, \{1, 6\}, \{2, 4\}, \{2, 5\}, \{2, 6\}\}$, satisfies (i), (ii) and is not of type (a), (b), (c). We conclude that condition k > 2, in the statement of Theorem 4.4., cannot be deleted.

4.5. EXAMPLES. (a) Let $\mathbf{P} = \{x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_r\}$ and $\mathbf{B} = \{L_{ij} \mid i, j = 1, 2, \dots, r\}$, where $r \ge 2$. Incidence is defined as follows: $L_{ij} \, \mathbf{I} \, x_l \iff i = l, L_{ij} \, \mathbf{I} \, y_l \iff j = l$. Then $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$ is a 4-gonal configuration with parameters $k = 2, r = r, v = 2r, b = r^2$. This configuration is denoted by $\mathbf{T}^*(r)$ and is the dual of the configuration $\mathbf{T}(r)$. Then the structure $\mathbf{T}^*(r') = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$, with $2 \le r' \le r$, $\mathbf{P}' = \{x_1, \dots, x_{r'}, y_1, \dots, y_{r'}\}$, $\mathbf{B}' = \{L_{ij} \mid i, j = 1, \dots, r'\}$, $\mathbf{I}' = \mathbf{I} \cap (\mathbf{P}' \times \mathbf{B}')$, evidently is a 4-gonal subconfiguration of \mathbf{S} with parameters $k' = 2, r' = r', v' = 2r', b' = r'^2$.

(b) For $\mathbf{S} = \mathbf{Q}(4, q)$ we have k = r = q + 1. If \mathbf{S}' is a proper 4gonal subconfiguration of $\mathbf{Q}(4, q)$ with parameters k' = q + 1, r', v', b', then necessarily r' = 2 (C4.). It is easy to prove that $\mathbf{Q}(4, q)$ possesses such 4-gonal subconfigurations. Next, let $\mathbf{Q}^*(4, q) = \mathbf{W}(q)$ be the dual of \mathbf{S} . Then it is possible to prove that $\mathbf{W}(q)$ possesses proper 4-gonal subconfigurations, with k' = q + 1 (then necessarily r' = 2), if and only if q is even, i.e. if and only if $\mathbf{W}(q)$ is isomorphic to $\mathbf{Q}(4, q)$ (cfr. [1]).

For $\mathbf{S} = \mathbf{Q}(5,q)$ we have k = q + 1, $r = q^2 + 1$, and so $r - 1 = (k - 1)^2$. If \mathbf{S}' is a proper 4-gonal subconfiguration of $\mathbf{Q}(5,q)$ with k' = q + 1, then necessarily $r' \le q + 1$. If r' > 2 then we have $r' \ge \sqrt{q} + 1$ (cfr. C6.). Let PG(4,q) be a hyperplane of $PG(5,q) \supset Q$ for which $PG(4,q) \cap Q = Q'$ is a non-singular hyperquadric of index 2 of PG(4,q). Then $\mathbf{Q}'(4,q)$ is a proper 4-gonal subconfiguration of $\mathbf{Q}(5,q)$ with k' = q + 1 and r' = q + 1. Consequently $\mathbf{Q}'(4,q)$ possesses ovaloids. We remark that in this case r' = k (cfr. C5.). From the preceding there also follows that $\mathbf{Q}'(4,q)$, and consequently $\mathbf{Q}(5,q)$, possesses 4-gonal subconfigurations with parameters q + 1, 2, $(q + 1)^2$, 2(q + 1) (cfr. C7.).

(c) As r < k the configuration $\mathbf{H}(3, q)$, $q = p^{2k}$, has no proper 4-gonal subconfigurations with k' = q + I(C4.).

For $\mathbf{S} = \mathbf{H}(4, q)$, $q = p^{2k}$, we have k = q + 1, $r = 1 + q\sqrt{q}$, and so $r - 1 = (k - 1)^{3/2}$ (cfr. C6.). If \mathbf{S}' is a proper 4-gonal subconfiguration of $\mathbf{H}(4,q)$ with k' = q + 1, then necessarily r' = 2 or $r' = \sqrt{q} + 1$ (see remark of C6.). Let PG(3,q) be a hyperplane of $PG(4,q) \supset H$ for which $PG(3,q) \cap H = H'$ is a non-singular Hermitian primal of PG(3,q). Then $\mathbf{H}'(3,q)$ is a proper 4-gonal subconfiguration of $\mathbf{H}(4,q)$ with k' = q + 1and $r' = \sqrt{q} + 1$. Consequently $\mathbf{H}'(3,q)$ possesses ovaloids. It is not difficult to prove that there does not exist 4-gonal subconfigurations of $\mathbf{H}(4,q)$ with k' = q + 1 and r' = 2.

(d) We shall prove that $\mathbf{O}(q)$, $q = 2^{k}$ and k > 1, does not possess a proper 4-gonal subconfiguration with k' = q and r' > 2. Suppose the contrary. Then from C6. there follows that $(k-1)^{3/2} \le r-1 \le (k-1)^{2}$ or $(q-1)^{3/2} \le q+1 \le (q-1)^{2}$, a contradiction. Finally we shall construct a 4-gonal subconfiguration $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$ of $\mathbf{O}(q)$ with k' = qand r' = 2. Let $PG^{(1)}(2, q)$ be a plane of $PG(3, q) \supset PG(2, q) \supset O$, where $PG^{(1)}(2, q) \cap PG(2, q) = L$ has two distinct points x, y in common with O. Define: $\mathbf{P}' = PG^{(1)}(2, q) - L$, $\mathbf{B}' = \{\text{lines of } PG^{(1)}(2, q) \text{ which are diffe-}$ rent from L and contain x or y}, incidence is that of PG(3, q). Then the configuration **S'** so defined evidently is a 4-gonal subconfiguration of **S**, with parameters $k' = q, r' = 2, v' = q^2, b' = 2q$.

5. The case
$$k' < k$$
, $r' < r$

5.1. THEOREM. Suppose that the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with parameters k, r, v, b, has a 4-gonal subconfiguration $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$, with parameters k', r', v', b' (k' < k, r' < r). Then $(k' - \mathbf{I}) (r' - \mathbf{I})^2 < (r - \mathbf{I}) (k - \mathbf{I})$ and dually $(r' - \mathbf{I}) (k' - \mathbf{I})^2 < (r - \mathbf{I}) (k - \mathbf{I})$.

Proof. Suppose that $L' \in \mathbf{B}', x \amalg L', x \notin \mathbf{P}'$. Let $L \in \mathbf{B} - \{L'\}$ and $x \amalg L$ (from C2. there follows that $L \notin \mathbf{B}'$). Then we prove that \mathbf{P}' does not contain an element which is incident with L.

Suppose a moment that $x' \in \mathbf{P}'$ and $x' \mid L$. As \mathbf{S}' is a 4-gonal configuration, there exists an element $y' \in \mathbf{P}'$ which is incident with L' and collinear with x'. There follows that \mathbf{S} possesses a triangle (with vertices x, x', y'), a contradiction. So we conclude that \mathbf{P}' does not contain an element which is incident with L.

Next, let y I L and $x \neq y$. From the preceding and from C2. there follows immediately that y is incident with at most one line of \mathbf{S}' . So the number of elements of $\mathbf{B}' - \{L'\}$, which are concurrent with a line of \mathbf{B} which is incident with x, is not greater than k'(r'-1) + (k-1)(r-1). Further we remark that each element of $\mathbf{B}' - \{L'\}$ is concurrent with one and only one line of \mathbf{B} which is incident with x. There results that $|\mathbf{B}' - \{L'\}| \le$ $\le k'(r'-1) + (k-1)(r-1)$ or $r'(k'r'-k'-r'+2) - 1 \le k'(r'-1) +$ + (k-1)(r-1). Hence $(k'-1)(r'-1)^2 \le (r-1)(k-1)$.

Suppose a moment that $(k'-1)(r'-1)^2 = (r-1)(k-1)$. If $L \in \mathbf{B} - \{L'\}$, $x \mid L$, $y \mid L$, $x \neq y$, then y is incident with exactly one line M' of \mathbf{S}' . From the first part of the proof there follows that \mathbf{P}' does not contain an element which is incident with a line $M \in \mathbf{B} - \{M'\}$, where $y \mid M$. Hence y is collinear with exactly k' points of \mathbf{P}' . As each element of \mathbf{P}' is collinear with one and only one point which is incident with L, there results $|\mathbf{P}'| = |\{\text{all } x \in \mathbf{P} \mid x \mid L\}| k' = kk'$ or k'(k'r'-k'-r'+2) = kk' or $k - \mathbf{I} = (k'-\mathbf{I})(r'-\mathbf{I})$. Consequently $r'-\mathbf{I} = r-\mathbf{I}$ or r = r', a contradiction. We conclude that $(k'-\mathbf{I})(r'-\mathbf{I})^2 < (r-\mathbf{I})(k-\mathbf{I})$.

COROLLARIES. C8. $(k'-1)^3 (r'-1)^3 < (r-1)^2 (k-1)^2$.

C9. Suppose that r' > 2 and k' > 2. Then $(r' - 1)^5 < (k - 1)^6$ and dually $(k' - 1)^5 < (r - 1)^6$.

 $\begin{array}{l} \textit{Proof.} \quad \text{From } r' > 2 \ \text{and} \ k' > 2 \ \text{there follows that} \ r' - \mathbf{I} \le (k' - \mathbf{I})^2 \\ \text{or} \ \sqrt[3]{r' - \mathbf{I}} \le k' - \mathbf{I}. \quad \text{So} \ \sqrt[3]{r' - \mathbf{I}} \left(r' - \mathbf{I}\right)^2 < (r - \mathbf{I}) \left(k - \mathbf{I}\right). \quad \text{As} \ r > 2 \\ \text{and} \ k > 2 \ \text{we have also} \ r - \mathbf{I} \le (k - \mathbf{I})^2. \quad \text{Hence} \ \sqrt[3]{r' - \mathbf{I}} \left(r' - \mathbf{I}\right)^2 < \\ < (k - \mathbf{I})^3 \ \text{or} \ (r' - \mathbf{I})^5 < (k - \mathbf{I})^6. \end{array}$

C10. Suppose that k = r = s and k' = r' = s' (s' < s). Then $(s - 1)^2 > (s' - 1)^3$.

5.2. THE PARTICULAR CASE k = r = s, k' = r' = s'(s' < s). If the 4-gonal configuration $\mathbf{S} = (\mathbf{P}, \mathbf{B}, \mathbf{I})$, with k = r = s, has a proper 4-gonal subconfiguration $\mathbf{S}' = (\mathbf{P}', \mathbf{B}', \mathbf{I}')$, with k' = r' = s' and $s' \ge 13$, then there holds $(s - 1)^2 > 3(s' - 1)^3$.

Proof. If x (resp. L) is a point (resp. line) of $\mathbf{P} - \mathbf{P}'$ (resp. $\mathbf{B} - \mathbf{B}'$) which is not incident with a line (resp. point) of \mathbf{S}' , then the number of points (resp. lines) of \mathbf{S}' which are collinear (resp. concurrent) with x (resp. L) is denoted by α_x (resp. β_L). We call α (resp. β) the maximum value of α_x (resp. β_L).

Let x be a point of $\mathbf{P} - \mathbf{P}'$ which is not incident with a line of \mathbf{S}' and let $\alpha_x = \alpha$. Now it is not difficult to prove that $|\mathbf{B}'| = \alpha s' + \sum_{L} \beta_{L}$, where the summation runs over the lines L of **B** which are incident with x and which are not incident with a point of \mathbf{P}' (the number of lines L equals $s - \alpha$). Consequently $|\mathbf{B}'| \le \alpha s' + (s - \alpha)\beta$ or $s'((s' - 1)^2 + 1) \le \alpha s' + (s - \alpha)\beta(1)$. Dually $\beta s' + (s - \beta)\alpha \ge s'((s' - 1)^2 + 1)$ (2). Summation of (I) and (2) gives: $\alpha (s + s' - 2\beta) + \beta (s + s') \ge 2 s'((s' - 1)^2 + 1)$ (3). We distinguish four cases.

(a) Suppose that $\beta \ge (s+s')/2$ and $\alpha \ge (s+s')/2$. As s+s'-2 $\beta \le 0$ and $\alpha \ge (s+s')/2$, there follows from (3) that $\frac{s+s'}{2}(s+s'-2\beta) + \beta(s+s') \ge 2s'((s'-1)^2 + 1)$ or $(s+s')^2 \ge 4s'((s'-1)^2 + 1)$. Consequently

$$((s-I) + (s'-I) + 2)^{2} \ge 4(s'-I)^{3} + 4(s'-I)^{2} + 4(s'-I) + 4, \text{ or}$$

$$(s-I)^{2} \ge 4(s'-I)^{3} + 3(s'-I)^{2} - 2(s-I)(s'-I) - 4(s-I).$$

(b) Suppose that $\beta \leq (s+s')/2$ and $\alpha \leq (s+s')/2$. As $s+s'-2\beta \geq 0$ and $\alpha \leq (s+s')/2$, there follows from (3) that $\frac{s+s'}{2}(s+s'-2\beta) + \beta(s+s') \geq 2s'((s'-1)^2+1)$ or $(s+s')^2 \geq 4s'((s'-1)^2+1)$. Consequently

$$(s-I)^2 \ge 4(s'-I)^3 + 3(s'-I)^2 - 2(s-I)(s'-I) - 4(s-I).$$

(c) Suppose that $\alpha \leq (s+s')/2$ and $\beta \geq (s+s')/2$.

If $s - 1 \ge (s' - 1)^2$, then $(s - 1)^2 \ge (s' - 1)^4 > 4(s' - 1)^3 + 3(s' - 1)^2$ (taking account of $s' \ge 13 > 5$). Consequently

$$(s-1)^2 \ge 4(s'-1)^3 + 3(s'-1)^2 - 2(s-1)(s'-1) - 4(s-1).$$

Next, let $s - 1 \le (s' - 1)^2$. We prove that in this case $\alpha \ge s'$. Suppose the contrary. If L is a line of $\mathbf{B} - \mathbf{B}'$ which is not incident with a point of \mathbf{S}' , then it is not difficult to prove that $|\mathbf{P}'| = \beta_L s' + \sum_x \alpha_x$, where the summation runs over the points x of \mathbf{P} which are incident with L and which are not incident with a line of \mathbf{B}' . Consequently $s'((s' - 1)^2 + 1) \le \beta_L s' + \sum_x \beta_L s' +$

 $\begin{array}{ll} + (s - \beta_{\rm L}) \, \alpha < \beta_{\rm L} \, s' + (s - \beta_{\rm L}) \, s' & {\rm or} \quad s' \left((s' - {\rm I})^2 + {\rm I} \right) < ss'. & {\rm There \ results} \\ s - {\rm I} > (s' - {\rm I})^2, \ {\rm a} \ {\rm contradiction}. & {\rm We \ conclude \ that} \ \alpha \ge s'. & {\rm From} \\ \beta \left(s' - \alpha \right) + s\alpha \ge s' \left((s' - {\rm I})^2 + {\rm I} \right) \ ({\rm see \ } (2)), \ s' - \alpha \le {\rm o} \ {\rm and} \ \beta \ge (s + s')/2 \\ {\rm there \ follows \ that} \ \frac{s + s'}{2} \left(s' - \alpha \right) + s\alpha \ge s' \left((s' - {\rm I})^2 + {\rm I} \right) \ {\rm or} \ \alpha \left(s - s' \right) + \\ + s'^2 + ss' \ge 2 \, s' \left((s' - {\rm I})^2 + {\rm I} \right). & {\rm As} \ \alpha \le (s + s')/2 \ {\rm there \ holds} \ \frac{s + s'}{2} \left(s - s' \right) + \\ + s'^2 + ss' \ge 2 \, s' \left((s' - {\rm I})^2 + {\rm I} \right) \ {\rm or} \ (s + s')^2 \ge 4 \, s' \left((s' - {\rm I})^2 + {\rm I} \right). & {\rm So \ we} \\ {\rm obtain \ again} \end{array}$

$$(s-I)^2 \ge 4(s'-I)^3 + 3(s'-I)^2 - 2(s-I)(s'-I) - 4(s-I).$$

(d) If
$$\alpha \ge (s + s')/2$$
 and $\beta \le (s + s')/2$, then again

$$(s-1)^2 \ge 4(s'-1)^3 + 3(s'-1)^2 - 2(s-1)(s'-1) - 4(s-1)$$

(dual of (c)).

We conclude that in all the possible cases

$$(s-1)^2 \ge 4(s'-1)^3 + 3(s'-1)^2 - 2(s-1)(s'-1) - 4(s-1).$$

Now we have to distinguish two cases.

I) $s - I > (s' - I)^2/2$. As $s' \ge I3$ there holds $3(s' - I)^2 \le (s' - I)^4/4$, and so $(s - I)^2 > (s' - I)^4/4 \ge 3(s' - I)^3$.

2) $s - 1 \le (s' - 1)^2/2$. Then $3(s' - 1)^2 \ge 6(s - 1)$ and $(s' - 1)^3 \ge 2(s - 1)(s' - 1)$. So $(s - 1)^2 \ge 3(s' - 1)^3 + 2(s - 1)(s' - 1) + 6(s - 1) - 2(s - 1)(s' - 1) - 4(s - 1)$ or $(s - 1)^2 \ge 3(s' - 1)^3 + 2(s - 1)$. Consequently $(s - 1)^2 > 3(s' - 1)^3$.

We conclude that $(s-I)^2 > 3 (s'-I)^3$ when $s' \ge I3$.

5.3. EXAMPLES. (a) Let Q' be a non-singular hyperquadric of index 2 of the projective space PG(4, q) over the Galois field GF(q). Now we consider the extension $GF(q^n)$ (n > 1) of the field GF(q) and also the corresponding extension $PG(4, q^n)$ (resp: Q) of PG(4, q) (resp. Q') (we remark that Q is a non-singular hyperquadric of index 2 of the projective space $PG(4, q^n)$). Then the 4-gonal configuration $\mathbf{Q}'(4, q)$ is a proper 4-gonal subconfiguration of $\mathbf{Q}(4, q^n)$. In this case we have $k = r = q^n + 1$, k' = r' = q + 1 (q is a prime power and n > 1).

(b) Consider an irreducible conic C' of the plane $PG(2,q) \subset PG(3,q)$, where $q = 2^{k}$. If x is the nucleus of C', then $C' \cup \{x\} = O'$ is an oval of PG(2,q). Let $GF(q^{n})$ (n > 1) be an extension of the field GF(q) and let $PG(3,q^{n})$ (resp. $PG(2,q^{n})$, resp. C) be the corresponding extension of PG(3,q) (resp. PG(2,q), resp. C'). The nucleus of the irreducible conic Cevidently is the point x. The oval $C \cup \{x\}$ of $PG(2,q^{n})$ is denoted by O. Then the 4-gonal configuration $\mathbf{O}'(q)$ is a proper 4-gonal subconfiguration of $\mathbf{O}(q^{n})$. In this case we have $k = q^{n}, r = q^{n} + 2$, k' = q, r' = q + 2 $(q = 2^{k}$ and n > 1).

References

- [I] C. T. BENSON, On the structure of generalized quadrangles, «J. Algebra», 15, 443–454 (1970).
- [2] P. DEMBOWSKI, Finite geometries, Springer-Verlag, 1968, 375 pp.
- [3] M. HALL JR., Affine generalized quadrilaterals, Studies in Pure Mathematics, ed. by L. Mirsky, Academic Press, 1971, 113-116.
- [4] D. G. HIGMAN, Partial geometries, generalized quadrangles and strongly regular graphs, Atti del convegno di geometria combinatoria e sue applicazioni, Perugia 1971.
- [5] S. E. PAYNE, Affine representations of generalized quadrangles, « J. Algebra », 16, 473–485 (1970).
- [6] S. E. PAYNE, Nonisomorphic generalized quadrangles, « J. Algebra », 18, 201-212 (1971).
- [7] S. E. PAYNE, The equivalence of certain generalized quadrangles, « J. Comb. Theory », 10, 284–289 (1971).
- [8] B. SEGRE, Introduction to Galois geometries, «Atti della Accad. Naz. Lincei, Mem. Cl. di Sc. Fis. Mat. e Nat.», 8, sez. I, Fasc. 5, 137–236 (1967).
- [9] J. A. THAS, Ovoidal translation planes, «Arch. der Math.», (23) 1, 110-112 (1972).
- [10] J. A. THAS, On 4-gonal configurations, Geometriae Dedicata (to appear).